How do Exponential Size Solutions Arise in Semidefinite Programming?

Gábor Pataki

Department of Statistics and Operations Research UNC Chapel Hill

Joint work with Alex Touzov
Fields Institute, May 11, 2021

Linear Programming (LP) feasibility

\exists ? x s.t.

$$
A x \geq b \quad(L P)
$$

Here

- $A \in \mathbb{Z}^{m \times n}, b \in \mathbb{Z}^{m}$

Linear Programming (LP) feasibility

\exists ? x s.t.

$$
A x \geq b \quad(L P)
$$

Here

- $A \in \mathbb{Z}^{m \times n}, b \in \mathbb{Z}^{m}$
- Poly size solutions: if (LP) feasible $\Rightarrow \exists$ feasible rational \bar{x} in which entries have numerator and denominator with size

$$
\leq n \log n \log L
$$

where $L=$ largest entry in A, b.

Linear Programming (LP) feasibility

\exists ? x s.t.

$$
A x \geq b \quad(L P)
$$

Here

- $A \in \mathbb{Z}^{m \times n}, b \in \mathbb{Z}^{m}$
- Poly size solutions: if (LP) feasible $\Rightarrow \exists$ feasible rational \bar{x} in which entries have numerator and denominator with size

$$
\leq n \log n \log L
$$

where $L=$ largest entry in A, b.
Use Kramer's rule at an extreme point of (LP).

Linear Programming (LP) feasibility

\exists ? x s.t.

$$
A x \geq b \quad(L P)
$$

Here

- $A \in \mathbb{Z}^{m \times n}, b \in \mathbb{Z}^{m}$
- Poly size solutions: if (LP) feasible $\Rightarrow \exists$ feasible rational \bar{x} in which entries have numerator and denominator with size

$$
\leq n \log n \log L
$$

where $L=$ largest entry in A, b.
Use Kramer's rule at an extreme point of (LP).
$\bullet \rightarrow$ To solve (LP) in poly time, we find a solution \bar{x}.

Semidefinite Programing (SDP) feasibility

\exists ? x s.t.

$$
\begin{equation*}
\sum_{i=1}^{m} x_{i} \boldsymbol{A}_{i}+B \succeq 0 \tag{SDP}
\end{equation*}
$$

Here

- A_{i}, B are symmetric matrices,
- $S \succeq 0$ means that S is symmetric positive semidefinite (psd).
- Far reaching generalization of LP.

In SDPs exponential size solutions are unavoidable

- Khachiyan example

$$
x_{1} \geq x_{2}^{2}, x_{2} \geq x_{3}^{2}, \ldots, x_{m-1} \geq x_{m}^{2}, x_{m} \geq 2 . \quad(\text { Khachiyan })
$$

In SDPs exponential size solutions are unavoidable

- Khachiyan example

$$
x_{1} \geq x_{2}^{2}, x_{2} \geq x_{3}^{2}, \ldots, x_{m-1} \geq x_{m}^{2}, x_{m} \geq 2 . \quad \text { (Khachiyan) }
$$

- x feasible $\Rightarrow x_{1} \geq 2^{2^{m-1}}$.

In SDPs exponential size solutions are unavoidable

- Khachiyan example

$$
x_{1} \geq x_{2}^{2}, x_{2} \geq x_{3}^{2}, \ldots, x_{m-1} \geq x_{m}^{2}, x_{m} \geq 2 . \quad \text { (Khachiyan) }
$$

- x feasible $\Rightarrow x_{1} \geq 2^{2^{m-1}}$.
- Size of $x \geq \log 2^{2^{m-1}}=2^{m-1}$.

In SDPs exponential size solutions are unavoidable

- Khachiyan example

$$
x_{1} \geq x_{2}^{2}, x_{2} \geq x_{3}^{2}, \ldots, x_{m-1} \geq x_{m}^{2}, x_{m} \geq 2 . \quad(\text { Khachiyan })
$$

- x feasible $\Rightarrow x_{1} \geq 2^{2^{m-1}}$.
- Size of $x \geq \log 2^{2^{m-1}}=2^{m-1}$.
- Can be written as SDP:

$$
x_{i} \geq x_{i+1}^{2} \Leftrightarrow\left(\begin{array}{cc}
x_{i} & x_{i+1} \\
x_{i+1} & 1
\end{array}\right) \succeq 0 \forall i .
$$

Khachiyan picture

$$
\begin{equation*}
x_{1} \geq x_{2}^{2}, x_{2} \geq x_{3}^{2}, 2 \geq x_{3} \geq 0 \tag{1}
\end{equation*}
$$

Is (SDP) feasibility in P?

