
Sieve-SDP: A Simple Algorithm to Preprocess
Semidefinite Programs

Yuzixuan Zhu

Joint work with Gábor Pataki and Quoc Tran-Dinh

University of North Carolina at Chapel Hill

SIAM Annual Meeting, July 2018

Outline

I Basic Concepts

I Examples

I The Sieve Algorithm

I Computational Results

Semidefinite Program (SDP)

inf. C ·X
s.t. Ai ·X = bi (i = 1, ...,m)

X � 0

where

I C,Ai, X ∈ Sn, bi ∈ R, i = 1, ...,m

I A ·X := trace(AX) =
∑n

i,j=1 aijxij
I X � 0: X ∈ Sn+, i.e. X is symmetric positive semidefinite (psd)

Motivation
Softwares: SeDuMi, SDPT3, Mosek, ...

I Slow for problems that are large

I Error for problems without strict feasibility

We want to preprocess the problem to

I Reduce size by removing redundancy

I Detect lack of strict feasibility

before giving the problem to the solver.

Example 1

1 0 0
0 0 0
0 0 0

 ·X = 0

0 0 1
0 1 0
1 0 0

 ·X = −1

X � 0

Example 1

1 0 0
0 0 0
0 0 0

 ·X = 0

0 0 1
0 1 0
1 0 0

 ·X = −1

X � 0

Suppose X = (xij)3×3 feasible ⇒ x11 = 0

⇒ x12 = x13 = 0

Example 1

1 0 0
0 0 0
0 0 0

 ·X = 0

0 0 1
0 1 0
1 0 0

 ·X = −1

X � 0

Suppose X = (xij)3×3 feasible ⇒ x11 = 0

⇒ x12 = x13 = 0

⇒ x22 = −1

⇒ Infeasible!

Example 2

1 1 0 0
1 2 0 0
0 0 0 0
0 0 0 0

 ·X = 0

0 0 0 0
0 0 0 1
0 0 0 0
0 1 0 1

 ·X = 0

0 0 0 0
0 0 2 0
0 2 1 0
0 0 0 0

 ·X = 1

X � 0

Example 2

1 1 0 0
1 2 0 0
0 0 0 0
0 0 0 0

 ·X = 0, removed

0 0 0 0
0 0 0 1
0 0 0 0
0 1 0 1

 ·X = 0

0 0 0 0
0 0 2 0
0 2 1 0
0 0 0 0

 ·X = 1

X � 0

Example 2

1 1 0 0
1 2 0 0
0 0 0 0
0 0 0 0

 ·X = 0, removed

0 0 0 0
0 0 0 1
0 0 0 0
0 1 0 1

 ·X = 0, removed

0 0 0 0
0 0 2 0
0 2 1 0
0 0 0 0

 ·X = 1

X � 0

Example 2

Before preprocessing: X ∈ S4+; 3 constraints

After preprocessing: X ∈ S1+; 1 constraint: 1 ·X = 1

The Sieve structure

After reduction, the matrix looks like this:

A large example

(a) An SDP with m = 3002 and
∑
n2
i = 71775

(b) Reduced SDP with
m = 1286 and

∑
n2
i = 40743

Basic steps

Step 1. Find a constraint of the form(
Di 0
0 0

)
·X = bi,

where bi ≤ 0 and Di � 0 (checked by Cholesky factorization).

Step 2. If bi < 0, stop. The SDP is infeasible.

Step 3. If bi = 0, delete rows and columns corresponding to Di;
remove this constraint.

Safe mode

Fix ε = 2.2204× 10−16.

I Di � 0? Check whether Di −
√
εI � 0

I bi < 0? Check whether bi < −
√
εmax{||bi||∞, 1}

I bi = 0? Check whether bi > −εmax{||bi||∞, 1}

Sieve-SDP is a facial reduction algorithm (FDA)123

I The feasible region of an SDP is

{X ∈ Sn+ : Ai ·X = bi, i = 1, ...,m},

which is equivalent to

{X ∈ F : Ai ·X = bi, i = 1, ...,m}

for some F face of Sn+.

I FDA iterates to reduce the cone (Fk+1 ⊆ Fk ⊆ · · · ⊆ Sn+).

1borwein1981facial.
2waki2013facial.
3pataki2013strong.

Permenter-Parrilo (PP) preprocessing methods4

I PP reduces the size of an SDP by solving linear programming
subproblems

I Implemented for primal (p-) and dual (d-) SDPs

I Implemented using diagonal (-d1) and diagonally dominant (-d2)
approximations

4PerPar:14.

