Sieve-SDP: A Simple Algorithm to Preprocess Semidefinite Programs

Yuzixuan Zhu

Joint work with Gábor Pataki and Quoc Tran-Dinh

University of North Carolina at Chapel Hill

SIAM Annual Meeting, July 2018

Outline

- ▶ Basic Concepts
- ► Examples
- ▶ The Sieve Algorithm
- ▶ Computational Results

Semidefinite Program (SDP)

inf.
$$C \cdot X$$

s.t. $A_i \cdot X = b_i \ (i = 1, ..., m)$
 $X \succeq 0$

where

$$\blacktriangleright C, A_i, X \in \mathcal{S}^n, \ b_i \in \mathbb{R}, \ i = 1, ..., m$$

•
$$A \cdot X := \operatorname{trace}(AX) = \sum_{i,j=1}^{n} a_{ij} x_{ij}$$

▶ $X \succeq 0$: $X \in \mathcal{S}_{+}^{n}$, i.e. X is symmetric positive semidefinite (psd)

Motivation

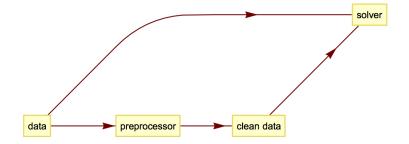
Softwares: SeDuMi, SDPT3, Mosek, ...

- ▶ Slow for problems that are large
- ▶ Error for problems without strict feasibility

We want to preprocess the problem to

- ▶ Reduce size by removing redundancy
- ▶ Detect lack of strict feasibility

before giving the problem to the solver.



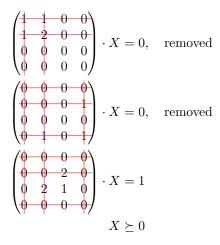
$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \cdot X = 0$$
$$\begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix} \cdot X = -1$$
$$X \succeq 0$$

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \cdot X = 0 \\ \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix} \cdot X = -1 \\ X \succeq 0$$

Suppose
$$X = (x_{ij})_{3 \times 3}$$
 feasible $\Rightarrow x_{11} = 0$
 $\Rightarrow x_{12} = x_{13} = 0$

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \cdot X = 0 \\ \begin{pmatrix} 0 & 0 & -1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix} \cdot X = -1 \\ X \succeq 0$$

Suppose
$$X = (x_{ij})_{3\times 3}$$
 feasible $\Rightarrow x_{11} = 0$
 $\Rightarrow x_{12} = x_{13} = 0$
 $\Rightarrow x_{22} = -1$
 \Rightarrow Infeasible!

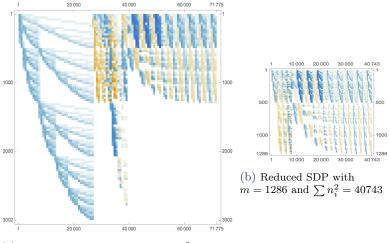


Before preprocessing: $X \in S^4_+$; 3 constraints After preprocessing: $X \in S^1_+$; 1 constraint: $1 \cdot X = 1$

The Sieve structure

After reduction, the matrix looks like this:

A large example



(a) An SDP with m = 3002 and $\sum n_i^2 = 71775$

Basic steps

Step 1. Find a constraint of the form

$$\begin{pmatrix} D_i & 0\\ 0 & 0 \end{pmatrix} \cdot X = b_i,$$

where $b_i \leq 0$ and $D_i \succ 0$ (checked by Cholesky factorization).

Step 2. If $b_i < 0$, stop. The SDP is infeasible.

Step 3. If $b_i = 0$, delete rows and columns corresponding to D_i ; remove this constraint.

Safe mode

Fix $\epsilon = 2.2204 \times 10^{-16}$.

