How do Exponential Size Solutions Arise in Semidefinite Programming?

Gábor Pataki
UNC Chapel Hill

Joint work with Alex Touzov

Foundations of Computational Mathematics, Paris
June 17, 2023

Semidefinite Programing (SDP) feasibility

\exists ? x s.t.

$$
\begin{equation*}
\sum_{i=1}^{m} \boldsymbol{x}_{i} \boldsymbol{A}_{i}+\boldsymbol{B} \succeq 0 \tag{SDP}
\end{equation*}
$$

Here

- A_{i}, B are symmetric matrices,
- $S \succeq 0$ means that S is symmetric positive semidefinite (psd).

Semidefinite Programing (SDP) feasibility

\exists ? x s.t.

$$
\begin{equation*}
\sum_{i=1}^{m} x_{i} \boldsymbol{A}_{i}+\boldsymbol{B} \succeq 0 \tag{SDP}
\end{equation*}
$$

Here

- A_{i}, B are symmetric matrices,
- $S \succeq 0$ means that S is symmetric positive semidefinite (psd).

Terminology: size of a number
$=$ number of bits needed to describe it.
Example: Size of $p \in \mathbb{Z}$ is $\lceil\log (|p|+1)\rceil+1$

Khachiyan SDP with exponential size solutions

- $x_{1} \geq x_{2}^{2}, x_{2} \geq x_{3}^{2}, \ldots, x_{m-1} \geq x_{m}^{2}, x_{m} \geq 2$.
(Khachiyan)
- x feasible $\Rightarrow x_{1} \geq 2^{2^{m-1}}$.
- \Rightarrow Size of $x \geq \log 2^{2^{m-1}}=2^{m-1}$.

Khachiyan SDP with exponential size solutions

- $x_{1} \geq x_{2}^{2}, x_{2} \geq x_{3}^{2}, \ldots, x_{m-1} \geq x_{m}^{2}, x_{m} \geq 2$.
(Khachiyan)
- x feasible $\Rightarrow x_{1} \geq 2^{2^{m-1}}$.
- \Rightarrow Size of $x \geq \log 2^{2^{m-1}}=2^{m-1}$.
- Can be written as SDP:

$$
x_{i} \geq x_{i+1}^{2} \Leftrightarrow\left(\begin{array}{cc}
x_{i} & x_{i+1} \\
x_{i+1} & 1
\end{array}\right) \succeq 0 \forall i
$$

- Picture:

This is not just about the existence of exponential size solutions!

$$
x_{1} \geq x_{2}^{2}, x_{2} \geq x_{3}^{2}, \ldots, x_{m-1} \geq x_{m}^{2}, x_{m} \geq 2
$$

- Exponential size solutions exist when the feasible set is unbounded (even in LP).

This is not just about the existence of exponential size solutions!

$$
x_{1} \geq x_{2}^{2}, x_{2} \geq x_{3}^{2}, \ldots, x_{m-1} \geq x_{m}^{2}, x_{m} \geq 2
$$

- Exponential size solutions exist when the feasible set is unbounded (even in LP).
- In (Khachiyan) all solutions must have exponential size.
- Key point: hierarchy among the variables.

Is (SDP) feasibility in P?

- Major open problem
- Open even for quadratic constraints

Is (SDP) feasibility in P?

- Major open problem
- Open even for quadratic constraints
- Exponential size solutions are a major obstacle
- How to prove in polynomial time that a possibly exponential size solution exists?

Questions

(1) Are SDPs with such large solutions common?

- Maybe not ... we rarely see them; and large solutions are easy to destroy even in (Khachiyan):
- Replace $x_{m} \geq 2$ by $x_{m} \geq 2+x_{m+1}$;
- Replace x by $G x$ where G is some random invertible matrix.

Questions

(1) Are SDPs with such large solutions common?