Problem sets

Table: 5 datasets consisting of 771 SDP problems.

dataset source # problems

Permenter-Parrilo (PP) [[permenter2014partial]] 68
Mittelmann Mittelmann website 31
Dressler-Illiman-de Wolff (DIW) [[dressler2019approach]] 155
Henrion-Toh Didier Henrion and Kim-Chuan Toh 98
Toh-Sun-Yang [[sun2015convergent, yang2015sdpnal]] 419

total 771

Computational setup

I Preprocess using Sieve-SDP and four PP methods (pd1, pd2,
dd1, dd2).

I Use MOSEK [[mosek2017mosek]] to solve each problem before
and after preprocessing.

I MATLAB R2015a on MacBook Pro with 8GB of RAM.

Computational setup
I Preprocess using Sieve-SDP and four PP methods (pd1, pd2,

dd1, dd2).

I Use MOSEK [[mosek2017mosek]] to solve each problem before
and after preprocessing.

I MATLAB R2015a on MacBook Pro with 8GB of RAM.

Computational setup
I Preprocess using Sieve-SDP and four PP methods (pd1, pd2,

dd1, dd2).

I Use MOSEK [[mosek2017mosek]] to solve each problem before
and after preprocessing.

I MATLAB R2015a on MacBook Pro with 8GB of RAM.

Computational setup
I Preprocess using Sieve-SDP and four PP methods (pd1, pd2,

dd1, dd2).

I Use MOSEK [[mosek2017mosek]] to solve each problem before
and after preprocessing.

I MATLAB R2015a on MacBook Pro with 8GB of RAM.

Computational setup
I Preprocess using Sieve-SDP and four PP methods (pd1, pd2,

dd1, dd2).

I Use MOSEK [[mosek2017mosek]] to solve each problem before
and after preprocessing.

I MATLAB R2015a on MacBook Pro with 8GB of RAM.

Comparison criteria

I Does preprocessing reduce a problem?

I Does it help to detect infeasibility?

I Does it help to recover the true objective value?

I Does it reduce solution inaccuracy defined by DIMACS errors5?

I Does it reduce solving time?

5http://archive.dimacs.rutgers.edu/Challenges/Seventh/Instances/

Comparison criteria

I Does preprocessing reduce a problem?

I Does it help to detect infeasibility?

I Does it help to recover the true objective value?

I Does it reduce solution inaccuracy defined by DIMACS errors5?

I Does it reduce solving time?

5http://archive.dimacs.rutgers.edu/Challenges/Seventh/Instances/

Comparison criteria

I Does preprocessing reduce a problem?

I Does it help to detect infeasibility?

I Does it help to recover the true objective value?

I Does it reduce solution inaccuracy defined by DIMACS errors5?

I Does it reduce solving time?

5http://archive.dimacs.rutgers.edu/Challenges/Seventh/Instances/

Comparison criteria

I Does preprocessing reduce a problem?

I Does it help to detect infeasibility?

I Does it help to recover the true objective value?

I Does it reduce solution inaccuracy defined by DIMACS errors5?

I Does it reduce solving time?

5http://archive.dimacs.rutgers.edu/Challenges/Seventh/Instances/

Comparison criteria

I Does preprocessing reduce a problem?

I Does it help to detect infeasibility?

I Does it help to recover the true objective value?

I Does it reduce solution inaccuracy defined by DIMACS errors5?

I Does it reduce solving time?

5http://archive.dimacs.rutgers.edu/Challenges/Seventh/Instances/

Comparison criteria

I Does preprocessing reduce a problem?

I Does it help to detect infeasibility?

I Does it help to recover the true objective value?

I Does it reduce solution inaccuracy defined by DIMACS errors5?

I Does it reduce solving time?

5http://archive.dimacs.rutgers.edu/Challenges/Seventh/Instances/

Recover true objective values?

Table: Objective values (P, D) on the “Compact” problems
[[waki2012generate]].

problem correct w/o prep. after pd1/pd2 after dd1/dd2 after Sieve-SDP

CompactDim2R1 Infeas, +∞ 3.79e+06, 4.20e+06 Infeas, 1 3.79e+06, 4.20e+06 Infeas, -
CompactDim2R2 Infeas, +∞ 6.41e-10, 6.81e-10 Infeas, 2 6.41e-10, 6.81e-10 Infeas, -
CompactDim2R3 Infeas, +∞ 1.5, 1.5 Infeas, 2 1.5, 1.5 Infeas, -
CompactDim2R4 Infeas, +∞ 1.5, 1.5 Infeas, 2 1.5, 1.5 Infeas, -
CompactDim2R5 Infeas, +∞ 1.5, 1.5 Infeas, 2 1.5, 1.5 Infeas, -
CompactDim2R6 Infeas, +∞ 1.5, 1.5 Infeas, 2 1.5, 1.5 Infeas, -
CompactDim2R7 Infeas, +∞ 1.5, 1.5 Infeas, 2 1.5, 1.5 Infeas, -
CompactDim2R8 Infeas, +∞ 1.5, 1.5 Infeas, 2 1.5, 1.5 Infeas, -
CompactDim2R9 Infeas, +∞ 1.5, 1.5 Infeas, 2 1.5, 1.5 Infeas, -
CompactDim2R10 Infeas, +∞ 1.5, 1.5 Infeas, 2 1.5, 1.5 Infeas, -