- $D_i \succ 0$? Check whether $D_i \sqrt{\epsilon}I \succ 0$
- ▶ $b_i < 0$? Check whether $b_i < -\sqrt{\epsilon} \max\{||b_i||_{\infty}, 1\}$
- ▶ $b_i = 0$? Check whether $b_i > -\epsilon \max\{||b_i||_{\infty}, 1\}$

Sieve-SDP is a facial reduction algorithm $(FDA)^{123}$

▶ The feasible region of an SDP is

$$\{X \in \mathcal{S}^n_+ : A_i \cdot X = b_i, i = 1, ..., m\},\$$

which is equivalent to

$$\{X \in F: A_i \cdot X = b_i, i = 1, ..., m\}$$

for some F face of \mathcal{S}^n_+ .

▶ FDA iterates to reduce the cone $(F_{k+1} \subseteq F_k \subseteq \cdots \subseteq S^n_+)$.

¹borwein1981facial.

²waki2013facial.

³pataki2013strong.

Permenter-Parrilo (PP) preprocessing methods⁴

- ▶ PP reduces the size of an SDP by solving linear programming subproblems
- ▶ Implemented for primal (p-) and dual (d-) SDPs
- ▶ Implemented using diagonal (-d1) and diagonally dominant (-d2) approximations

Problem sets

Table: 5 datasets consisting of 771 SDP problems.

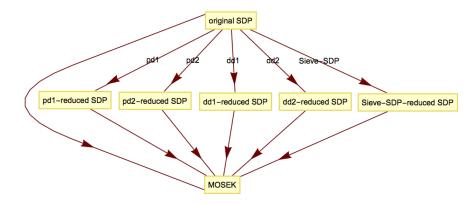
dataset	source	$\#\ {\rm problems}$
Permenter-Parrilo (PP)	[[permenter2014partial]]	68
Mittelmann	Mittelmann website	31
Dressler-Illiman-de Wolff (DIW)	[[dressler2019approach]]	155
Henrion-Toh	Didier Henrion and Kim-Chuan Toh	98
Toh-Sun-Yang	$[[{\tt sun2015 convergent, yang2015 sdpnal}]]$	419
total		771

Preprocess using Sieve-SDP and four PP methods (pd1, pd2, dd1, dd2).

- Preprocess using Sieve-SDP and four PP methods (pd1, pd2, dd1, dd2).
- ► Use MOSEK [[mosek2017mosek]] to solve each problem before and after preprocessing.

- Preprocess using Sieve-SDP and four PP methods (pd1, pd2, dd1, dd2).
- ► Use MOSEK [[mosek2017mosek]] to solve each problem before and after preprocessing.
- ▶ MATLAB R2015a on MacBook Pro with 8GB of RAM.

- Preprocess using Sieve-SDP and four PP methods (pd1, pd2, dd1, dd2).
- ► Use MOSEK [[mosek2017mosek]] to solve each problem before and after preprocessing.
- ▶ MATLAB R2015a on MacBook Pro with 8GB of RAM.



 $^{^{5} \}tt http://archive.dimacs.rutgers.edu/Challenges/Seventh/Instances/$

▶ Does preprocessing reduce a problem?

⁵http://archive.dimacs.rutgers.edu/Challenges/Seventh/Instances/

- ▶ Does preprocessing reduce a problem?
- ▶ Does it help to detect infeasibility?

⁵http://archive.dimacs.rutgers.edu/Challenges/Seventh/Instances/

- Does preprocessing reduce a problem?
- Does it help to detect infeasibility?
- ▶ Does it help to recover the true objective value?

⁵http://archive.dimacs.rutgers.edu/Challenges/Seventh/Instances/

- Does preprocessing reduce a problem?
- Does it help to detect infeasibility?
- ▶ Does it help to recover the true objective value?
- ▶ Does it reduce solution inaccuracy defined by DIMACS errors⁵?

⁵http://archive.dimacs.rutgers.edu/Challenges/Seventh/Instances/

- Does preprocessing reduce a problem?
- ▶ Does it help to detect infeasibility?
- ▶ Does it help to recover the true objective value?
- ▶ Does it reduce solution inaccuracy defined by DIMACS errors⁵?
- ▶ Does it reduce solving time?