- Major open problem
- Open even for quadratic constraints

Is (SDP) feasibility in P?

- Major open problem
- Open even for quadratic constraints
- Exponential size solutions are a major obstacle
- How to prove in polynomial time that a possibly exponential size solution exists?

Question 1

- Can we represent such large solutions in polynomial space?

Question 1

- Can we represent such large solutions in polynomial space?
- (Khachiyan) gives hope: no need to write out $2^{2^{m-1}}$ to convince ourselves that $x_{1}=2^{2^{m-1}}$ is feasible.

Question 1

- Can we represent such large solutions in polynomial space?
- (Khachiyan) gives hope: no need to write out $2^{2^{m-1}}$ to convince ourselves that $x_{1}=2^{2^{m-1}}$ is feasible.
- The system itself is a certificate.

Question 2

Are large solutions common in SDPs?

Seemingly no, since:

Question 2

Are large solutions common in SDPs?

Seemingly no, since:

- they do not come up in LPs, or "typical" SDPs.

Question 2

Are large solutions common in SDPs?

Seemingly no, since:

- they do not come up in LPs, or "typical" SDPs.
- we may eliminate them even in (Khachiyan) by a very slight change, as:

Question 2

Are large solutions common in SDPs?

Seemingly no, since:

- they do not come up in LPs, or "typical" SDPs.
- we may eliminate them even in (Khachiyan) by a very slight change, as:
(1) replace

$$
x_{m} \geq 2 \rightarrow x_{m} \geq 2+x_{m+1}
$$

where x_{m+1} is a new variable
$\rightarrow x_{1}$ does not have to be large anymore.

Question 2

Are large solutions common in SDPs?

Seemingly no, since:

- they do not come up in LPs, or "typical" SDPs.
- we may eliminate them even in (Khachiyan) by a very slight change, as:
(1) replace

$$
x_{m} \geq 2 \rightarrow x_{m} \geq 2+x_{m+1}
$$

where x_{m+1} is a new variable
$\rightarrow x_{1}$ does not have to be large anymore.
(2) by linear change of variables:

$$
x \leftarrow G x
$$

where G is random dense matrix.
\rightarrow (Khachiyan) becomes a big mess.

Question 2

Are large solutions common in SDPs?

Seemingly no, since:

- they do not come up in LPs, or "typical" SDPs.
- we may eliminate them even in (Khachiyan) by a very slight change, as:
(1) replace

$$
x_{m} \geq 2 \rightarrow x_{m} \geq 2+x_{m+1}
$$

where x_{m+1} is a new variable
$\rightarrow x_{1}$ does not have to be large anymore.
(2) by linear change of variables:

$$
x \leftarrow G x
$$

where G is random dense matrix.
\rightarrow (Khachiyan) becomes a big mess.
\rightarrow Apparent common consent: large variables in SDPs are rare.

However: Main result (informal)

- We can "untangle" any strictly feasible SDP and make it into a Khachiyan type SDP.

Background

- $k:=$ singularity degree of $\left\{Y \succeq 0: A_{i} \bullet Y=0 \forall i\right\}$.

Background

- $k:=$ singularity degree of $\left\{Y \succeq 0: A_{i} \bullet Y=0 \forall i\right\}$.
- minimum number of facial reduction steps to certify maximum rank psd matrix

Background

- $k:=$ singularity degree of $\left\{Y \succeq 0: A_{i} \bullet Y=0 \forall i\right\}$.
- minimum number of facial reduction steps to certify maximum rank psd matrix
- $k \leq 1$ when (SDP) is an LP.

