Sieve-SDP: A Simple Algorithm to Preprocess Semidefinite Programs

Yuzixuan Zhu

Joint work with Gábor Pataki and Quoc Tran-Dinh

University of North Carolina at Chapel Hill

SIAM Annual Meeting, July 2018

Outline

- Basic Concepts
- Examples
- The Sieve Algorithm
- Computational Results

Semidefinite Program (SDP)

$$
\begin{aligned}
& \text { inf. } C \cdot X \\
& \text { s.t. } A_{i} \cdot X=b_{i}(i=1, \ldots, m) \\
& \\
& X \succeq 0
\end{aligned}
$$

where

- $C, A_{i}, X \in \mathcal{S}^{n}, b_{i} \in \mathbb{R}, i=1, \ldots, m$
- $A \cdot X:=\operatorname{trace}(A X)=\sum_{i, j=1}^{n} a_{i j} x_{i j}$
- $X \succeq 0: X \in \mathcal{S}_{+}^{n}$, i.e. X is symmetric positive semidefinite (psd)

Motivation

Softwares: SeDuMi, SDPT3, Mosek, ...

- Slow for problems that are large
- Error for problems without strict feasibility

We want to preprocess the problem to

- Reduce size by removing redundancy
- Detect lack of strict feasibility
before giving the problem to the solver.

Example 1

$$
\begin{gathered}
\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \cdot X \\
\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right) \cdot X \\
X \\
X \\
X \\
\end{gathered}
$$

Example 1

$$
\begin{gathered}
\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \cdot X=0 \\
\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right) \cdot X \\
=-1 \\
X \\
X
\end{gathered}
$$

Suppose $X=\left(x_{i j}\right)_{3 \times 3}$ feasible $\Rightarrow x_{11}=0$

$$
\Rightarrow x_{12}=x_{13}=0
$$

Example 1

$$
\begin{gathered}
\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \cdot X=0 \\
\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right) \cdot X=-1 \\
X \succeq 0
\end{gathered}
$$

Suppose $X=\left(x_{i j}\right)_{3 \times 3}$ feasible $\Rightarrow x_{11}=0$

$$
\begin{aligned}
& \Rightarrow x_{12}=x_{13}=0 \\
& \Rightarrow x_{22}=-1 \\
& \Rightarrow \text { Infeasible! }
\end{aligned}
$$

Example 2

$$
\begin{gathered}
\left(\begin{array}{llll}
1 & 1 & 0 & 0 \\
1 & 2 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \cdot X=0 \\
\left(\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 \\
0 & 1 & 0 & 1
\end{array}\right) \cdot X=0 \\
\left(\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 0 & 2 & 0 \\
0 & 2 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \cdot X=1 \\
\end{gathered}
$$

Example 2

Example 2

Example 2

Before preprocessing: $\quad X \in \mathcal{S}_{+}^{4} ; \quad 3$ constraints
After preprocessing: $\quad X \in \mathcal{S}_{+}^{1} ; \quad 1$ constraint: $1 \cdot X=1$

The Sieve structure

After reduction, the matrix looks like this:

A large example

(b) Reduced SDP with
$m=1286$ and $\sum n_{i}^{2}=40743$
(a) An SDP with $m=3002$ and $\sum n_{i}^{2}=71775$

Basic steps

Step 1. Find a constraint of the form

$$
\left(\begin{array}{cc}
D_{i} & 0 \\
0 & 0
\end{array}\right) \cdot X=b_{i},
$$

where $b_{i} \leq 0$ and $D_{i} \succ 0$ (checked by Cholesky factorization).
Step 2. If $b_{i}<0$, stop. The SDP is infeasible.
Step 3. If $b_{i}=0$, delete rows and columns corresponding to D_{i}; remove this constraint.

Safe mode

Fix $\epsilon=2.2204 \times 10^{-16}$.

