Sieve-SDP: A Simple Algorithm to Preprocess
Semidefinite Programs

Yuzixuan Zhu
Joint work with Gédbor Pataki and Quoc Tran-Dinh

University of North Carolina at Chapel Hill

STAM Annual Meeting, July 2018

Outline

Basic Concepts
Examples
The Sieve Algorithm

Computational Results

vV v v v

Semidefinite Program (SDP)

inf. C-X
X=0

where
» C A, XeS" beR, i=1,...m
> A X = trace(AX) = >0,
» X »0: X € 8%, i.e. X is symmetric positive semidefinite (psd)

al-jxl-j

Motivation
Softwares: SeDuMi, SDPT3, Mosek, ...
» Slow for problems that are large
» Error for problems without strict feasibility
We want to preprocess the problem to
» Reduce size by removing redundancy
» Detect lack of strict feasibility
before giving the problem to the solver.

solver

Y

data —— ® preprocessor ——®— clean data

Example 1

Example 1

1 00
0 0 0)-X=0
0 0 0
0 0 1
01 0] - X=-1
1 00

X=0

Suppose X = (z;5) feasible = 211 =0

3x3
= T19 =213 =0

Example 1

—0—0
0 0 0)-X=0
0 0 0
0—0—1
01 0)-X=-1
1 00

X =0

Suppose X = (z;5) feasible = 211 =0

3x3
= T19 =213 =0
= X9 = —1

= Infeasible!

Example 2

1100

= b b
O OO OO - OO
SO O O OO OO O
NOO OO o +H OO
— OO OO oo oo

0 0 0 O

Example 2

=3 o —
I

DO ©DHOH DODDO

DD OO DO O DA

N OO+ OO

OO OO O OO O

00 0 O

removed
removed

=3 =3 —
Il I f
< < <
oo o+ oo
PP DPDPOD DA~
oo oo -
H oo oo oo

0—0—0—0

Example 2

X>0

Example 2

Before preprocessing: X € Si; 3 constraints

After preprocessing: X € S1; 1 constraint: 1- X =1

The Sieve structure

After reduction, the matrix looks like this:

A large example

1 20000 775

m"ﬁ!’i‘iﬂf

Mashll e
WL IR

1000

2000 1286

(b) Reduced SDP with
m = 1286 and 3 n? = 40743

3002 3002

40000 60000 775

(a) An SDP with m = 3002 and > n? = 71775

Basic steps

Step 1. Find a constraint of the form

D; 0 e
(0 0)'X_b“

where b; <0 and D; > 0 (checked by Cholesky factorization).
Step 2. If b; < 0, stop. The SDP is infeasible.

Step 3. If b; = 0, delete rows and columns corresponding to D;
remove this constraint.

Safe mode

Fix € = 2.2204 x 1071°,
» D, > 07 Check whether D; — /eI = 0
> b; < 07 Check whether b; < —y/emax{||;||o0, 1}
> b, = 07 Check whether b; > —emax{]||b;||oo0, 1}

Sieve-SDP is a facial reduction algorithm (FDA)?3

» The feasible region of an SDP is
{Xes!: Ai- X =0b;, i=1,..,m},
which is equivalent to
{XeF: A;-X=b,i=1,..m}

for some F face of 8.
» FDA iterates to reduce the cone (Fj41 € Fj, € --- C ST).

borwein1981facial.
2waki2013facial.
3pataki2013strong.

Permenter-Parrilo (PP) preprocessing methods®

» PP reduces the size of an SDP by solving linear programming
subproblems

» Implemented for primal (p-) and dual (d-) SDPs

» Implemented using diagonal (-d1) and diagonally dominant (-d2)
approximations

4PerPar:14.

Problem sets

Table: 5 datasets consisting of 771 SDP problems.

dataset source # problems
Permenter-Parrilo (PP) [[permenter2014partial]] 68
Mittelmann Mittelmann website 31
Dressler-Illiman-de Wolff (DIW) [[dressler2019approach]] 155
Henrion-Toh Didier Henrion and Kim-Chuan Toh 98
Toh-Sun-Yang [[sun2015convergent, yang2015sdpnal]| 419

total 771

Computational setup

Computational setup

» Preprocess using Sieve-SDP and four PP methods (pdl, pd2,
dd1, dd2).

Computational setup
» Preprocess using Sieve-SDP and four PP methods (pdl, pd2,
dd1, dd2).
» Use MOSEK [[mosek2017mosek]] to solve each problem before
and after preprocessing.

Computational setup
» Preprocess using Sieve-SDP and four PP methods (pdl, pd2,
dd1, dd2).

» Use MOSEK [[mosek2017mosek]] to solve each problem before
and after preprocessing.

» MATLAB R2015a on MacBook Pro with 8GB of RAM.

Computational setup
» Preprocess using Sieve-SDP and four PP methods (pdl, pd2,
dd1, dd2).

» Use MOSEK [[mosek2017mosek]] to solve each problem before
and after preprocessing.