Background

- $k:=$ singularity degree of $\left\{Y \succeq 0: A_{i} \bullet Y=0 \forall i\right\}$.
- minimum number of facial reduction steps to certify maximum rank psd matrix
- $k \leq 1$ when (SDP) is an LP.
- We assume that (SDP) is strictly feasible, i.e., $\exists x$ s.t.

$$
\sum_{i=1}^{m} x_{i} A_{i}+B \succ 0 .
$$

Theorem 1 (Informal)

After a linear change of variables $x \leftarrow M x$, if x strictly feasible and x_{k} is large, then

$$
x_{1} \geq d_{2} x_{2}^{\alpha_{2}}, x_{2} \geq d_{3} x_{3}^{\alpha_{3}}, \ldots, x_{k-1} \geq d_{k} x_{k}^{\alpha_{k}}
$$

Theorem 1 (Informal)

After a linear change of variables $x \leftarrow M x$, if x strictly feasible and x_{k} is large, then

$$
x_{1} \geq d_{2} x_{2}^{\alpha_{2}}, x_{2} \geq d_{3} x_{3}^{\alpha_{3}}, \ldots, x_{k-1} \geq d_{k} x_{k}^{\alpha_{k}}
$$

where

$$
2 \geq \alpha_{2} \geq \frac{k}{k-1}, 2 \geq \alpha_{3} \geq \frac{k-1}{k-2}, \ldots, 2 \geq \alpha_{k} \geq 2
$$

Theorem 1 (Informal)

After a linear change of variables $x \leftarrow M x$, if x strictly feasible and x_{k} is large, then

$$
x_{1} \geq d_{2} x_{2}^{\alpha_{2}}, x_{2} \geq d_{3} x_{3}^{\alpha_{3}}, \ldots, x_{k-1} \geq d_{k} x_{k}^{\alpha_{k}}
$$

where

$$
2 \geq \alpha_{2} \geq \frac{k}{k-1}, 2 \geq \alpha_{3} \geq \frac{k-1}{k-2}, \ldots, 2 \geq \alpha_{k} \geq 2
$$

The d_{j} and α_{j} are constants that depend on the A_{i}, on B and x_{k+1}, \ldots, x_{m} that we consider fixed.

Khachiyan type hierarchy in all strictly feasible SDPs.

Theorem 1 (Informal)

After a linear change of variables $x \leftarrow M x$, if x strictly feasible and x_{k} is large, then

$$
x_{1} \geq d_{2} x_{2}^{\alpha_{2}}, x_{2} \geq d_{3} x_{3}^{\alpha_{3}}, \ldots, x_{k-1} \geq d_{k} x_{k}^{\alpha_{k}}
$$

where

$$
2 \geq \alpha_{2} \geq \frac{k}{k-1}, 2 \geq \alpha_{3} \geq \frac{k-1}{k-2}, \ldots, 2 \geq \alpha_{k} \geq 2
$$

The d_{j} and α_{j} are constants that depend on the A_{i}, on B and x_{k+1}, \ldots, x_{m} that we consider fixed.

Khachiyan type hierarchy in all strictly feasible SDPs.
Assumptions are minimal.

Corollary

- In worst case (all $\alpha_{j}=2$)

$$
x_{1} \geq \text { constant } \cdot x_{k}^{2^{k-1}}
$$

Corollary

- In worst case (all $\alpha_{j}=2$)

$$
x_{1} \geq \mathrm{constant} \cdot x_{k}^{2^{k-1}}
$$

- In best case (all $\alpha_{j}=$ lower bound)

$$
x_{1} \geq \mathrm{constant} \cdot x_{k}^{k}
$$

Worst case example: Khachiyan SDP

$$
\left(\begin{array}{ccccc}
x_{1} & & & & x_{2} \\
& x_{2} & & & x_{3} \\
& & x_{3} & & x_{4} \\
& & & x_{4} & \\
& & & & \\
x_{2} & x_{3} & x_{4} & & 1
\end{array}\right) \succeq 0
$$

Worst case example: Khachiyan SDP

$$
\left(\begin{array}{ccccc}
x_{1} & & & & x_{2} \\
& x_{2} & & & x_{3} \\
& & x_{3} & & x_{4} \\
& & & x_{4} & \\
& & & & \\
x_{2} & x_{3} & x_{4} & & 1
\end{array}\right) \succeq 0
$$

- Subdeterminant with three red corners $\Rightarrow x_{1} \geq x_{2}^{2}$
- Subdeterminant with three blue corners $\Rightarrow x_{2} \geq x_{3}^{2}$
- Subdeterminant with three green corners $\Rightarrow x_{3} \geq x_{4}^{2}$

Worst case example: Khachiyan SDP

$$
\left(\begin{array}{ccccc}
x_{1} & & & & x_{2} \\
& x_{2} & & & x_{3} \\
& & x_{3} & & x_{4} \\
& & & x_{4} & \\
& & & & \\
x_{2} & x_{3} & x_{4} & & 1
\end{array}\right) \succeq 0
$$

- Subdeterminant with three red corners $\Rightarrow x_{1} \geq x_{2}^{2}$
- Subdeterminant with three blue corners $\Rightarrow x_{2} \geq x_{3}^{2}$
- Subdeterminant with three green corners $\Rightarrow x_{3} \geq x_{4}^{2}$

Exponents are maximal.

