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Linear Programming (LP) feasibility

∃?x s.t.

Ax ≥ b (LP )

Here

•A ∈ Zm×n, b ∈ Zm

• Poly size solutions: if (LP) feasible⇒ ∃ feasible rational x̄ in
which entries have numerator and denominator with size

≤ n logn logL

where L = largest entry in A, b.

Use Kramer’s rule at an extreme point of (LP).

•→ To solve (LP) in poly time, we find a solution x̄.



Semidefinite Programing (SDP) feasibility

∃?x s.t. ∑m
i=1 xiAi +B � 0 (SDP)

Here

•Ai, B are symmetric matrices,

• S � 0 means thatS is symmetric positive semidefinite (psd).

• Far reaching generalization of LP.
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In SDPs exponential size solutions are unavoidable

•Khachiyan example

x1 ≥ x2
2, x2 ≥ x2

3, . . . , xm−1 ≥ x2
m, xm ≥ 2. (Khachiyan)

• x feasible⇒ x1 ≥ 22m−1
.

• Size of x ≥ log 22m−1
= 2m−1.

•Can be written as SDP:

xi ≥ x2
i+1 ⇔

 xi xi+1

xi+1 1

 � 0∀i.



Khachiyan picture

x1 ≥ x2
2, x2 ≥ x2

3, 2 ≥ x3 ≥ 0 (1)
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Is (SDP) feasibility in P?

•Major open problem

•Open even for quadratic constraints

• Exponential size solutions are a major obstacle

•How to prove in polynomial time that a possibly exponential
size solution exists?
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Question 1

•Can we represent such large solutions in polynomial space?

• (Khachiyan) gives hope: no need to write out 22m−1
to con-

vince ourselves that x1 = 22m−1
is feasible.

• The system itself is a certificate.
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Question 2
Are large solutions common in SDPs?

Seemingly no, since:

• they do not come up in LPs, or “typical” SDPs.

•we may eliminate them even in (Khachiyan) by a very slight
change, as:

(1) replace
xm ≥ 2 → xm ≥ 2 + xm+1

where xm+1 is a new variable

→ x1 does not have to be large anymore.

(2) by linear change of variables:

x← Gx

where G is random dense matrix.

→ (Khachiyan) becomes a big mess.

→ Apparent common consent: large variables in SDPs are
rare.



However: Main result (informal)

•We can “untangle” any strictly feasible SDP and make it
into a Khachiyan type SDP.
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Background

• k := singularity degree of {Y � 0 : Ai • Y = 0 ∀i }.
•minimum number of facial reduction steps to certify maxi-

mum rank psd matrix

• k ≤ 1 when (SDP) is an LP.

•We assume that (SDP) is strictly feasible, i.e., ∃x s.t.∑m
i=1 xiAi +B � 0.



Theorem 1 (Informal)

After a linear change of variables x←Mx, if x strictly fea-
sible and xk is large, then

x1 ≥ d2x
α2
2 , x2 ≥ d3x

α3
3 , . . . , xk−1 ≥ dkxαkk



Theorem 1 (Informal)

After a linear change of variables x←Mx, if x strictly fea-
sible and xk is large, then

x1 ≥ d2x
α2
2 , x2 ≥ d3x

α3
3 , . . . , xk−1 ≥ dkxαkk

where

2 ≥ α2 ≥
k

k − 1
, 2 ≥ α3 ≥

k − 1

k − 2
, . . . , 2 ≥ αk ≥ 2.



Theorem 1 (Informal)

After a linear change of variables x←Mx, if x strictly fea-
sible and xk is large, then

x1 ≥ d2x
α2
2 , x2 ≥ d3x

α3
3 , . . . , xk−1 ≥ dkxαkk

where

2 ≥ α2 ≥
k

k − 1
, 2 ≥ α3 ≥

k − 1

k − 2
, . . . , 2 ≥ αk ≥ 2.

The dj and αj are constants that depend on the
Ai, on B and xk+1, . . . , xm that we consider fixed.

Khachiyan type hierarchy in all strictly feasible SDPs.