- Maybe not ... we rarely see them; and large solutions are easy to destroy even in (Khachiyan):
- Replace $x_{m} \geq 2$ by $x_{m} \geq 2+x_{m+1}$;
- Replace x by $G x$ where G is some random invertible matrix.
(2) Can we represent such large solutions in polynomial space?
- Maybe yes ... (Khachiyan) gives hope: no need to write out $2^{2^{m-1}}$ to prove that $x_{1}=2^{2^{m-1}}$ is feasible.
We can just do a symbolic computation!

Questions

(1) Are SDPs with such large solutions common?

- Maybe not ... we rarely see them; and large solutions are easy to destroy even in (Khachiyan):
- Replace $x_{m} \geq 2$ by $x_{m} \geq 2+x_{m+1}$;
- Replace x by $G x$ where G is some random invertible matrix.
(2) Can we represent such large solutions in polynomial space?
- Maybe yes ... (Khachiyan) gives hope: no need to write out $2^{2^{m-1}}$ to prove that $x_{1}=2^{2^{m-1}}$ is feasible.
We can just do a symbolic computation!

However: we give a partial "yes" answer to both (1) and (2)

- Background:

$$
k:=\text { singularity degree of }\left\{Y \succeq 0: A_{i} \bullet Y=0 \forall i\right\}
$$

- We assume (SDP) is strictly feasible, i.e., $\exists x$ s.t.

$$
\sum_{i=1}^{m} x_{i} A_{i}+B \succ 0
$$

Theorem 1 (Informal)

\exists an invertible matrix M s.t. the linear change of variables $x \leftarrow M x$ transforms (SDP) into (SDP') with the following properties:
If x strictly feasible in (SDP^{\prime}) and x_{k} is large enough, then

$$
x_{1} \geq d_{2} x_{2}^{\alpha_{2}}, x_{2} \geq d_{3} x_{3}^{\alpha_{3}}, \ldots, x_{k-1} \geq d_{k} x_{k}^{\alpha_{k}}
$$

Theorem 1 (Informal)

\exists an invertible matrix M s.t. the linear change of variables $x \leftarrow M x$ transforms (SDP) into (SDP') with the following properties:
If x strictly feasible in (SDP^{\prime}) and x_{k} is large enough, then

$$
x_{1} \geq d_{2} x_{2}^{\alpha_{2}}, x_{2} \geq d_{3} x_{3}^{\alpha_{3}}, \ldots, x_{k-1} \geq d_{k} x_{k}^{\alpha_{k}}
$$

where

$$
2 \geq \alpha_{2} \geq \frac{k}{k-1}, 2 \geq \alpha_{3} \geq \frac{k-1}{k-2}, \ldots, 2 \geq \alpha_{k} \geq 2
$$

Theorem 1 (Informal)

\exists an invertible matrix M s.t. the linear change of variables $x \leftarrow M x$ transforms (SDP) into (SDP') with the following properties:
If x strictly feasible in (SDP') and x_{k} is large enough, then

$$
x_{1} \geq d_{2} x_{2}^{\alpha_{2}}, x_{2} \geq d_{3} x_{3}^{\alpha_{3}}, \ldots, x_{k-1} \geq d_{k} x_{k}^{\alpha_{k}}
$$

where

$$
2 \geq \alpha_{2} \geq \frac{k}{k-1}, 2 \geq \alpha_{3} \geq \frac{k-1}{k-2}, \ldots, 2 \geq \alpha_{k} \geq 2
$$

The d_{j} and α_{j} are constants that depend on the A_{i}, on B and x_{k+1}, \ldots, x_{m} that we consider fixed.

Khachiyan type hierarchy in all strictly feasible SDPs.

Theorem 1 (Informal)

\exists an invertible matrix M s.t. the linear change of variables $x \leftarrow M x$ transforms (SDP) into (SDP') with the following properties:
If x strictly feasible in (SDP') and x_{k} is large enough, then

$$
x_{1} \geq d_{2} x_{2}^{\alpha_{2}}, x_{2} \geq d_{3} x_{3}^{\alpha_{3}}, \ldots, x_{k-1} \geq d_{k} x_{k}^{\alpha_{k}}
$$

where

$$
2 \geq \alpha_{2} \geq \frac{k}{k-1}, 2 \geq \alpha_{3} \geq \frac{k-1}{k-2}, \ldots, 2 \geq \alpha_{k} \geq 2
$$

The d_{j} and α_{j} are constants that depend on the A_{i}, on B and x_{k+1}, \ldots, x_{m} that we consider fixed.