Best case example: "Mild" SDP

$$
\left(\begin{array}{ccccc}
x_{1} & & x_{2} & & \\
& & & & \\
& x_{2} & & x_{3} & \\
x_{2} & & x_{3} & & x_{4} \\
& x_{3} & & x_{4} & \\
& & x_{4} & & 1
\end{array}\right) \succeq 0
$$

Best case example: "Mild" SDP

$$
\left(\begin{array}{ccccc}
x_{1} & & x_{2} & & \\
& x_{2} & & x_{3} & \\
& & & & \\
x_{2} & & x_{3} & & x_{4} \\
& x_{3} & & x_{4} & \\
& & x_{4} & & 1
\end{array}\right) \succeq 0
$$

- Subdeterminant with three red corners $\Rightarrow x_{1} x_{3} \geq x_{2}^{2}$
- Subdeterminant with three blue corners $\Rightarrow x_{2} x_{4} \geq x_{3}^{2}$
- Subdeterminant with three green corners $\Rightarrow x_{3} \geq x_{4}^{2}$

Best case example: "Mild" SDP

$$
\left(\begin{array}{ccccc}
x_{1} & & x_{2} & & \\
& & & & \\
& x_{2} & & x_{3} & \\
x_{2} & & x_{3} & & x_{4} \\
& x_{3} & & x_{4} & \\
& & x_{4} & & 1
\end{array}\right) \succeq 0
$$

- Subdeterminant with three red corners $\Rightarrow x_{1} x_{3} \geq x_{2}^{2}$
- Subdeterminant with three blue corners $\Rightarrow x_{2} x_{4} \geq x_{3}^{2}$
- Subdeterminant with three green corners $\Rightarrow x_{3} \geq x_{4}^{2}$

From these we derive:

$$
\mathrm{x}_{1} \geq \mathrm{x}_{2}^{4 / 3}, \mathrm{x}_{2} \geq \mathrm{x}_{3}^{3 / 2}, \mathrm{x}_{3} \geq \mathrm{x}_{4}^{2}
$$

Exponents are minimal.

Khachiyan vs Mild

- Three variables, $2 \geq x_{3} \geq 0$ (normalization)

Proof idea

(1) (SDP) \longrightarrow reformulate (change variables) to get (SDP')

Proof idea

(1) (SDP) \longrightarrow reformulate (change variables) to get (SDP')
(2) (SDP') \longrightarrow messy quadratic inequalities such as

$$
\left(x_{1}+2 x_{2}+5 x_{3}\right)\left(x_{4}+x_{5}\right)>\left(x_{2}-3 x_{6}\right)^{2}
$$

Proof idea

(1) (SDP) \longrightarrow reformulate (change variables) to get (SDP')
(2) (SDP') \longrightarrow messy quadratic inequalities such as

$$
\left(x_{1}+2 x_{2}+5 x_{3}\right)\left(x_{4}+x_{5}\right)>\left(x_{2}-3 x_{6}\right)^{2}
$$

(3) messy quadratic inequalities \longrightarrow cleaned up inequalities such as

$$
x_{1} x_{4}>\text { constant } \cdot x_{2}^{2} \text { if } x_{k} \text { large }
$$

Proof idea

(1) (SDP) \longrightarrow reformulate (change variables) to get (SDP')
(2) (SDP') \longrightarrow messy quadratic inequalities such as

$$
\left(x_{1}+2 x_{2}+5 x_{3}\right)\left(x_{4}+x_{5}\right)>\left(x_{2}-3 x_{6}\right)^{2}
$$

(3) messy quadratic inequalities \longrightarrow cleaned up inequalities such as

$$
x_{1} x_{4}>\text { constant } \cdot x_{2}^{2} \text { if } x_{k} \text { large }
$$

+ eliminate variables to get

$$
x_{j} \geq \text { constant } \cdot x_{j+1}^{\alpha_{j+1}} \forall j
$$

+ recursion to compute the α_{j+1}.