correctness % 100%, 100% 0%, 0% 100%, 0% 0%, 0% 100%, -

SDP relaxation for polynomial optimization

I Polynomial optimization:

min
x∈N

f0(x)

s.t. fi(x) ≥ 0, i = 1, ..., r.
(poly-opt)

I It is equivalent to

max
γ∈

γ

s.t. f0(x) +
∑r
i=1 si(x)fi(x)− γ = s0(x), ∀x ∈N ,

where si(x), i = 0, 1, ..., r are sum-of-square polynomials
[[lasserre2001global]].

I It has SDP relaxation:

min
γ∈

−γ,

s.t. Q � 0,
(SDP-relaxation)

where Q ∈ Sn is based on γ and coefficients of fi, i = 0, 1, ..., r.

I Infeasibility of (SDP-relaxation) gives a useless lower bound γ = −∞ to
(poly-opt).

I Without knowing the infeasibility of (SDP-relaxation), the effort to solving it
could be tremendous.

SDP relaxation for polynomial optimization

I Polynomial optimization:

min
x∈N

f0(x)

s.t. fi(x) ≥ 0, i = 1, ..., r.
(poly-opt)

I It is equivalent to

max
γ∈

γ

s.t. f0(x) +
∑r
i=1 si(x)fi(x)− γ = s0(x), ∀x ∈N ,

where si(x), i = 0, 1, ..., r are sum-of-square polynomials
[[lasserre2001global]].

I It has SDP relaxation:

min
γ∈

−γ,

s.t. Q � 0,
(SDP-relaxation)

where Q ∈ Sn is based on γ and coefficients of fi, i = 0, 1, ..., r.

I Infeasibility of (SDP-relaxation) gives a useless lower bound γ = −∞ to
(poly-opt).

I Without knowing the infeasibility of (SDP-relaxation), the effort to solving it
could be tremendous.

SDP relaxation for polynomial optimization

I Polynomial optimization:

min
x∈N

f0(x)

s.t. fi(x) ≥ 0, i = 1, ..., r.
(poly-opt)

I It is equivalent to

max
γ∈

γ

s.t. f0(x) +
∑r
i=1 si(x)fi(x)− γ = s0(x), ∀x ∈N ,

where si(x), i = 0, 1, ..., r are sum-of-square polynomials
[[lasserre2001global]].

I It has SDP relaxation:

min
γ∈

−γ,

s.t. Q � 0,
(SDP-relaxation)

where Q ∈ Sn is based on γ and coefficients of fi, i = 0, 1, ..., r.

I Infeasibility of (SDP-relaxation) gives a useless lower bound γ = −∞ to
(poly-opt).

I Without knowing the infeasibility of (SDP-relaxation), the effort to solving it
could be tremendous.

SDP relaxation for polynomial optimization

I Polynomial optimization:

min
x∈N

f0(x)

s.t. fi(x) ≥ 0, i = 1, ..., r.
(poly-opt)

I It is equivalent to

max
γ∈

γ

s.t. f0(x) +
∑r
i=1 si(x)fi(x)− γ = s0(x), ∀x ∈N ,

where si(x), i = 0, 1, ..., r are sum-of-square polynomials
[[lasserre2001global]].

I It has SDP relaxation:

min
γ∈

−γ,

s.t. Q � 0,
(SDP-relaxation)

where Q ∈ Sn is based on γ and coefficients of fi, i = 0, 1, ..., r.

I Infeasibility of (SDP-relaxation) gives a useless lower bound γ = −∞ to
(poly-opt).

I Without knowing the infeasibility of (SDP-relaxation), the effort to solving it
could be tremendous.

SDP relaxation for polynomial optimization

I Polynomial optimization:

min
x∈N

f0(x)

s.t. fi(x) ≥ 0, i = 1, ..., r.
(poly-opt)

I It is equivalent to

max
γ∈

γ

s.t. f0(x) +
∑r
i=1 si(x)fi(x)− γ = s0(x), ∀x ∈N ,

where si(x), i = 0, 1, ..., r are sum-of-square polynomials
[[lasserre2001global]].