Khachiyan type hierarchy in all strictly feasible SDPs.
Assumptions are minimal.

Worst case example: Khachiyan SDP

$$
\left(\begin{array}{ccccc}
x_{1} & & & & x_{2} \\
& x_{2} & & & x_{3} \\
& & x_{3} & & x_{4} \\
& & & x_{4} & \\
& & & & \\
x_{2} & x_{3} & x_{4} & & 1
\end{array}\right) \succeq 0
$$

Worst case example: Khachiyan SDP

$$
\left(\begin{array}{ccccc}
x_{1} & & & & x_{2} \\
& x_{2} & & & x_{3} \\
& & x_{3} & & x_{4} \\
& & & x_{4} & \\
& & & & \\
x_{2} & x_{3} & x_{4} & & 1
\end{array}\right) \succeq 0
$$

- Subdeterminant with three red corners $\Rightarrow x_{1} \geq x_{2}^{2}$
- Subdeterminant with three blue corners $\Rightarrow x_{2} \geq x_{3}^{2}$
- Subdeterminant with three green corners $\Rightarrow x_{3} \geq x_{4}^{2}$

Worst case example: Khachiyan SDP

$$
\left(\begin{array}{ccccc}
x_{1} & & & & x_{2} \\
& x_{2} & & & x_{3} \\
& & x_{3} & & x_{4} \\
& & & x_{4} & \\
& & & & \\
x_{2} & x_{3} & x_{4} & & 1
\end{array}\right) \succeq 0
$$

- Subdeterminant with three red corners $\Rightarrow x_{1} \geq x_{2}^{2}$
- Subdeterminant with three blue corners $\Rightarrow x_{2} \geq x_{3}^{2}$
- Subdeterminant with three green corners $\Rightarrow x_{3} \geq x_{4}^{2}$

Exponents are maximal.

Best case example: "Mild" SDP

$$
\left(\begin{array}{ccccc}
x_{1} & & x_{2} & & \\
& & & & \\
& x_{2} & & x_{3} & \\
x_{2} & & x_{3} & & x_{4} \\
& x_{3} & & x_{4} & \\
& & & & \\
& & x_{4} & & 1
\end{array}\right) \succeq 0
$$

Best case example: "Mild" SDP

$$
\left(\begin{array}{ccccc}
x_{1} & & x_{2} & & \\
& & & & \\
& x_{2} & & x_{3} & \\
x_{2} & & x_{3} & & x_{4} \\
& x_{3} & & x_{4} & \\
& & & & \\
& & x_{4} & & 1
\end{array}\right) \succeq 0
$$

- Subdeterminant with three red corners $\Rightarrow x_{1} x_{3} \geq x_{2}^{2}$
- Subdeterminant with three blue corners $\Rightarrow x_{2} x_{4} \geq x_{3}^{2}$
- Subdeterminant with three green corners $\Rightarrow x_{3} \geq x_{4}^{2}$

Best case example: "Mild" SDP

$$
\left(\begin{array}{ccccc}
x_{1} & & x_{2} & & \\
& & & & \\
& x_{2} & & x_{3} & \\
x_{2} & & x_{3} & & x_{4} \\
& x_{3} & & x_{4} & \\
& & & & \\
& & x_{4} & & 1
\end{array}\right) \succeq 0
$$

- Subdeterminant with three red corners $\Rightarrow x_{1} x_{3} \geq x_{2}^{2}$
- Subdeterminant with three blue corners $\Rightarrow x_{2} x_{4} \geq x_{3}^{2}$
- Subdeterminant with three green corners $\Rightarrow x_{3} \geq x_{4}^{2}$

From these we derive:

$$
\mathrm{x}_{1} \geq \mathrm{x}_{2}^{4 / 3}, \mathrm{x}_{2} \geq \mathrm{x}_{3}^{3 / 2}, \mathrm{x}_{3} \geq \mathrm{x}_{4}^{2}
$$

Exponents are minimal.