Reformulating (SDP) into (SDP')

The reformulated SDP looks like

$$
\begin{aligned}
& +\sum_{i=k+1}^{m} x_{i} A_{i}^{\prime}+B^{\prime} \succeq 0
\end{aligned}
$$

(SDP')
with $r_{1}, \ldots, r_{k}>0$.

Reformulating (SDP) into (SDP')

The reformulated SDP looks like

with $r_{1}, \ldots, r_{k}>0$.
To get this reformulation, we also used similarity transformations $T^{\top}() T$.
$\left(\mathrm{SDP}^{\prime}\right) \rightarrow$ messy quadratic inequalities
$\left(\mathrm{SDP}^{\prime}\right) \rightarrow$ messy quadratic inequalities

- 2×2 subdeterminant \rightarrow

$$
\left(x_{2}+2 x_{3}+5 x_{4}+\ldots\right)\left(x_{4}+\ldots\right)>\left(4 x_{3}+7 x_{4}+\ldots\right)^{2}
$$

$\left(\mathrm{SDP}^{\prime}\right) \rightarrow$ messy quadratic inequalities

- 2×2 subdeterminant \rightarrow

$$
\left(x_{2}+2 x_{3}+5 x_{4}+\ldots\right)\left(x_{4}+\ldots\right)>\left(4 x_{3}+7 x_{4}+\ldots\right)^{2}
$$

- The ... mean a combination of higher numbered variables.

$\left(\mathrm{SDP}^{\prime}\right) \rightarrow$ messy quadratic inequalities

$$
\cdots+x_{2}\left(\begin{array}{ccccc}
\times & \times & \times & \times & \times \times \\
\times & (1) & & \\
\times & & \\
\times & & \\
\times & & \\
\times & &
\end{array}\right)+x_{3}\left(\begin{array}{cccccc}
\times & \times & \times & \times & \times & \times \\
\times & (2) & \times & 4 & \times & \times \\
\times & \times & 1 & & & \\
\times & (4) & & & \\
\times & \times & & & \\
\times & \times & & &
\end{array}\right)+x_{4}\left(\begin{array}{cccccc}
\times & \times & \times & \times & \times & \times \\
\times & 5 & \times & (7) & \times & \times \\
\times & \times & \times & \times & \times & \times \\
\times & (7) & \times & (1) & \\
\times & \times & & & \\
\times & \times & & &
\end{array}\right)+\cdots \succ 0
$$

- 2×2 subdeterminant \rightarrow

$$
\left(x_{2}+2 x_{3}+5 x_{4}+\ldots\right)\left(x_{4}+\ldots\right)>\left(4 x_{3}+7 x_{4}+\ldots\right)^{2}
$$

- The ... mean a combination of higher numbered variables.
- Cleaned up version (suppress higher numbered terms):

$$
x_{2} x_{4}>\text { const } \cdot x_{3}^{2}, \text { if } x_{k} \text { is large }
$$

How to compute the α_{j+1} in $x_{j} \geq$ const $\cdot x_{j+1}^{\alpha_{j+1}}$?

$$
\alpha_{j+1}=\left\{\begin{aligned}
2-\frac{1}{\alpha_{j+2} \ldots \alpha_{t_{j+1}}} & \text { if } t_{j+1} \leq k \\
2 & \text { if } t_{j+1}=k+1
\end{aligned}\right.
$$

for $j=1, \ldots, k-1$.

How to compute the α_{j+1} in $x_{j} \geq$ const $\cdot x_{j+1}^{\alpha_{j+1}}$?

$$
\alpha_{j+1}=\left\{\begin{aligned}
2-\frac{1}{\alpha_{j+2} \ldots \alpha_{t_{j+1}}} & \text { if } t_{j+1} \leq k \\
2 & \text { if } t_{j+1}=k+1
\end{aligned}\right.
$$

for $j=1, \ldots, k-1$.
Similar to continued fractions.

How to compute the α_{j+1} in $x_{j} \geq$ const $\cdot x_{j+1}^{\alpha_{j+1}}$?

$$
\alpha_{j+1}=\left\{\begin{array}{rl}
2-\frac{1}{\alpha_{j+2} \ldots \alpha_{t_{j+1}}} & \text { if } t_{j+1} \leq k \\
2 & \text { if } t_{j+1}
\end{array}=k+1 .\right.
$$

for $j=1, \ldots, k-1$.
Similar to continued fractions.
Here

$$
t_{j+1}=\text { index of a rightmost block with } x_{j+1}
$$

Shift x_{j+1} to right $\Rightarrow t_{j+1}$ increases.