» MATLAB R2015a on MacBook Pro with 8GB of RAM.

original SDP

pd1-reduced SDP pd2-reduced SDP dd1-reduced SDP dd2-reduced SDP Sieve-SDP-reduced SDP

Comparison criteria

5http ://archive.dimacs.rutgers.edu/Challenges/Seventh/Instances/

Comparison criteria

» Does preprocessing reduce a problem?

5http ://archive.dimacs.rutgers.edu/Challenges/Seventh/Instances/

Comparison criteria

» Does preprocessing reduce a problem?

» Does it help to detect infeasibility?

5http ://archive.dimacs.rutgers.edu/Challenges/Seventh/Instances/

Comparison criteria

» Does preprocessing reduce a problem?
» Does it help to detect infeasibility?

» Does it help to recover the true objective value?

5http ://archive.dimacs.rutgers.edu/Challenges/Seventh/Instances/

Comparison criteria

Does preprocessing reduce a problem?
Does it help to detect infeasibility?

Does it help to recover the true objective value?

vV v vv

Does it reduce solution inaccuracy defined by DIMACS errors®?

5http://archive.dimacs.rutgers.edu/Challenges/Seventh/Instances/

Comparison criteria

Does preprocessing reduce a problem?
Does it help to detect infeasibility?
Does it help to recover the true objective value?

Does it reduce solution inaccuracy defined by DIMACS errors®?

vV v v v Y

Does it reduce solving time?

5http://archive.dimacs.rutgers.edu/Challenges/Seventh/Instances/

Recover true objective values?

Table: Objective values (P, D) on the “Compact” problems
[[waki2012generate]].

problem correct w/o prep. after pdl/pd2 after dd1/dd2 after Sieve-SDP
CompactDim2R1 Infeas, +oc 3.79e+06, 4.20e+06 Infeas, 1 3.79e+06, 4.20e+06 Infeas, -
CompactDim2R2 Infeas, +00 6.41e-10, 6.81e-10 Infeas, 2 6.41e-10, 6.81e-10 Infeas, -
CompactDim2R3 Infeas, +00 Infeas, 2 1.5, 1.5 Infeas, -
CompactDim2R4 Infeas, +o00 Infeas, 2 1.5, 1.5 Infeas, -
CompactDim2R5 Infeas, 4+o00 Infeas, 2 1.5,1.5 Infeas, -
CompactDim2R6 Infeas, +o00 Infeas, 2 1.5, 1.5 Infeas, -
CompactDim2R7 Infeas, 400 Infeas, 2 1.5, 1.5 Infeas, -
CompactDim2R8 Infeas, 400 Infeas, 2 1.5, 1.5 Infeas, -
CompactDim2R9 Infeas, +o0o 5 Infeas, 2 1.5, 1.5 Infeas, -
CompactDim2R10 Infeas, +oo 1.5, 1.5 Infeas, 2 1.5,1.5 Infeas, -

correctness % 100%, 100% 0%, 0% 100%, 0% 0%, 0% 100%, -

SDP relaxation for polynomial optimization

» Polynomial optimization:

min fo(z)
zelN

st fil@) 20, i=1,..m

(poly-opt)

SDP relaxation for polynomial optimization

» Polynomial optimization:

min fo(z)
zeN (poly-opt)
st. fi(x) >0, i=1,..,m

> It is equivalent to
max
V€ 7

sit. fol(x) + X1 si(x)fi(x) —v = so(x), V& el

where s;(z), i =0,1,...,7 are sum-of-square polynomials
[[lasserre2001global]].

SDP relaxation for polynomial optimization

» Polynomial optimization:

min fo(z)
zeN (poly-opt)
st. fi(x) >0, i=1,..,m

> It is equivalent to

max
Ve 7

st fo(x)+30_, si(z)fi(x) — v =so(x), VweV,
where s;(z), i =0,1,...,7 are sum-of-square polynomials
[[lasserre2001global]].
» It has SDP relaxation:
min —v,

ve (SDP-relaxation)
st. Q>=0,

where @Q € S™ is based on v and coefficients of f;, i =0,1,...,7.

SDP relaxation for polynomial optimization

» Polynomial optimization:

min fo(z)
zeN (poly-opt)
st. fi(x) >0, i=1,..,m

> It is equivalent to
max
V€ 7

sit. fol(x) + X1 si(x)fi(x) —v = so(x), V& el

where s;(z), i =0,1,...,7 are sum-of-square polynomials
[[lasserre2001global]].

» It has SDP relaxation:

min —v,
ve (SDP-relaxation)
st. Q>=0,

where @Q € S™ is based on v and coefficients of f;, i =0,1,...,7.

> Infeasibility of (SDP-relaxation) gives a useless lower bound v = —o0 to
(poly-opt).

SDP relaxation for polynomial optimization

» Polynomial optimization:

min fo(z)
zeN (poly-opt)
st. fi(x) >0, i=1,..,m

> It is equivalent to
max
V€ 7

sit. fol(x) + X1 si(x)fi(x) —v = so(x), V& el

where s;(z), i =0,1,...,7 are sum-of-square polynomials
[[lasserre2001global]].