Theorem 1 (Informal)

After a linear change of variables x←Mx, if x strictly fea-
sible and xk is large, then

x1 ≥ d2x
α2
2 , x2 ≥ d3x

α3
3 , . . . , xk−1 ≥ dkxαkk

where

2 ≥ α2 ≥
k

k − 1
, 2 ≥ α3 ≥

k − 1

k − 2
, . . . , 2 ≥ αk ≥ 2.

The dj and αj are constants that depend on the
Ai, on B and xk+1, . . . , xm that we consider fixed.

Khachiyan type hierarchy in all strictly feasible SDPs.

Assumptions are minimal.
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Corollary

• In worst case (all αj = 2)

x1 ≥ constant · x2k−1

k .

• In best case (all αj = lower bound)

x1 ≥ constant · xkk.
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Best case example: “Mild” SDP



x1 x2

x2 x3

x2 x3 x4

x3 x4

x4 1


� 0

• Subdeterminant with three red corners⇒ x1x3 ≥ x2
2

• Subdeterminant with three blue corners ⇒ x2x4 ≥ x2
3

• Subdeterminant with three green corners ⇒ x3 ≥ x2
4

From these we derive:

x1 ≥ x
4/3
2 , x2 ≥ x

3/2
3 , x3 ≥ x2

4

Exponents are minimal.



Khachiyan vs Mild

• Three variables, 2 ≥ x3 ≥ 0 (normalization)
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Proof idea

(1) (SDP) −→ reformulate (change variables) to get (SDP’)

(2) (SDP’) −→ messy quadratic inequalities such as

(x1 + 2x2 + 5x3)(x4 + x5) > (x2 − 3x6)
2

(3) messy quadratic inequalities−→ cleaned up inequalities such as

x1x4 > constant · x2
2 if xk large

+ eliminate variables to get

xj ≥ constant ·xαj+1

j+1 ∀j

+ recursion to compute the αj+1.



Reformulating (SDP) into (SDP’)

The reformulated SDP looks like
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The reformulated SDP looks like

x1

( r1︷︸︸︷ n−r1︷︸︸︷
I 0
0 0

)
+
∑k

i=2 xi


r1+...+ri−1︷ ︸︸ ︷ ri︷︸︸︷ n−r1−...−ri︷ ︸︸ ︷
× × ×
× I 0
× 0 0


+
∑m

i=k+1 xiA
′
i +B′ � 0

(SDP’)
with r1, . . . , rk > 0.

To get this reformulation, we also used similarity transformations
T>()T.
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x2x4 > const · x2
3, if xk is large
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⇒ αj+1 increases.
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In other words

x1 ≥ x4/3
2 → x1 ≥ x5/3

2 → x1 ≥ x2
2
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j+1 .
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Connection to Fourier-Motzkin elimination

•We are eliminating variables to get to xj ≥ x
αj+1

j+1 .

• This process can be viewed as Fourier-Motzkin elimination
via yi := log xi.

• Example

x1x3 ≥ x2
2

x2x4 ≥ x2
3

x3 ≥ x2
4

→
y1 + y3 ≥ 2y2

y2 + y4 ≥ 2y3

y3 ≥ 2y4

•Add 1/2 times the last to the middle:

x2 ≥ x
3/2
3 ← y2 ≥ 3

2
y3



Do we need the change of variables x←Mx?

• In general, yes: such an operation may mess up even (Khachiyan).

• So, we may need such an operation x←M−1x to unmess
it.

• But, sometimes we don’t.



When we do not even need a change of variables,
part 1

Want to minimize f(x) = univariate degree 2n polynomial.

Rewrite as SDP, using sum-of-squares technique, look at dual
(show the case n = 3)

y6


1

0

0

0

+ y4


0 1

1

1 0

0

+ y2


0

0 1

1

1 0

+ · · · � 0
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When we do not even need a change of variables,
part 1

Want to minimize f(x) = univariate degree 2n polynomial.

Rewrite as SDP, using sum-of-squares technique, look at dual
(show the case n = 3)

y6


1

0

0

0

+ y4


0 1

1

1 0

0

+ y2


0

0 1

1

1 0

+ · · · � 0

Exactly in the form of (SDP’), without a change of variables.