Khachiyan vs Mild

- Three variables, $2 \geq x_{3} \geq 0$ (normalization)

Change of variables: (SDP) into (SDP')

The reformulated SDP looks like

$+\sum_{i=k+1}^{m} x_{i} A_{i}^{\prime}+B^{\prime} \succeq 0$
(SDP')
with $r_{1}, \ldots, r_{k}>0$.

Change of variables: (SDP) into (SDP')

The reformulated SDP looks like

$$
+\sum_{i=k+1}^{m} x_{i} A_{i}^{\prime}+B^{\prime} \succeq 0
$$

(SDP')
with $r_{1}, \ldots, r_{k}>0$.
To get this reformulation, we used
(1) linear change of variables $x \leftarrow M x$;
(2) a similarity transformation $T^{\top}() T$.
(3) Background: facial reduction, reformulations: Borwein-Wolkowicz, Waki-Muramatsu, P, Liu-P, ...

From (SDP^{\prime}) to inequalities $x_{j} \geq$ const $\cdot x_{j+1}^{\alpha_{j+1}}$
Formula for the α_{j+1} :

$$
\alpha_{j+1}=\left\{\begin{aligned}
2-\frac{1}{\alpha_{j+2} \ldots \alpha_{t_{j+1}}} & \text { if } t_{j+1} \leq k \\
2 & \text { if } t_{j+1}=k+1
\end{aligned}\right.
$$

for $j=1, \ldots, k-1$.

From (SDP^{\prime}) to inequalities $x_{j} \geq$ const $\cdot x_{j+1}^{\alpha_{j+1}}$
Formula for the α_{j+1} :

$$
\alpha_{j+1}=\left\{\begin{aligned}
2-\frac{1}{\alpha_{j+2} \ldots \alpha_{t_{j+1}}} & \text { if } t_{j+1} \leq k \\
2 & \text { if } t_{j+1}=k+1
\end{aligned}\right.
$$

for $j=1, \ldots, k-1$.
Similar to continued fractions.

From (SDP') to inequalities $x_{j} \geq$ const $\cdot x_{j+1}^{\alpha_{j+1}}$
Formula for the α_{j+1} :

$$
\alpha_{j+1}=\left\{\begin{aligned}
2-\frac{1}{\alpha_{j+2} \ldots \alpha_{t_{j+1}}} & \text { if } t_{j+1} \leq k \\
2 & \text { if } t_{j+1}=k+1
\end{aligned}\right.
$$

for $j=1, \ldots, k-1$.
Similar to continued fractions.
Here

$$
t_{j+1}=\text { index of a rightmost block with } x_{j+1}
$$

Shift x_{j+1} to right $\Rightarrow t_{j+1}$ increases.

$$
\Rightarrow \alpha_{j+1} \text { increases. }
$$

Example

$$
\underbrace{\alpha=(4 / 3,3 / 2,2)}_{\left.\begin{array}{ccccc}
x_{1} & & x_{2} & & \\
& x_{2} & & x_{3} & \\
x_{2} & & x_{3} & & \\
& x_{3} & & x_{4} & \\
& & & & \\
& & x_{4} & & 1
\end{array}\right)}
$$

Example

Example

Example

In other words

$$
x_{1} \geq x_{2}^{4 / 3} \quad \rightarrow \quad x_{1} \geq x_{2}^{5 / 3} \quad \rightarrow \quad x_{1} \geq x_{2}^{2}
$$

Do we need the change of variables $x \leftarrow M x$?

- In general, yes: such an operation may mess up even (Khachiyan).
- So, we may need such an operation $x \leftarrow M^{-1} x$ to unmess it.
- But, sometimes we don't.

Do we need the change of variables $x \leftarrow M x$?

