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Semidefinite Programing (SDP) feasibility

∃?x s.t. ∑m
i=1 xiAi +B � 0 (SDP)

Here

•Ai, B are symmetric matrices,
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Semidefinite Programing (SDP) feasibility

∃?x s.t. ∑m
i=1 xiAi +B � 0 (SDP)

Here

•Ai, B are symmetric matrices,

• S � 0 means thatS is symmetric positive semidefinite (psd).

Terminology: size of a number

= number of bits needed to describe it.

Example: Size of p ∈ Z is dlog(|p|+ 1)e+ 1



Khachiyan SDP with exponential size solutions

• x1 ≥ x2
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.
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= 2m−1.



Khachiyan SDP with exponential size solutions

• x1 ≥ x2
2, x2 ≥ x2

3, . . . , xm−1 ≥ x2
m, xm ≥ 2. (Khachiyan)

• x feasible⇒ x1 ≥ 22m−1
.

•⇒ Size of x ≥ log 22m−1
= 2m−1.

• Can be written as SDP:

xi ≥ x2
i+1 ⇔

 xi xi+1

xi+1 1

 � 0∀i.

• Picture:



This is not just about the existence of exponential
size solutions!

x1 ≥ x2
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m, xm ≥ 2.

• Exponential size solutions exist when the feasible set is un-
bounded (even in LP).



This is not just about the existence of exponential
size solutions!

x1 ≥ x2
2, x2 ≥ x2

3, . . . , xm−1 ≥ x2
m, xm ≥ 2.

• Exponential size solutions exist when the feasible set is un-
bounded (even in LP).

• In (Khachiyan) all solutions must have exponential size.

• Key point: hierarchy among the variables.
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Is (SDP) feasibility in P?

• Major open problem

• Open even for quadratic constraints

• Exponential size solutions are a major obstacle

• How to prove in polynomial time that a possibly exponential
size solution exists?
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(1) Are SDPs with such large solutions common?

• Maybe not . . . we rarely see them; and large solutions are
easy to destroy even in (Khachiyan):

– Replace xm ≥ 2 by xm ≥ 2 + xm+1;

– Replace x byGxwhereG is some random invertible ma-
trix.
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However: we give a partial “yes” answer to both
(1) and (2)

• Background:

k :=singularity degree of {Y � 0 : Ai • Y = 0 ∀i }.

• We assume (SDP) is strictly feasible, i.e., ∃x s.t.∑m
i=1 xiAi +B � 0.



Theorem 1 (Informal)

∃ an invertible matrix M s.t. the linear change of variables
x←Mx transforms (SDP) into (SDP’)with the following prop-
erties:

If x strictly feasible in (SDP’) and xk is large enough, then

x1 ≥ d2x
α2
2 , x2 ≥ d3x

α3
3 , . . . , xk−1 ≥ dkxαkk
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Theorem 1 (Informal)

∃ an invertible matrix M s.t. the linear change of variables
x←Mx transforms (SDP) into (SDP’)with the following prop-
erties:

If x strictly feasible in (SDP’) and xk is large enough, then
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α2
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The dj and αj are constants that depend on the
Ai, on B and xk+1, . . . , xm that we consider fixed.

Khachiyan type hierarchy in all strictly feasible SDPs.

Assumptions are minimal.



Worst case example: Khachiyan SDP



x1 x2

x2 x3

x3 x4

x4

x2 x3 x4 1


� 0



Worst case example: Khachiyan SDP



x1 x2

x2 x3

x3 x4

x4

x2 x3 x4 1


� 0

• Subdeterminant with three red corners⇒ x1 ≥ x2
2

• Subdeterminant with three blue corners ⇒ x2 ≥ x2
3

• Subdeterminant with three green corners ⇒ x3 ≥ x2
4



Worst case example: Khachiyan SDP



x1 x2

x2 x3

x3 x4

x4

x2 x3 x4 1


� 0

• Subdeterminant with three red corners⇒ x1 ≥ x2
2

• Subdeterminant with three blue corners ⇒ x2 ≥ x2
3

• Subdeterminant with three green corners ⇒ x3 ≥ x2
4

Exponents are maximal.



Best case example: “Mild” SDP



x1 x2

x2 x3

x2 x3 x4

x3 x4

x4 1


� 0



Best case example: “Mild” SDP



x1 x2

x2 x3

x2 x3 x4

x3 x4

x4 1


� 0

• Subdeterminant with three red corners⇒ x1x3 ≥ x2
2

• Subdeterminant with three blue corners ⇒ x2x4 ≥ x2
3

• Subdeterminant with three green corners ⇒ x3 ≥ x2
4



Best case example: “Mild” SDP



x1 x2

x2 x3

x2 x3 x4

x3 x4

x4 1


� 0

• Subdeterminant with three red corners⇒ x1x3 ≥ x2
2

• Subdeterminant with three blue corners ⇒ x2x4 ≥ x2
3

• Subdeterminant with three green corners ⇒ x3 ≥ x2
4

From these we derive:

x1 ≥ x
4/3
2 , x2 ≥ x

3/2
3 , x3 ≥ x2

4

Exponents are minimal.