Corollary: y ∈ R2n feasible⇒

y2n ≥ y
1+1/(n−1)
2n−2 , y2n−2 ≥ y1+1/(n−2)

2n−4 , . . .

y2n ≥ yn2 .



When we do not even need a change of variables,
part 2

O’ Donnell, 2017 We want to certify that a polynomial

p(x, y) = x1 + · · ·+ xn − 2y1 ≥ 0

for all (x, y) ∈ K, where K is a simple set.



When we do not even need a change of variables,
part 2

O’ Donnell, 2017 We want to certify that a polynomial

p(x, y) = x1 + · · ·+ xn − 2y1 ≥ 0

for all (x, y) ∈ K, where K is a simple set.

Resulting SDP:

u1E11 +
∑n

i=2 ui
(
Eii − Ei−1,n+i−1

)
+B � 0.

Here Eij is the (i, j) unit matrix.

Exactly in the form of (SDP’) ! It yields essentially Khachiyan’s
example.



Certifying exponential size solutions in polynomial
space, without computing them

Revisiting the reformulated problem:

x1

( r1︷︸︸︷ n−r1︷︸︸︷
I 0
0 0

)
+
∑k

i=2 xi


r1+...+ri−1︷ ︸︸ ︷ ri︷︸︸︷ n−r1−...−ri︷ ︸︸ ︷
× × ×
× I 0
× 0 0


+
∑m

i=k+1 xiA
′
i +B′ � 0

(SDP’)
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Suppose we have xk+1, . . . , xm s.t. ∃ x1, . . . , xk so this prob-

lem is strictly feasible.



Certifying exponential size solutions in polynomial
space, without computing them

Revisiting the reformulated problem:

x1

( r1︷︸︸︷ n−r1︷︸︸︷
I 0
0 0

)
+
∑k

i=2 xi


r1+...+ri−1︷ ︸︸ ︷ ri︷︸︸︷ n−r1−...−ri︷ ︸︸ ︷
× × ×
× I 0
× 0 0


+
∑m

i=k+1 xiA
′
i +B′ � 0

(SDP’)
Suppose we have xk+1, . . . , xm s.t. ∃ x1, . . . , xk so this prob-

lem is strictly feasible.

Then we can prove that x1, . . . , xk exist without having
to compute them.



Verifying that x1, . . . , xk exist, without computing
them

Could compute them in reverse order, to make larger and
larger lower right corners of

∑m
i=1 xiA

′
i +B′ positive definite.

Start with Z :=
∑m

i=k+1 xiA
′
i +B′
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Verifying that x1, . . . , xk exist, without computing
them

Could compute them in reverse order, to make larger and
larger lower right corners of
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Verifying that x1, . . . , xk exist, without computing
them

Could compute them in reverse order, to make larger and
larger lower right corners of

∑m
i=1 xiA
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Verifying that x1, . . . , xk exist, without computing
them

Could compute them in reverse order, to make larger and
larger lower right corners of

∑m
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′
i +B′ positive definite.

Start with Z :=
∑m
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′
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× × × ×
× × × ×
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× × × +
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× × × ×
× × + ×
× × × +
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× × × ×
× + × ×
× × + ×
× × × +
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. . .

Question: Are all SDPs with large solutions in this regular-
ized form (maybe after a similarity transformation)?
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• Exponential size solutions in SDP, going back to famous
Khachiyan example.

•Khachiyan type hierarchy among leading variables in every
strictly feasible SDP (after linear change of variables)

• Formulas to compute the exponents (like continued frac-
tions)



Conclusion

• Exponential size solutions in SDP, going back to famous
Khachiyan example.

•Khachiyan type hierarchy among leading variables in every
strictly feasible SDP (after linear change of variables)

• Formulas to compute the exponents (like continued frac-
tions)

• Partial answer to: how to represent exponential size solu-
tions in polynomial space?

• Every known SDP with large solutions is in our normal form
(SDP’).

• Paper: https://arxiv.org/abs/2103.00041

https://arxiv.org/abs/2103.00041


Thank you!