⁵http://archive.dimacs.rutgers.edu/Challenges/Seventh/Instances/

Recover true objective values?

Table: Objective values (P, D) on the "Compact" problems [[waki2012generate]].

problem	correct	w/o prep.	after $pd1/pd2$	after $dd1/dd2$	after Sieve-SDF
CompactDim2R1	Infeas, $+\infty$	3.79e+06, 4.20e+06	Infeas, 1	3.79e+06, 4.20e+06	Infeas, -
CompactDim2R2	Infeas, $+\infty$	6.41e-10, 6.81e-10	Infeas, 2	6.41e-10, 6.81e-10	Infeas, -
CompactDim2R3	Infeas, $+\infty$	1.5, 1.5	Infeas, 2	1.5, 1.5	Infeas, -
CompactDim2R4	Infeas, $+\infty$	1.5, 1.5	Infeas, 2	1.5, 1.5	Infeas, -
CompactDim2R5	Infeas, $+\infty$	1.5, 1.5	Infeas, 2	1.5, 1.5	Infeas, -
CompactDim2R6	Infeas, $+\infty$	1.5, 1.5	Infeas, 2	1.5, 1.5	Infeas, -
CompactDim2R7	Infeas, $+\infty$	1.5, 1.5	Infeas, 2	1.5, 1.5	Infeas, -
CompactDim2R8	Infeas, $+\infty$	1.5, 1.5	Infeas, 2	1.5, 1.5	Infeas, -
CompactDim2R9	Infeas, $+\infty$	1.5, 1.5	Infeas, 2	1.5, 1.5	Infeas, -
CompactDim2R10	Infeas, $+\infty$	1.5, 1.5	Infeas, 2	1.5, 1.5	Infeas, -
correctness %	100%, 100%	0%, 0%	100%, 0%	0%, 0%	100%, -

Polynomial optimization:

$$\begin{array}{ll} \min_{x \in N} & f_0(x) \\ \text{s.t.} & f_i(x) \geq 0, \quad i = 1, ..., r. \end{array}$$
 (poly-opt)

Polynomial optimization:

$$\begin{array}{ll} \min_{x \in N} & f_0(x) \\ \text{s.t.} & f_i(x) \geq 0, \quad i=1,...,r. \end{array}$$
 (poly-opt)

▶ It is equivalent to

$$\begin{array}{ll} \max_{\gamma \in} & \gamma \\ \text{s.t.} & f_0(x) + \sum_{i=1}^r s_i(x) f_i(x) - \gamma = s_0(x), \quad \forall x \in {}^N, \end{array}$$

where $s_i(x)$, i = 0, 1, ..., r are sum-of-square polynomials [[lasserre2001global]].

Polynomial optimization:

$$\begin{array}{ll} \min_{x \in N} & f_0(x) \\ \text{s.t.} & f_i(x) \geq 0, \quad i = 1, ..., r. \end{array}$$
 (poly-opt)

It is equivalent to

$$\begin{array}{ll} \max_{\gamma \in} & \gamma \\ \text{s.t.} & f_0(x) + \sum_{i=1}^r s_i(x) f_i(x) - \gamma = s_0(x), \quad \forall x \in {}^N, \end{array}$$

where $s_i(x)$, i = 0, 1, ..., r are sum-of-square polynomials [[lasserre2001global]].

▶ It has SDP relaxation:

$$\begin{array}{ll} \min_{\gamma \in} & -\gamma, \\ \text{s.t.} & Q \succeq 0, \end{array}$$
 (SDP-relaxation)

where $Q \in S^n$ is based on γ and coefficients of f_i , i = 0, 1, ..., r.

