How do exponential size solutions arise in semidefinite programming?

THE UNIVERSITY of NORTH CAROLINA at Chapel hill

Introduction

\checkmark Semidefinite Program (SDP) Feasibility

$$
\begin{equation*}
\sum_{i=1}^{m} x_{i} A_{i}+B \succeq 0 \tag{SDP}
\end{equation*}
$$

where
A_{i}, B symmetric matrices, $S \succeq 0 \Longrightarrow S$ is positive semidefinite
Size of solution: number of bits needed to encode it

Exponential size solutions in SDP: Khachiyan example

- Khachiyan example (feasibility)
$x_{1} \geq x_{2}^{2}, \quad x_{2} \geq x_{3}^{2}, \quad \ldots \quad x_{m-1} \geq x_{m}^{2}, \quad x_{m} \geq 2 \quad$ (Khachiyan)
$\triangleright x$ feasible $\Longrightarrow x_{1} \geq 2^{2^{m-1}} \Longrightarrow$ size of $x \geq \log 2^{2^{m-1}}=2^{m-1}$ $\square m=10 \Longrightarrow x_{1}$ is larger than number of atoms in universe!
- Written as SDP

$$
x_{i} \geq x_{i+1}^{2} \Longleftrightarrow\left(\begin{array}{cc}
x_{i} & x_{i+1} \\
x_{i+1} & 1
\end{array}\right) \succeq 0 \quad \forall i
$$

- Feasible set (when $m=3$)

Major open problems

Is SDP feasibility in P?

Exponential size solutions are a major obstacle
How to prove in polynomial time that exponential size solutions exists?
Can we represent large solutions in polynomial space?
(Khachiyan) gives hope: system certifies $x_{1}=2^{2^{m-1}}$ feasible symbolically
Are large solutions common in SDPs? (Perhaps not...)
Not in "typical" SDPs in literature
May be eliminated in Khachiyan simply by random change of variables

$$
x \leftarrow G x \text {, where } G \text { is invertible matrix }
$$

Apparent common consent: large variables in SDPs are rare

Theorem 1: large variables are not so rare

- $\exists M$ invertible matrix, so after change of variables $x \leftarrow M x$, if x is strictly feasible and x_{k} large then

where

$$
x_{1} \geq d_{2} x_{2}^{\alpha_{2}}, \quad x_{2} \geq d_{3} x_{3}^{\alpha_{3}}, \quad \ldots \quad x_{k-1} \geq d_{k} x_{k}^{\alpha_{k}}
$$

$$
2 \geq \alpha_{j} \geq 1+\frac{1}{k-j+1} \quad j=2, \ldots, k
$$

and d_{j}, α_{j} are constants depending on A_{i}, B and fixed x_{k+1}, \ldots, x_{m} where $k=$ singularity degree of $\left\{Y \succ 0 \mid A_{i} \bullet Y=0 \forall i\right\}$
Khachiyan type hierarchy in all strictly feasible SDPs

- Assumptions we make are minimal

Examples

- Worst Case (Khachiyan SDP)

$$
\left(\begin{array}{llll}
x_{1} & & & x_{2} \\
& & & \\
& x_{2} & & x_{3} \\
& & x_{3} & \\
& & x_{4} \\
x_{2} & x_{3} & x_{4} & \\
x_{4} & \\
\hline
\end{array}\right) \succeq 0 \Longrightarrow x_{1} \geq x_{2}^{2}, \quad x_{2} \geq x_{3}^{2}, \quad x_{3} \geq x_{4}^{2}
$$

- Best Case (Mild SDP):

$$
\left(\begin{array}{cccc}
x_{1} & & x_{2} & \\
& x_{2} & & \\
x_{2} & & x_{3} & \\
& & x_{3} & \\
& x_{3} & & x_{4} \\
& & x_{4} & \\
& & 1
\end{array}\right) \succeq 0 \Longrightarrow x_{1} \geq x_{2}^{4 / 3}, \quad x_{2} \geq x_{3}^{3 / 2}, \quad x_{3} \geq x_{4}^{2}
$$

After change of variables the SDP looks like...

(SDP $\left.{ }^{\prime}\right)$
where $r_{1}, \ldots, r_{k}>0$.

- A kind of "echelon form"

Based on facial reduction

- From ($S D P^{\prime}$) we can compute the α_{i} exponents
- Formula to do that is akin to a continued fractions formula

DPs naturally in the form of ($S D P^{\prime}$)

In general, we need change variables $x \leftarrow M x$. But often, we don't. Many SDPs are naturally in the form of ($S D P^{\prime}$)!

- Example 1: Minimize $f(x)=$ univariate degree $2 n$ polynomial. $>\rightarrow$ sum-of-squares SDP, dual looks like $(n=3)$:

$$
y_{6}\left(\begin{array}{lll}
1 & & \\
& 0 & \\
& & 0 \\
& & \\
& & 0
\end{array}\right)+y_{4}\left(\begin{array}{lll}
0 & & 1 \\
& 1 & \\
1 & & 0 \\
& & \\
& & 0
\end{array}\right)+y_{2}\left(\begin{array}{lll}
0 & & \\
& 0 & \\
& & 1 \\
& 1 & \\
& & 0
\end{array}\right)+\cdots \succeq 0
$$

Already in form of ($S D P^{\prime}$)! \Rightarrow in a feasible solution $y_{2 n} \geq y_{2}^{n}$

- Example 2: O'Donnell, 2017 certify non-negativity of polynomial over simple set
\triangleright Resulting SDP is equivalent to (Khachiyan), in the form of (SDP') All known SDPs with exponential sized solutions are in the form of $\left(S D P^{\prime}\right)$!

How to certify exponential size solutions in polynomial space?

In ($S D P^{\prime}$) suppose x_{k+1}, \ldots, x_{m} are part of strictly feasible solution. Can compute x_{k}, \ldots, x_{1}. Start with $Z:=\sum_{i=k+1}^{m} x_{i} A_{i}^{\prime}+B^{\prime}$

Grow the lower right corner into a positive definite matrix
No need to actually write down x_{k}, \ldots, x_{1} : argument proves they exist

Conclusions

- Khachiyan type hierarchy among leading variables in every strictly feasible SDP (after linear change of variables)
- Partial answer to: how to represent exponential size solutions in polynomial space?
- Every known SDP with large solutions is in our normal form
- Paper: https://arxiv.org/abs/2103.00041