Khachiyan vs Mild

• Three variables, 2 ≥ x3 ≥ 0 (normalization)



Change of variables: (SDP) into (SDP’)
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The reformulated SDP looks like

x1

( r1︷︸︸︷ n−r1︷︸︸︷
I 0
0 0

)
+
∑k

i=2 xi


r1+...+ri−1︷ ︸︸ ︷ ri︷︸︸︷ n−r1−...−ri︷ ︸︸ ︷
× × ×
× I 0
× 0 0


+
∑m

i=k+1 xiA
′
i +B′ � 0

(SDP’)
with r1, . . . , rk > 0.

To get this reformulation, we used

(1) linear change of variables x←Mx;

(2) a similarity transformation T>()T.

(3) Background: facial reduction, reformulations: Borwein-Wolkowicz,
Waki-Muramatsu, P, Liu-P, . . .
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From (SDP’) to inequalities xj ≥ const · xαj+1

j+1

Formula for the αj+1 :

αj+1 =


2−

1

αj+2 . . . αtj+1

if tj+1 ≤ k

2 if tj+1 = k + 1

for j = 1, . . . , k − 1.

Similar to continued fractions.

Here

tj+1 = index of a rightmost block withxj+1

Shift xj+1 to right ⇒ tj+1 increases.

⇒ αj+1 increases.
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In other words

x1 ≥ x4/3
2 → x1 ≥ x5/3

2 → x1 ≥ x2
2
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Do we need the change of variables x←Mx?

• In general, yes: such an operation may mess up even (Khachiyan).

• So, we may need such an operation x←M−1x to unmess
it.

• But, sometimes we don’t! Many sum-of-squares SDPs are
in the form of (SDP’) with no change of variables.

• Ex 1: Minimize univariate polynomial by SDP.

In dual SDP: y2n ≥ y1+1/(n−1)
2n−2 , y2n−2 ≥ y1+1/(n−2)

2n−4 , . . .

⇒ y2n ≥ yn2
• Ex 2: O’ Donnell, 2017 SDP to certify

x1 + · · ·+ xn − 2y1 ≥ 0

s.t. xi ∈ {0, 1}∀i,

yi = 0∀i.

(1)

– In SDP: u1 ≥ u2
2, u2 ≥ u2

3, . . .



How to certify exponential size solutions in
polynomial space ?

Recall reformulated problem:
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(SDP’)
Suppose we have xk+1, . . . , xm s.t. ∃ x1, . . . , xk so this prob-

lem is strictly feasible.

Recall that x1, . . . , xk are “large.”
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k, xk−1A
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lower right corners positive definite.
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′
k, xk−1A

′
k−1, . . . to make larger and larger

lower right corners positive definite.

× × × ×
× × × ×
× × × ×
× × × +




× × × ×
× × × ×
× × + ×
× × × +




× × × ×
× + × ×
× × + ×
× × × +




� 0

Z

7−→
+xkA

′
k

xk � 0

� 0

xkA
′
k + Z

7−→
+xk−1A

′
k−1

xk−1 � 0

� 0

xk−1A
′
k−1 + xkA

′
k + Z

7−→
+xk−2A

′
k−2

xk−2 � 0

. . .

Just like in (Khachiyan).

Also inspiration: Lourenço-Muramatsu-Tsuchiya: A structural
geometrical analysis of weakly infeasible SDPs



Conclusion

• Exponential size solutions in SDP, going back to famous
Khachiyan example.

• Khachiyan type hierarchy among leading variables in every
strictly feasible SDP (after linear change of variables)

• Formulas to compute the exponents (like continued frac-
tions)

• Connection to Fourier-Motzkin elimination (pls see paper)



Conclusion

• Exponential size solutions in SDP, going back to famous
Khachiyan example.

• Khachiyan type hierarchy among leading variables in every
strictly feasible SDP (after linear change of variables)

• Formulas to compute the exponents (like continued frac-
tions)

• Partial answer to: how to represent exponential size solu-
tions in polynomial space?

• Every known SDP with large solutions is in our normal form
(SDP’).

• Paper: https://arxiv.org/abs/2103.00041

https://arxiv.org/abs/2103.00041


Thank you!