- $D_{i} \succ 0$? Check whether $D_{i}-\sqrt{\epsilon} I \succ 0$
- $b_{i}<0$? Check whether $b_{i}<-\sqrt{\epsilon} \max \left\{\left\|b_{i}\right\|_{\infty}, 1\right\}$
- $b_{i}=0$? Check whether $b_{i}>-\epsilon \max \left\{\left\|b_{i}\right\|_{\infty}, 1\right\}$

Sieve-SDP is a facial reduction algorithm $(\mathrm{FDA})^{123}$

- The feasible region of an SDP is

$$
\left\{X \in \mathcal{S}_{+}^{n}: A_{i} \cdot X=b_{i}, i=1, \ldots, m\right\}
$$

which is equivalent to

$$
\left\{X \in F: A_{i} \cdot X=b_{i}, i=1, \ldots, m\right\}
$$

for some F face of \mathcal{S}_{+}^{n}.

- FDA iterates to reduce the cone $\left(F_{k+1} \subseteq F_{k} \subseteq \cdots \subseteq \mathcal{S}_{+}^{n}\right)$.

[^0]
Permenter-Parrilo (PP) preprocessing methods ${ }^{4}$

- PP reduces the size of an SDP by solving linear programming subproblems
- Implemented for primal (p-) and dual (d-) SDPs
- Implemented using diagonal (-d1) and diagonally dominant (-d2) approximations

[^1]
Problem sets

Table: 5 datasets consisting of 771 SDP problems.

dataset	source	\# problems
Permenter-Parrilo (PP)	$[[$ permenter2014partial $]]$	68
Mittelmann	Mittelmann website	31
Dressler-Illiman-de Wolff (DIW)	[[dressler2019approach]]	155
Henrion-Toh	Didier Henrion and Kim-Chuan Toh	98
Toh-Sun-Yang	[[sun2015convergent, yang2015sdpnal]]	419
total		771

Computational setup

Computational setup

- Preprocess using Sieve-SDP and four PP methods (pd1, pd2, dd1, dd2).

Computational setup

- Preprocess using Sieve-SDP and four PP methods (pd1, pd2, dd1, dd2).
- Use MOSEK [[mosek2017mosek]] to solve each problem before and after preprocessing.

Computational setup

- Preprocess using Sieve-SDP and four PP methods (pd1, pd2, dd1, dd2).
- Use MOSEK [[mosek2017mosek]] to solve each problem before and after preprocessing.
- MATLAB R2015a on MacBook Pro with 8GB of RAM.

Computational setup

- Preprocess using Sieve-SDP and four PP methods (pd1, pd2, dd1, dd2).
- Use MOSEK [[mosek2017mosek]] to solve each problem before and after preprocessing.
- MATLAB R2015a on MacBook Pro with 8GB of RAM.

Comparison criteria

${ }^{5}$ http://archive.dimacs.rutgers.edu/Challenges/Seventh/Instances/

Comparison criteria

- Does preprocessing reduce a problem?

[^2]
Comparison criteria

- Does preprocessing reduce a problem?
- Does it help to detect infeasibility?

[^3]
Comparison criteria

- Does preprocessing reduce a problem?
- Does it help to detect infeasibility?
- Does it help to recover the true objective value?

[^4]
Comparison criteria

- Does preprocessing reduce a problem?
- Does it help to detect infeasibility?
- Does it help to recover the true objective value?
- Does it reduce solution inaccuracy defined by DIMACS errors ${ }^{5}$?

[^5]
Comparison criteria

- Does preprocessing reduce a problem?
- Does it help to detect infeasibility?
- Does it help to recover the true objective value?
- Does it reduce solution inaccuracy defined by DIMACS errors ${ }^{5}$?
- Does it reduce solving time?

[^6]
Recover true objective values?