Polynomial optimization:

$$\begin{array}{ll} \min_{x \in N} & f_0(x) \\ \text{s.t.} & f_i(x) \geq 0, \quad i = 1, ..., r. \end{array}$$
 (poly-opt)

It is equivalent to

$$\begin{array}{ll} \max_{\gamma \in} & \gamma \\ \text{s.t.} & f_0(x) + \sum_{i=1}^r s_i(x) f_i(x) - \gamma = s_0(x), \quad \forall x \in {}^N, \end{array}$$

where $s_i(x)$, i = 0, 1, ..., r are sum-of-square polynomials [[lasserre2001global]].

▶ It has SDP relaxation:

$$\begin{array}{ll} \min_{\substack{\gamma \in \\ \text{s.t.} \\ Q \succeq 0,}} & -\gamma, & (\text{SDP-relaxation}) \end{array}$$

where $Q \in S^n$ is based on γ and coefficients of f_i , i = 0, 1, ..., r.

• Infeasibility of (SDP-relaxation) gives a useless lower bound $\gamma = -\infty$ to (poly-opt).

Polynomial optimization:

$$\begin{array}{ll} \min_{x \in N} & f_0(x) \\ \text{s.t.} & f_i(x) \geq 0, \quad i=1,...,r. \end{array}$$
 (poly-opt)

It is equivalent to

$$\begin{array}{ll} \max_{\gamma \in} & \gamma \\ \text{s.t.} & f_0(x) + \sum_{i=1}^r s_i(x) f_i(x) - \gamma = s_0(x), \quad \forall x \in {}^N, \end{array}$$

where $s_i(x)$, i = 0, 1, ..., r are sum-of-square polynomials [[lasserre2001global]].

▶ It has SDP relaxation:

$$\begin{array}{l} \min_{\substack{\gamma \in \\ \text{s.t.} \\ Q \succeq 0,}} -\gamma, \qquad (\text{SDP-relaxation}) \end{array}$$

where $Q \in S^n$ is based on γ and coefficients of f_i , i = 0, 1, ..., r.

- ▶ Infeasibility of (SDP-relaxation) gives a useless lower bound $\gamma = -\infty$ to (poly-opt).
- Without knowing the infeasibility of (SDP-relaxation), the effort to solving it could be tremendous.

Results of DIW dataset (polynomial optimization problems)

prep. method	# reduced	# infeas detected	n	m	t _{prep} (s)	t_{sol} (s)
w/o prep.	-	-	53,523	186,225		$(39 \text{ hrs} \approx) 139,493.56$
pd1	155	56	1,450	3,278	1,615.02	128.46
pd2	155	56	1,450	3,278	10,831.32	124.44
dd1	0	0	53,523	186,225	48.32	139,493.56
dd2	0	0	53,523	186,225	22,135.71	139,493.56
Sieve-SDP	155	59	1,385	3,204	1,232.27	(1.5 min $\approx)$ 87.53

Table: Results of DIW dataset.

- ▶ Increased the solving speed by more than 100 times!
- ▶ Infeasibility has been double-checked manually.

An example from DIW dataset

Figure: Size and sparsity before and after Sieve-SDP.

Overall summary on all 771 problems: size reduction

method	# reduced	red. on n	red. on \boldsymbol{m}	extra free vars
pd1	209	15.47%	17.79%	0
pd2	230	15.59%	18.23%	0
dd1	14	6.74%	0.00%	$2,\!293,\!495$
dd2	21	9.28%	0.00%	$2,\!315,\!849$
Sieve-SDP	216	16.55%	20.66%	0

Table: Overall size reduction.

red. on n :	$rac{\sum n_{ m before} - \sum n_{ m after}}{\sum n_{ m before}}$
red. on m :	$\frac{\sum m_{\rm before} - \sum m_{\rm after}}{\sum m_{\rm before}}$

Overall summary on all 771 problems: helpfulness

Table: Overall helpfulness.

method	# reduced	# infeas detected	# DIMACS error improved	# out of memory
pd1	209	67	74	0
pd2	230	67	78	6
dd1	14	0	2	0
dd2	21	0	4	4
Sieve-SDP	216	73	74	0