- In general, yes: such an operation may mess up even (Khachiyan).
- So, we may need such an operation $x \leftarrow M^{-1} x$ to unmess it.
- But, sometimes we don't! Many sum-of-squares SDPs are in the form of (SDP') with no change of variables.

Do we need the change of variables $x \leftarrow M x$?

- In general, yes: such an operation may mess up even (Khachiyan).
- So, we may need such an operation $x \leftarrow M^{-1} x$ to unmess it.
- But, sometimes we don't! Many sum-of-squares SDPs are in the form of (SDP') with no change of variables.
- Ex 1: Minimize univariate polynomial by SDP.

In dual SDP: $y_{2 n} \geq y_{2 n-2}^{1+1 /(n-1)}, y_{2 n-2} \geq y_{2 n-4}^{1+1 /(n-2)}, \ldots$
$\Rightarrow y_{2 n} \geq y_{2}^{n}$

Do we need the change of variables $x \leftarrow M x$?

- In general, yes: such an operation may mess up even (Khachiyan).
- So, we may need such an operation $x \leftarrow M^{-1} x$ to unmess it.
- But, sometimes we don't! Many sum-of-squares SDPs are in the form of (SDP') with no change of variables.
- Ex 1: Minimize univariate polynomial by SDP.

In dual SDP: $y_{2 n} \geq y_{2 n-2}^{1+1 /(n-1)}, y_{2 n-2} \geq y_{2 n-4}^{1+1 /(n-2)}, \ldots$
$\Rightarrow y_{2 n} \geq y_{2}^{n}$

- Ex 2: O' Donnell, 2017 SDP to certify

$$
\begin{align*}
x_{1}+\cdots+x_{n}-2 y_{1} & \geq 0 \\
\text { s.t. } x_{i} & \in\{0,1\} \forall i, \tag{1}\\
y_{i} & =0 \forall i .
\end{align*}
$$

- In SDP: $u_{1} \geq u_{2}^{2}, u_{2} \geq u_{3}^{2}, \ldots$

How to certify exponential size solutions in polynomial space?

Recall reformulated problem:

$+\sum_{i=k+1}^{m} x_{i} A_{i}^{\prime}+B^{\prime} \succeq 0$
(SDP')
Suppose we have x_{k+1}, \ldots, x_{m} s.t. $\exists x_{1}, \ldots, x_{k}$ so this problem is strictly feasible.
Recall that x_{1}, \ldots, x_{k} are "large."

How to certify exponential size solutions in polynomial space?

Recall reformulated problem:

$+\sum_{i=k+1}^{m} x_{i} A_{i}^{\prime}+B^{\prime} \succeq 0$
(SDP')
Suppose we have x_{k+1}, \ldots, x_{m} s.t. $\exists x_{1}, \ldots, x_{k}$ so this problem is strictly feasible.
Recall that x_{1}, \ldots, x_{k} are "large."
We can prove that x_{1}, \ldots, x_{k} exist, without computing them!

Proving that x_{1}, \ldots, x_{k} exist, without computing them
Start with $Z:=\sum_{i=k+1}^{m} x_{i} A_{i}^{\prime}+B^{\prime}$.
Symbolically add $x_{k} A_{k}^{\prime}, x_{k-1} A_{k-1}^{\prime}, \ldots$ to make larger and larger lower right corners positive definite.

Proving that x_{1}, \ldots, x_{k} exist, without computing them
Start with $Z:=\sum_{i=k+1}^{m} x_{i} A_{i}^{\prime}+B^{\prime}$.
Symbolically add $x_{k} A_{k}^{\prime}, x_{k-1} A_{k-1}^{\prime}, \ldots$ to make larger and larger lower right corners positive definite.

$$
\underbrace{\left(\begin{array}{cccc}
\times & \times & \times & \times \\
\times & \times & \times & \times \\
\times & \times & \times & \times \\
\times & \times & \times & +
\end{array}\right)}_{Z}
$$