Table: Objective values (P, D) on the "Compact" problems
[[waki2012generate]].

problem	correct	w/o prep.	after pd1/pd2	after dd1/dd2	after Sieve-SDP
CompactDim2R1	Infeas, $+\infty$	$3.79 \mathrm{e}+06,4.20 \mathrm{e}+06$	Infeas, 1	$3.79 \mathrm{e}+06,4.20 \mathrm{e}+06$	Infeas, -
CompactDim2R2	Infeas, $+\infty$	$6.41 \mathrm{e}-10,6.81 \mathrm{e}-10$	Infeas, 2	$6.41 \mathrm{e}-10,6.81 \mathrm{e}-10$	Infeas, -
CompactDim2R3	Infeas, $+\infty$	$1.5,1.5$	Infeas, 2	$1.5,1.5$	Infeas, -
CompactDim2R4	Infeas, $+\infty$	$1.5,1.5$	Infeas, 2	$1.5,1.5$	Infeas, -
CompactDim2R5	Infeas, $+\infty$	$1.5,1.5$	Infeas, 2	$1.5,1.5$	Infeas, -
CompactDim2R6	Infeas, $+\infty$	$1.5,1.5$	Infeas, 2	$1.5,1.5$	Infeas, -
CompactDim2R7	Infeas, $+\infty$	$1.5,1.5$	Infeas, 2	$1.5,1.5$	Infeas, -
CompactDim2R8	Infeas, $+\infty$	$1.5,1.5$	Infeas, 2	$1.5,1.5$	Infeas, -
CompactDim2R9	Infeas, $+\infty$	$1.5,1.5$	Infeas, 2	$1.5,1.5$	Infeas, -
CompactDim2R10	Infeas, $+\infty$	$1.5,1.5$	Infeas, 2	$1.5,1.5$	Infeas, -
correctness \%	100\%, 100\%	0\%, 0%	100\%, 0\%	$0 \%, 0 \%$	100\%, -

SDP relaxation for polynomial optimization

- Polynomial optimization:

$$
\begin{aligned}
\min _{x \in N} & f_{0}(x) \\
\text { s.t. } & f_{i}(x) \geq 0, \quad i=1, \ldots, r .
\end{aligned}
$$

SDP relaxation for polynomial optimization

- Polynomial optimization:

$$
\begin{aligned}
\min _{x \in N} & f_{0}(x) \\
\text { s.t. } & f_{i}(x) \geq 0, \quad i=1, \ldots, r .
\end{aligned}
$$

- It is equivalent to

$$
\begin{aligned}
\max _{\gamma \in} & \gamma \\
\text { s.t. } & f_{0}(x)+\sum_{i=1}^{r} s_{i}(x) f_{i}(x)-\gamma=s_{0}(x), \quad \forall x \in^{N},
\end{aligned}
$$

where $s_{i}(x), i=0,1, \ldots, r$ are sum-of-square polynomials [[lasserre2001global]].

SDP relaxation for polynomial optimization

- Polynomial optimization:

$$
\begin{aligned}
\min _{x \in N} & f_{0}(x) \\
\text { s.t. } & f_{i}(x) \geq 0, \quad i=1, \ldots, r .
\end{aligned}
$$

- It is equivalent to

$$
\begin{array}{cl}
\max _{\gamma \in} & \gamma \\
\text { s.t. } & f_{0}(x)+\sum_{i=1}^{r} s_{i}(x) f_{i}(x)-\gamma=s_{0}(x), \quad \forall x \in^{N},
\end{array}
$$

where $s_{i}(x), i=0,1, \ldots, r$ are sum-of-square polynomials [[lasserre2001global]].

- It has SDP relaxation:

$$
\begin{array}{cl}
\min _{\gamma \in} & -\gamma, \\
\text { s.t. } & Q \succeq 0,
\end{array}
$$

where $Q \in \mathcal{S}^{n}$ is based on γ and coefficients of $f_{i}, i=0,1, \ldots, r$.