» It has SDP relaxation:

min —v,

e (SDP-relaxation)
st. Q>=0,
where @Q € S™ is based on v and coefficients of f;, i =0,1,...,7.
> Infeasibility of (SDP-relaxation) gives a useless lower bound v = —o0 to
(poly-opt).

» Without knowing the infeasibility of (SDP-relaxation), the effort to solving it
could be tremendous.

Results of DIW dataset (polynomial optimization
problems)

Table: Results of DIW dataset.

prep. method # reduced # infeas detected n m tprep () tsol (8)
w/o prep. - 53,523 186,225 (39 hrs ~) 139,493.56
pdl 155 56 1,450 3,278 1,615.02 128.46
pd2 155 56 1,450 3,278 10,831.32 124.44
dd1 0 0 53,523 186,225 48.32 139,493.56
dd2 0 0 53,523 186,225 22,135.71 139,493.56
Sieve-SDP 155 59 1,385 3,204 1,232.27 (1.5 min =) 87.53

» Increased the solving speed by more than 100 times!

» Infeasibility has been double-checked manually.

An example from DIW dataset

Figure: Size and sparsity before and after Sieve-SDP.

Overall summary on all 771 problems: size reduction

Table: Overall size reduction.

method # reduced red. onn red. on m extra free vars

pdl 209 15.47% 17.79% 0

pd2 230 15.59% 18.23% 0

dd1 14 6.74% 0.00% 2,293,495

dd2 21 9.28% 0.00% 2,315,849

Sieve-SDP 216 16.55% 20.66% 0
red. on n: Enbefore_z Nafter

Mbefore

2~ Mbefore =Y Mafter
Mbpefore

red. on m:

Overall summary on all 771 problems: helpfulness

Table: Overall helpfulness.

method # reduced # infeas detected # DIMACS error improved # out of memory

pdl 209 67 74 0
pd2 230 67 78 6
dd1 14 0 2 0
dd2 21 0 4 4
Sieve-SDP 216 73 74 0

Overall summary on all 771 problems: time

Table: Preprocessing and solving times.

method tprep (hr) teor (hr) tprep/tsolw/o time reduction
w/o - 7567 - -
pdl 0.69 36.77 0.91% 50.50%
pd2 6.48 36.57 8.56% 43.12%
dd1 0.16 75.62 0.22% -0.15%
dd2 10.00 75.56 13.21% -13.16%
Sieve-SDP 0.60 36.62 0.80% 51.81%

tso,wo_ tre +tso
/o = (torep + tsol) | 4000

time reduction:
tsoLw/o

High speed of Sieve-SDP

number of problems
70%

140
120
100
80!
60
|

20}

time

<0.1sec 0.1sec-1sec 1sec—-1min 1min-6min

Highlights of Sieve-SDP

Simple to understand and implement
Run in machine precision under safe mode
Reduces size of SDPs and detects infeasibility efficiently

Does not depend on any optimization solver

vV v v v Y

Very fast and stable

Overall summary: reduction

197 problems in total

reduction rate on n:

reduction rate on m:

Z Npefore — Z Nafter

Z Npefore
Z Myefore — Z Mafter

Z Mpefore

reduction rate on n

reduction rate on m

added # free vars

pdl
pd2
dd1
dd2
Sieve

1.57%
1.75%
11.02%
11.08%
3.49%

6.90%
7.94%
0.00%
0.00%
13.63%

0

0
2293495
2315849

0

Overall summary: help or hurt

» —+1: detected infeasibility

» —1: did not detect infeasibility even though solver detected
infeasibility

+2: reduced DIMACS error

—2: increased DIMACS error

+3: improved objective value

vV v v v

—4: ran out of memory

methods | reduced | 1 [-1 | 2 | -2 | 3 | -4
pdl 54 12108 |0 |13]0
pd2 75 1210 (11 |0 |17] 6
ddi1 14 0|21 3 1 510
dd2 21 0 2] 6 1 6 | 4

Sieve 61 14| 0| 8 11200

Overall summary: time

before
pd2

dd2

Sieve 0.

=)
[
=
o
=
«
~N
o
N
[
w
=)

35
time (hr)

M preprocessing M solving

40

High speed of Sieve-SDP

number of problems
70%

140 |
120,
100,
80"
0!
w0l

20+

time

<0.1sec 0.1sec-1sec 1sec-1min 1min-6min

Advantages of Sieve-SDP

Simple to understand and implement
Machine precision using safe mode
Reduces size of SDPs and detects infeasibility efficiently

Does not depend on any optimization solver

vV v v v Y

Very fast and stable

Paper and Code

» Paper: zhu2017sieve
» Code: github-sieve

» Try Sieve-SDP in your research, and share your experience with
me: zyzx@live.unc.edu.

Thank you for your attention!