Proving that x_{1}, \ldots, x_{k} exist, without computing them
Start with $Z:=\sum_{i=k+1}^{m} x_{i} A_{i}^{\prime}+B^{\prime}$.
Symbolically add $x_{k} A_{k}^{\prime}, x_{k-1} A_{k-1}^{\prime}, \ldots$ to make larger and larger lower right corners positive definite.

$$
\underbrace{\left(\begin{array}{cccc}
\times & \times & \times & \times \\
\times & \times & \times & \times \\
\times & \times & \times & \times \\
\times & \times & \times \underbrace{+}_{\succ 0}
\end{array}\right) \quad \begin{array}{c}
x_{k} \gg 0 \\
x_{k}> \\
+x_{k} A_{k}^{\prime}
\end{array}}_{Z}
$$

Proving that x_{1}, \ldots, x_{k} exist, without computing them
Start with $Z:=\sum_{i=k+1}^{m} x_{i} A_{i}^{\prime}+B^{\prime}$.
Symbolically add $x_{k} A_{k}^{\prime}, x_{k-1} A_{k-1}^{\prime}, \ldots$ to make larger and larger lower right corners positive definite.

$$
\underbrace{\left(\begin{array}{cccc}
\times & \times & \times & \times \\
\times & \times & \times & \times \\
\times & \times & \times & \times \\
\times & \times & \times & +
\end{array}\right)}_{Z} \underset{x^{x_{k} \gg 0}}{\stackrel{+x_{k} A_{k}^{\prime}}{\rightleftarrows}}\left(\begin{array}{cccc}
\times \\
\times & \times & \times & \times \\
\times & \times & \times \\
\times & \times & + & \times \\
\times & \times & \times & +
\end{array}\right)
$$

Proving that x_{1}, \ldots, x_{k} exist, without computing them
Start with $Z:=\sum_{i=k+1}^{m} x_{i} A_{i}^{\prime}+B^{\prime}$.
Symbolically add $x_{k} A_{k}^{\prime}, x_{k-1} A_{k-1}^{\prime}, \ldots$ to make larger and larger lower right corners positive definite.

Proving that x_{1}, \ldots, x_{k} exist, without computing them
Start with $Z:=\sum_{i=k+1}^{m} x_{i} A_{i}^{\prime}+B^{\prime}$.
Symbolically add $x_{k} A_{k}^{\prime}, x_{k-1} A_{k-1}^{\prime}, \ldots$ to make larger and larger lower right corners positive definite.

Proving that x_{1}, \ldots, x_{k} exist, without computing them
Start with $Z:=\sum_{i=k+1}^{m} x_{i} A_{i}^{\prime}+B^{\prime}$.
Symbolically add $x_{k} A_{k}^{\prime}, x_{k-1} A_{k-1}^{\prime}, \ldots$ to make larger and larger lower right corners positive definite.

Proving that x_{1}, \ldots, x_{k} exist, without computing them
Start with $Z:=\sum_{i=k+1}^{m} x_{i} A_{i}^{\prime}+B^{\prime}$.
Symbolically add $x_{k} A_{k}^{\prime}, x_{k-1} A_{k-1}^{\prime}, \ldots$ to make larger and larger lower right corners positive definite.

Just like in (Khachiyan).
Also inspiration: Lourenço-Muramatsu-Tsuchiya: A structural geometrical analysis of weakly infeasible SDPs

Conclusion

- Exponential size solutions in SDP, going back to famous Khachiyan example.
- Khachiyan type hierarchy among leading variables in every strictly feasible SDP (after linear change of variables)
- Formulas to compute the exponents (like continued fractions)
- Connection to Fourier-Motzkin elimination (pls see paper)

Conclusion

- Exponential size solutions in SDP, going back to famous Khachiyan example.
- Khachiyan type hierarchy among leading variables in every strictly feasible SDP (after linear change of variables)
- Formulas to compute the exponents (like continued fractions)
- Partial answer to: how to represent exponential size solutions in polynomial space?
- Every known SDP with large solutions is in our normal form (SDP').
- Paper: https://arxiv.org/abs/2103.00041

Thank you!