SDP relaxation for polynomial optimization

- Polynomial optimization:

$$
\begin{aligned}
\min _{x \in N} & f_{0}(x) \\
\text { s.t. } & f_{i}(x) \geq 0, \quad i=1, \ldots, r .
\end{aligned}
$$

- It is equivalent to

$$
\begin{array}{cl}
\max _{\gamma \in} & \gamma \\
\text { s.t. } & f_{0}(x)+\sum_{i=1}^{r} s_{i}(x) f_{i}(x)-\gamma=s_{0}(x), \quad \forall x \in^{N},
\end{array}
$$

where $s_{i}(x), i=0,1, \ldots, r$ are sum-of-square polynomials [[lasserre2001global]].

- It has SDP relaxation:

$$
\begin{array}{ll}
\min _{\gamma \in} & -\gamma, \\
\text { s.t. } & Q \succeq 0,
\end{array}
$$

where $Q \in \mathcal{S}^{n}$ is based on γ and coefficients of $f_{i}, i=0,1, \ldots, r$.

- Infeasibility of (SDP-relaxation) gives a useless lower bound $\gamma=-\infty$ to (poly-opt).

SDP relaxation for polynomial optimization

- Polynomial optimization:

$$
\begin{aligned}
\min _{x \in N} & f_{0}(x) \\
\text { s.t. } & f_{i}(x) \geq 0, \quad i=1, \ldots, r
\end{aligned}
$$

- It is equivalent to

$$
\begin{array}{cl}
\max _{\gamma \in} & \gamma \\
\text { s.t. } & f_{0}(x)+\sum_{i=1}^{r} s_{i}(x) f_{i}(x)-\gamma=s_{0}(x), \quad \forall x \in^{N},
\end{array}
$$

where $s_{i}(x), i=0,1, \ldots, r$ are sum-of-square polynomials [[lasserre2001global]].

- It has SDP relaxation:

$$
\begin{array}{ll}
\min _{\gamma \in} & -\gamma, \\
\text { s.t. } & Q \succeq 0,
\end{array}
$$

where $Q \in \mathcal{S}^{n}$ is based on γ and coefficients of $f_{i}, i=0,1, \ldots, r$.

- Infeasibility of (SDP-relaxation) gives a useless lower bound $\gamma=-\infty$ to (poly-opt).
- Without knowing the infeasibility of (SDP-relaxation), the effort to solving it could be tremendous.

Results of DIW dataset (polynomial optimization problems)

Table: Results of DIW dataset.

prep. method	\# reduced	\# infeas detected	n	m	$t_{\text {prep }}(\mathrm{s})$	$\mathrm{t}_{\text {sol }}(\mathrm{s})$
w/o prep.	-	-	53,523	186,225		$(39 \mathrm{hrs} \approx) 139,493.56$
pd1	155	56	1,450	3,278	$1,615.02$	128.46
pd2	155	56	1,450	3,278	$10,831.32$	124.44
dd1	0	0	53,523	186,225	48.32	$139,493.56$
dd2	0	0	53,523	186,225	$22,135.71$	$139,493.56$
Sieve-SDP	155	59	1,385	3,204	$1,232.27$	$(1.5 \mathrm{~min} \approx) 87.53$

- Increased the solving speed by more than 100 times!
- Infeasibility has been double-checked manually.

An example from DIW dataset

Figure: Size and sparsity before and after Sieve-SDP.

Overall summary on all 771 problems: size reduction

Table: Overall size reduction.

method	\# reduced	red. on n	red. on m	extra free vars
pd1	209	15.47%	17.79%	0
pd2	230	15.59%	18.23%	0
dd1	14	6.74%	0.00%	$2,293,495$
dd2	21	9.28%	0.00%	$2,315,849$
Sieve-SDP	216	16.55%	20.66%	0

$$
\begin{array}{ll}
\text { red. on } n: & \frac{\sum n_{\text {before }}-\sum n_{\mathrm{after}}}{\sum n_{\mathrm{before}}} \\
\text { red. on } m: & \frac{\sum m_{\text {before }}-\sum m_{\mathrm{after}}}{\sum m_{\text {before }}}
\end{array}
$$

Overall summary on all 771 problems: helpfulness

Table: Overall helpfulness.

