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Given {A1, . . . ,Am}, define A : Sn → Rm by:

A(X ) =

A1 • X
...

Am • X


Define the SDP:

A(X ) = b
X � 0

(P)

With A(X0) = b and H := X0 +N (A) we have

feas(P) = H ∩ Sn+



Infeasible (P) are strongly inf. if dist(H,Sn+) > 0 otherwise are weakly inf.

Classical Example:
x11 = 0

x12 = x21 = 1
X ∈ S2

+

(SE)

If X satisfies the equalities of (SE) then

X =

(
0 1
1 x22

)
and so (SE) is infeasible. However, such X approach S2

+ by choosing(
1/x22 1

1 x22

)
∈ S2

+

and making x22 large. We visualize the 2× 2 psd matrices with x12 = 1

x22

x11

Sn
+



Main idea: we express H in two ways.

With equations A1 • X = 0 and A2 • X = 2 where

A1 =

(
1 0
0 0

)
and A2 =

(
0 1
1 0

)
This representation certifies that (SE) is infeasible.

Moreover, H = {λX1 + X2 | λ ∈ R} where

X1 =

(
0 0
0 1

)
and X2 =

(
0 1
1 0

)
proves H is an asymptote of Sn+ and thus (SE) is not-strongly infeasible.

We see that A1,A2,X1,X2 share a common “echelon” structure.

We show every SDP can be “untangled” into such a form via row
operations and congruence transforms.



Why study weak infeasibility?

Classically...

• as asymptotes of the semidefinite cone. [Klee 1961]

In modern literature...

• as hard SDPs, identified as feasible even by state-of-the-art solvers.
[Liu, Pataki 2017]

• as infeasible and ill-posed SDPs with poor IPM performance. [Peña,
Renegar 2000 – Bürgisser, Cucker 2013]

• as non-closed projections of Sn+ where b ∈ cl(A(Sn+)): studied as
projective varieties of the Grassmanian. [Jiang, Sturmfels 2020]

• as instances in the Lasserre hierarchy of polynomial optimization.
[Henrion, Lasserre 2005]

• and many more! (See references)
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Question...

What is the feasibility status of (BE)?
−54 −15 36 −81
−15 0 −9 −15
36 −9 6 45
−81 −15 45 −126

 • X = 18


−4 −2 −24 18
−2 0 2 −2
−24 2 −12 −26
18 −2 −26 44

 • X = −4


−18 4 30 −46

4 0 −2 4
30 −2 16 32
−46 4 32 −78

 • X = 4

X � 0

(BE)

Answer should provide certificate of such status.



Motivation

a>i x = bi , i = 1, . . . ,m (1)

is infeasible ⇐⇒ row echelon form gives

0>x = 1 (2)

(2) certifies infeasibility for (1).

Append (2) to linear system to generate any infeasible system.

Goal : Find a similar characterization for weakly infeasible SDPs

To do this, we’d like analogues to

1 elementary row operations

2 row echelon form

for SDPs...



We reformulate (P) with invertible elementary operations:

• Exchange (Ai , bi ) and (Aj , bj)

• Add multiple of (Ai , bi ) to (Aj , bj)

• Apply suitable T>()T to all Ai

To extend the notion of a row echelon form, recall

a3

a2

a1 1

−2 1

3 0 1

=⇒ {a1, a2, a3} is in row echelon form

Similarly, {A1, . . . ,Ak} is in semidefinite echelon form with structure
{Q1, . . . ,Qk} if its form is

A3A2A1

Q1 Q2 Q3

+

+

× × × ×
×
×
×

+

× × × ×
×
×
× ×
×
× × ×

· · ·

or any permutation P>()P applied to elements of the above sequence.



Main Result: Certificates of weak infeasibility

(P) is weakly infeasible ⇐⇒ it has reformulation

A′
i • X = 0, i = 1, . . . , k

A′
k+1 • X = −1...
X � 0

with {A′
1, . . . ,A

′
k+1} in semidefinite echelon form, and for

some {X1, . . . ,X`+1} in semidefinite echelon form we have

A′(Xi ) = 0, i = 1, . . . , `
A′(X`+1) = b′.

Note, here we understand

A′(X ) = (A′
1 • X , . . . ,A′

m • X )>



Feasibility of (BE)

Returning to (BE) and reformulating:

{A′
1, · · · ,A′

3} certify infeasibility with b′ = (0, 0,−2)>

A′3A′2A′1

P1

P2

P3

2 −4 1

−4
1

24

−2 4

1

1

2

2

0

−2
2 −2 0 2

−2
−2
2

while {X1, · · · ,X3} certify not strong infeasibility

X3X2X1

Q1

Q2

Q3

1

1

−1 1 −2 2

−2
1

−1

1

−4 10 0 0

0

10

−4
101

1

1



Proving (BE) is weakly infeasible

A′3A′2A′1

P1

P2

P3

2 −4 1

−4
1

24

−2 4

1

1

2

2

0

−2
2 −2 0 2

−2
−2
2

{A′
1, · · · ,A′

3} certifies infeasibility since

Assume X feasible =⇒ 1st row of X is 0
=⇒ 2nd row of X is 0
=⇒ A′

3 • X ≥ 0
=⇒ contradicts A′

3 • X = −2

Meanwhile...



To see that (BE) is not strongly infeasible:

Permuting columns, we write {X1, . . . ,X3} as

X3X2X1

1

1

2 1 −2 −1
1

−2
−1

1

0 10 0 −4
10

0

−4 1

1

0 1 1

Fix ε > 0 and perturb (4, 4) block =⇒ build positive definite certificate as

� 0

ε

7−→
+X3

� 0

ε

1

0 10 0 −4
10

0

−4 1

1

0 1 1 7−→
+γ2X2

γ2 � 0

� 0

+

ε

+

× × × ×
×
×
× ×
×
× × 7−→

+γ1X1

γ1 ≫ 0

� 0

+

ε

+

+ × × ×
×
×
× ×
×
× ×

ε-close to H ′ := {X | A′X = b′}
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Main Algorithm

By Main Result, generating any weakly infeasible (P) is done simply:

1 Pick {A1, . . . ,Ak+1} SDE form to certify infeasibility .

2 Pick {X1, . . . ,X`+1} SDE form to certify not strong infeasibility .

3 Adjust to satisfy:

Ai • Xj =

{
0 if (i , j) 6= (k + 1, `+ 1)

−1 if (i , j) = (k + 1, `+ 1)
(BASE )

4 Create other equalities Ai • X = bi for i = k + 2, . . . ,m

In step 3, we simultaneously adjust elements of Ai and X1, . . . ,X`+1.
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Do we always have to reformulate the SDP? . . . sometimes we don’t!

Consider minimizing the non-convex Motzkin polynomial

f (x , y) = 1− 3x2y2 + x2y4 + x4y2

using the degree r sum-of-squares relaxation:

sup λ
f − λ = Q • zz>

Q � 0

where z = (1, x , y , x2, xy , y2, . . . , x r , . . . , y r )> for r ≥ 3.



Well known that f (x , y) is non-negative but not a sum of squares.

Thus, every SOS relaxation is infeasible. However. . . for relaxation order
r ≥ 3, infeasibility and not-strong infeasibility certificates such as
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A5A4A3A2A1

X3X2X1

are found directly in constraints: certify relaxations are weakly infeasible.

Upshot: solvers will find minima for polynomials ε-close to f (x , y).
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Thank you!
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