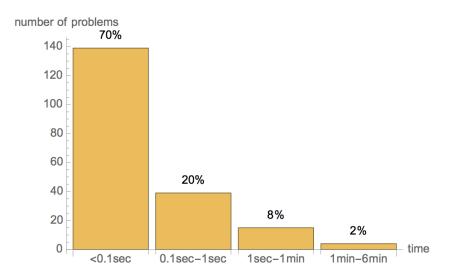
Overall summary on all 771 problems: time

method	t_{prep} (hr) t_{sol} (hr) t_{prep}		$t_{\rm prep}/t_{\rm sol_w/o}$	time reduction	
w/o	-	75.67	-	-	
pd1	0.69	36.77	0.91%	50.50%	
pd2	6.48	36.57	8.56%	43.12%	
dd1	0.16	75.62	0.22%	-0.15%	
dd2	10.00	75.56	13.21%	-13.16%	
Sieve-SDP	0.60	36.62	0.80%	51.81%	

Table: Preprocessing and solving times.

time reduction:
$$\frac{t_{sol_w/o} - (t_{prep} + t_{sol})}{t_{sol_w/o}} \times 100\%.$$

High speed of Sieve-SDP



Highlights of Sieve-SDP

- ▶ Simple to understand and implement
- ▶ Run in machine precision under safe mode
- ▶ Reduces size of SDPs and detects infeasibility efficiently
- ▶ Does not depend on any optimization solver
- Very fast and stable

Overall summary: reduction

 $197\ {\rm problems}$ in total

reduction rate on
$$n$$
:
$$\frac{\sum n_{\text{before}} - \sum n_{\text{after}}}{\sum n_{\text{before}}}$$

reduction rate on m :
$$\frac{\sum m_{\text{before}} - \sum m_{\text{after}}}{\sum m_{\text{before}}}$$

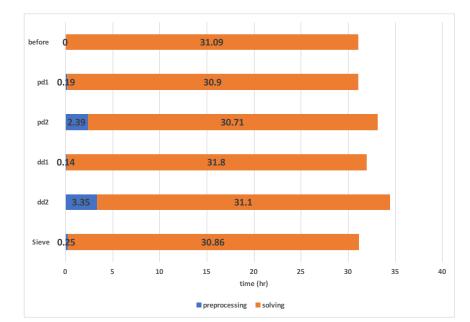
	reduction rate on n	reduction rate on m	added $\#$ free vars
pd1	1.57%	6.90%	0
pd2	1.75%	7.94%	0
dd1	11.02%	0.00%	2293495
dd2	11.08%	0.00%	2315849
Sieve	3.49%	13.63%	0

Overall summary: help or hurt

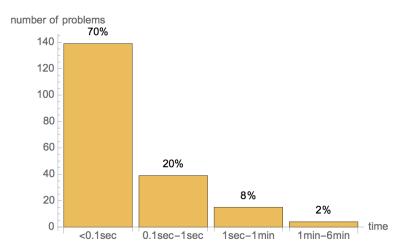
- \blacktriangleright +1: detected infeasibility
- ▶ -1: did not detect infeasibility even though solver detected infeasibility
- \blacktriangleright +2: reduced DIMACS error
- \blacktriangleright -2: increased DIMACS error
- \blacktriangleright +3: improved objective value
- ▶ -4: ran out of memory

methods	reduced	1	-1	2	-2	3	-4
pd1	54	12	0	8	0	13	0
pd2	75	12	0	11	0	17	6
dd1	14	0	2	3	1	5	0
dd2	21	0	2	6	1	6	4
Sieve	61	14	0	8	1	20	0

Overall summary: time



High speed of Sieve-SDP



Advantages of Sieve-SDP

- ▶ Simple to understand and implement
- ▶ Machine precision using safe mode
- ▶ Reduces size of SDPs and detects infeasibility efficiently
- ▶ Does not depend on any optimization solver
- Very fast and stable

Paper and Code

- ► Paper: zhu2017sieve
- ► Code: github-sieve
- Try Sieve-SDP in your research, and share your experience with me: zyzx@live.unc.edu.