method	\# reduced	\# infeas detected	\# DIMACS error improved	\# out of memory
pd1	209	67	74	0
pd2	230	67	78	6
dd1	14	0	2	0
dd2	21	0	4	4
Sieve-SDP	216	73	74	0

Overall summary on all 771 problems: time

Table: Preprocessing and solving times.

method	$\mathrm{t}_{\text {prep }}(\mathrm{hr})$	$\mathrm{t}_{\text {sol }}(\mathrm{hr})$	$\mathrm{t}_{\text {prep }} / \mathrm{t}_{\text {sol_w/o }}$	time reduction
w/o	-	75.67	-	-
pd1	0.69	36.77	0.91%	50.50%
pd2	6.48	36.57	8.56%	43.12%
dd1	0.16	75.62	0.22%	-0.15%
dd2	10.00	75.56	13.21%	-13.16%
Sieve-SDP	0.60	36.62	0.80%	51.81%

$$
\text { time reduction: } \frac{\mathrm{t}_{\text {sol_w/o }}-\left(\mathrm{t}_{\text {prep }}+\mathrm{t}_{\text {sol }}\right)}{\mathrm{t}_{\text {sol_w/o }}} \times 100 \%
$$

High speed of Sieve-SDP

Highlights of Sieve-SDP

- Simple to understand and implement
- Run in machine precision under safe mode
- Reduces size of SDPs and detects infeasibility efficiently
- Does not depend on any optimization solver
- Very fast and stable

Overall summary: reduction

197 problems in total

$$
\begin{aligned}
\text { reduction rate on } n: \frac{\sum n_{\text {before }}-\sum n_{\text {after }}}{\sum n_{\text {before }}} \\
\text { reduction rate on } m: \frac{\sum m_{\text {before }}-\sum m_{\mathrm{after}}}{\sum m_{\mathrm{before}}}
\end{aligned}
$$

	reduction rate on n	reduction rate on m	added $\#$ free vars
pd1	1.57%	6.90%	0
pd2	1.75%	7.94%	0
dd1	11.02%	0.00%	2293495
dd2	11.08%	0.00%	2315849
Sieve	3.49%	13.63%	0

Overall summary: help or hurt

- +1: detected infeasibility
- -1 : did not detect infeasibility even though solver detected infeasibility
- +2 : reduced DIMACS error
- -2 : increased DIMACS error
- +3 : improved objective value
- -4 : ran out of memory

methods	reduced	1	-1	2	-2	3	-4
pd1	54	12	0	8	0	13	0
pd 2	75	12	0	11	0	17	6
dd 1	14	0	2	3	1	5	0
dd2	21	0	2	6	1	6	4
Sieve	61	14	0	8	1	20	0

Overall summary: time

High speed of Sieve-SDP

Advantages of Sieve-SDP

- Simple to understand and implement
- Machine precision using safe mode
- Reduces size of SDPs and detects infeasibility efficiently
- Does not depend on any optimization solver
- Very fast and stable

Paper and Code

- Paper: zhu2017sieve
- Code: github-sieve
- Try Sieve-SDP in your research, and share your experience with me: zyzx@live.unc.edu.

Thank you for your attention!

[^0]: ${ }^{1}$ borwein1981facial.
 ${ }^{2}$ waki2013facial.
 ${ }^{3}$ pataki2013strong.

[^1]: ${ }^{4}$ PerPar:14.

[^2]: ${ }^{5}$ http://archive.dimacs.rutgers.edu/Challenges/Seventh/Instances/

[^3]: ${ }^{5}$ http://archive.dimacs.rutgers.edu/Challenges/Seventh/Instances/

[^4]: ${ }^{5}$ http://archive.dimacs.rutgers.edu/Challenges/Seventh/Instances/

[^5]: ${ }^{5}$ http://archive.dimacs.rutgers.edu/Challenges/Seventh/Instances/

[^6]: ${ }^{5}$ http://archive.dimacs.rutgers.edu/Challenges/Seventh/Instances/