I It has SDP relaxation:

min
γ∈

−γ,

s.t. Q � 0,
(SDP-relaxation)

where Q ∈ Sn is based on γ and coefficients of fi, i = 0, 1, ..., r.

I Infeasibility of (SDP-relaxation) gives a useless lower bound γ = −∞ to
(poly-opt).

I Without knowing the infeasibility of (SDP-relaxation), the effort to solving it
could be tremendous.

Results of DIW dataset (polynomial optimization
problems)

Table: Results of DIW dataset.

prep. method # reduced # infeas detected n m tprep (s) tsol (s)

w/o prep. - - 53,523 186,225 (39 hrs ≈) 139,493.56
pd1 155 56 1,450 3,278 1,615.02 128.46
pd2 155 56 1,450 3,278 10,831.32 124.44
dd1 0 0 53,523 186,225 48.32 139,493.56
dd2 0 0 53,523 186,225 22,135.71 139,493.56
Sieve-SDP 155 59 1,385 3,204 1,232.27 (1.5 min ≈) 87.53

I Increased the solving speed by more than 100 times!

I Infeasibility has been double-checked manually.

An example from DIW dataset

Figure: Size and sparsity before and after Sieve-SDP.

Overall summary on all 771 problems: size reduction

Table: Overall size reduction.

method # reduced red. on n red. on m extra free vars

pd1 209 15.47% 17.79% 0
pd2 230 15.59% 18.23% 0
dd1 14 6.74% 0.00% 2,293,495
dd2 21 9.28% 0.00% 2,315,849
Sieve-SDP 216 16.55% 20.66% 0

red. on n:
∑

nbefore−
∑

nafter∑
nbefore

red. on m:
∑

mbefore−
∑

mafter∑
mbefore

Overall summary on all 771 problems: helpfulness

Table: Overall helpfulness.

method # reduced # infeas detected # DIMACS error improved # out of memory

pd1 209 67 74 0
pd2 230 67 78 6
dd1 14 0 2 0
dd2 21 0 4 4
Sieve-SDP 216 73 74 0

Overall summary on all 771 problems: time

Table: Preprocessing and solving times.

method tprep (hr) tsol (hr) tprep/tsol w/o time reduction

w/o - 75.67 - -
pd1 0.69 36.77 0.91% 50.50%
pd2 6.48 36.57 8.56% 43.12%
dd1 0.16 75.62 0.22% -0.15%
dd2 10.00 75.56 13.21% -13.16%
Sieve-SDP 0.60 36.62 0.80% 51.81%

time reduction:
tsol w/o − (tprep + tsol)

tsol w/o
× 100%.

High speed of Sieve-SDP

Highlights of Sieve-SDP

I Simple to understand and implement

I Run in machine precision under safe mode

I Reduces size of SDPs and detects infeasibility efficiently

I Does not depend on any optimization solver

I Very fast and stable

Overall summary: reduction

197 problems in total

reduction rate on n:

∑
nbefore −

∑
nafter∑

nbefore

reduction rate on m:

∑
mbefore −

∑
mafter∑

mbefore

reduction rate on n reduction rate on m added # free vars
pd1 1.57% 6.90% 0
pd2 1.75% 7.94% 0
dd1 11.02% 0.00% 2293495
dd2 11.08% 0.00% 2315849
Sieve 3.49% 13.63% 0

Overall summary: help or hurt

I +1: detected infeasibility

I −1: did not detect infeasibility even though solver detected
infeasibility

I +2: reduced DIMACS error

I −2: increased DIMACS error

I +3: improved objective value

I −4: ran out of memory

methods reduced 1 -1 2 -2 3 -4
pd1 54 12 0 8 0 13 0
pd2 75 12 0 11 0 17 6
dd1 14 0 2 3 1 5 0
dd2 21 0 2 6 1 6 4

Sieve 61 14 0 8 1 20 0

Overall summary: time

0.25

3.35

0.14

2.39

0.19

0

30.86

31.1

31.8

30.71

30.9

31.09

0 5 10 15 20 25 30 35 40

Sieve	 	 	 	 	

dd2	 	 	 	 	

dd1	 	 	 	 	

pd2	 	 	 	 	

pd1	 	 	 	 	

before	 	 	 	 	

time	 (hr)

preprocessing solving

High speed of Sieve-SDP

Advantages of Sieve-SDP

I Simple to understand and implement

I Machine precision using safe mode

I Reduces size of SDPs and detects infeasibility efficiently

I Does not depend on any optimization solver

I Very fast and stable

Paper and Code

I Paper: zhu2017sieve

I Code: github-sieve

I Try Sieve-SDP in your research, and share your experience with
me: zyzx@live.unc.edu.

Thank you for your attention!

