How do exponential size solutions arise in semidefinite programming?

Intro

► Se

Theorem 1: large variables are not so rare) Feasibility
$$m = x_1 A_1 + B \ge 0$$
(SDP) $m = x_1 A_1 + B \ge 0$ (SDP) $i = 1$ $i = 1$ $i \ge 2 a_2 2^{2i}$, $a_2 \ge 2 a_3 2^{2i}$, \dots $a_{k-1} \ge d_k a_k^{2k}$, where $i \ge 2 a_j \ge 1 + \frac{1}{k-j+1}$ $j = 2, \dots, k$ $i \ge 0 \implies S$ is positive semidefinite $i \ge 0 \implies S = 0 \implies S$ $i \ge 0 \implies S = 0 \implies S$ $i \ge 0 \implies S = 0 \implies S$ $i \ge 0 \implies S = 0 \implies S$ $i \ge 0 \implies S = 0 \implies S$ $i \ge 0 \implies S = 0 \implies S$ $i \ge 0 \implies S = 0 \implies S \ge 0 \ge 2^{2m-1} = 2^{m-1}$ than number of atoms in universe! $i \implies (x_{i+1} = 1) \ge 0 = \forall i$ $i \ge (x_{i+1} = 1) \ge 0 = \forall i$ $i \ge (x_{i+1} = 1) \ge 0 = \forall i$ $i \ge 0 \implies S \ge 0 \ge 2^{2m-1} = 2^{m-1}$ $i \ge 0 \implies S \ge 0 \ge 2^{2m-1} = 2^{m-1}$ $i \ge 0 \implies S \ge 0 \ge 2^{2m-1} = 2^{m-1}$ $i \ge 0 \implies S \ge 0 \ge 2^{2m-1} \ge 2^{2m-1} = 2^{m-1}$ $i \ge 0 \implies S \ge 0 \implies S \ge 2^{2m-1} = 2^{m-1}$ $i \ge 0 \implies S \ge 0 \implies S \ge 2^{m-1} \ge 2^{m-1} = 2^{m-1}$ $i \ge 0 \implies S \ge 0 \implies S \ge 0 \implies S \ge 0 \implies S \ge 2^{m-1} \ge 2^{m-1} = 2^$

W

 \mathbf{Expo}

► K]

IncliniTheorem 1: large variables are not so pareInidefinite Program (SDP) Feasibility
$$\sum_{i=1}^{m} x_i A_i + B \ge 0$$
 (SDP)
$$\sum_{i=1}^{m} x_i A_i + B \ge 0$$
 (SDP)(SDP) $A_i B$ symmetric matrices, $S \ge 0 \implies S$ is positive senidefinite
$$x_1 \ge d_2 x_2^{0.1}, x_2 \ge d_2 x_3^{0.1}, \dots, x_{k-1} \ge d_k x_k^{0.k}$$
icre $x_1 \ge d_2 x_2^{0.1}, x_2 \ge d_2 x_3^{0.1}, \dots, x_{k-1} \ge d_k x_k^{0.k}$ icre $x_1 \ge d_2 x_2^{0.1}, x_2 \ge d_2 x_3^{0.1}, \dots, x_{k-1} \ge d_k x_k^{0.k}$ icre $x_1 \ge d_2 x_2^{0.1}, x_2 \ge d_2 x_3^{0.1}, \dots, x_{k-1} \ge d_k x_k^{0.k}$ icre $x_1 \ge d_2 x_2^{0.1}, x_2 \ge d_2 x_3^{0.1}, \dots, x_{k-1} \ge d_k x_k^{0.k}$ icre $x_1 \ge d_2 x_2^{0.1}, x_2 \ge d_2 x_3^{0.1}, \dots, x_{k-1} \ge d_k x_k^{0.k}$ icre $x_1 \ge d_2 x_2^{0.1}, x_2 \ge d_3 x_3^{0.1}, \dots, x_{k-1} \ge d_k x_k^{0.k}$ icre $x_1 \ge d_2 x_2^{0.1}, x_2 \ge d_3 x_3^{0.1}, \dots, x_{k-1} \ge d_k x_k^{0.k}$ icre $x_1 \ge x_2^{0.1}, x_2 \ge x_3^{0.1}, \dots, x_{k-1} \ge d_k x_k^{0.k}$ icre $x_1 \ge x_2^{0.1}, x_2 \ge x_3^{0.1}, \dots, x_{k-1} \ge d_k x_k^{0.1}, x_{k-1} = d_k x_k^{0.1}, x_{k-1} \ge d_k x_k^{0.1}, x_{k-1} \ge d_k x_k^{0.1}, x_{k-1} = d_k x_k^{0.1}, x_{k-1} \ge d_k x_k^{0.1},$

- $\triangleright x$
- \triangleright W

$$x_i \geq x_{i+1}^2 \iff egin{pmatrix} x_i & x_{i+1} \ x_{i+1} & 1 \end{pmatrix} \succeq 0 \quad orall i$$

Fea

Majo

- Is S \triangleright **H**
- 2. Car
- \triangleright
- 3. Are
- \triangleright N
- \triangleright N

 \triangleright A

Gábor Pataki and Aleksandr Touzov

University of North Carolina at Chapel Hill

THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

SDPs naturally in the form of (SDP')In general, we need change variables $x \leftarrow Mx$. But often, we don't. if x is Many SDPs are naturally in the form of (SDP')!Example 1: Minimize f(x) = univariate degree 2n polynomial. $\triangleright \rightarrow$ sum-of-squares SDP, dual looks like (n = 3): \ldots, x_m Already in form of $(SDP')! \Rightarrow$ in a feasible solution $y_{2n} \ge y_2^n$ Example 2: O'Donnell, 2017 certify non-negativity of polynomial over simple set ▷ Resulting SDP is equivalent to (*Khachiyan*), in the form of (SDP')!▶ All known SDPs with exponential sized solutions are in the form of (SDP')!How to certify exponential size solutions in polynomial space? $\geq x_4^2$ In (SDP') suppose x_{k+1}, \ldots, x_m are part of strictly feasible solution. Can compute x_k, \ldots, x_1 . Start with $Z := \sum_{i=k+1}^m x_i A'_i + B'$ $r_1+\dots+r_{i-1}$ $n-r_1-\dots-r_i$ \times $x_3 \ge x_4^2$ \times + \times \times \times \times \times XX $\succ 0$ $x_{k-1}A_{k-1}'+x_kA_k'+Z$ $x_k A'_k + Z$ \boldsymbol{Z} Grow the lower right corner into a positive definite matrix No need to actually write down x_k, \ldots, x_1 : argument proves they exist! (SDP')Conclusions ► Khachiyan type hierarchy among leading variables in every strictly feasible SDP (after linear change of variables) Partial answer to: how to represent exponential size solutions in polynomial space? Every known SDP with large solutions is in our normal form Paper: https://arxiv.org/abs/2103.00041

touzov@live.unc.edu