How to compute the α_{j+1} in $x_{j} \geq$ const $\cdot x_{j+1}^{\alpha_{j+1}} ?$

$$
\alpha_{j+1}=\left\{\begin{aligned}
2-\frac{1}{\alpha_{j+2} \ldots \alpha_{t_{j+1}}} & \text { if } t_{j+1} \leq k \\
2 & \text { if } t_{j+1}=k+1
\end{aligned}\right.
$$

for $j=1, \ldots, k-1$.
Similar to continued fractions.
Here

$$
t_{j+1}=\text { index of a rightmost block with } x_{j+1}
$$

Shift x_{j+1} to right $\Rightarrow t_{j+1}$ increases.

$$
\Rightarrow \alpha_{j+1} \text { increases. }
$$

Example

$$
\underbrace{\alpha=(4 / 3,3 / 2,2)}_{\left.\begin{array}{lllll}
x_{1} & & x_{2} & & \\
& & & & \\
& x_{2} & & x_{3} & \\
x_{2} & & x_{3} & & \\
& x_{3} & & x_{4} & \\
& & & & \\
& & x_{4} & & \\
& & & & \\
& &
\end{array}\right)}
$$

Example

Example

Example

In other words

$$
x_{1} \geq x_{2}^{4 / 3} \rightarrow x_{1} \geq x_{2}^{5 / 3} \rightarrow x_{1} \geq x_{2}^{2}
$$

Connection to Fourier-Motzkin elimination

- We are eliminating variables to get to $x_{j} \geq \operatorname{const} x_{j+1}^{\alpha_{j+1}}$.
- This process can be viewed as Fourier-Motzkin elimination via $y_{i}:=\log x_{i}$.

Connection to Fourier-Motzkin elimination

- We are eliminating variables to get to $x_{j} \geq \operatorname{const} x_{j+1}^{\alpha_{j+1}}$.
- This process can be viewed as Fourier-Motzkin elimination via $y_{i}:=\log x_{i}$.
- Example

$$
\begin{aligned}
x_{1} x_{3} & \geq x_{2}^{2} \\
x_{2} x_{4} & \geq x_{3}^{2} \\
x_{3} & \geq x_{4}^{2}
\end{aligned}
$$

Connection to Fourier-Motzkin elimination

- We are eliminating variables to get to $x_{j} \geq x_{j+1}^{\alpha_{j+1}}$.
- This process can be viewed as Fourier-Motzkin elimination via $y_{i}:=\log x_{i}$.
- Example

$$
\begin{aligned}
& x_{1} x_{3} \geq x_{2}^{2} \quad y_{1}+y_{3} \geq 2 y_{2} \\
& x_{2} x_{4} \geq x_{3}^{2} \rightarrow y_{2}+y_{4} \geq 2 y_{3} \\
& x_{3} \geq x_{4}^{2} \quad y_{3} \geq 2 y_{4}
\end{aligned}
$$

Connection to Fourier-Motzkin elimination

- We are eliminating variables to get to $x_{j} \geq x_{j+1}^{\alpha_{j+1}}$.
- This process can be viewed as Fourier-Motzkin elimination via $y_{i}:=\log x_{i}$.
- Example

$$
\begin{array}{rlrl}
x_{1} x_{3} & \geq x_{2}^{2} & y_{1}+y_{3} & \geq 2 y_{2} \\
x_{2} x_{4} & \geq x_{3}^{2} & \rightarrow y_{2}+y_{4} \geq 2 y_{3} \\
x_{3} & \geq x_{4}^{2} & y_{3} \geq 2 y_{4}
\end{array}
$$

- Add $1 / 2$ times the last to the middle:

$$
y_{2} \geq \frac{3}{2} y_{3}
$$

Connection to Fourier-Motzkin elimination

- We are eliminating variables to get to $x_{j} \geq x_{j+1}^{\alpha_{j+1}}$.
- This process can be viewed as Fourier-Motzkin elimination via $y_{i}:=\log x_{i}$.
- Example

$$
\begin{array}{rrr}
x_{1} x_{3} \geq x_{2}^{2} & y_{1}+y_{3} \geq 2 y_{2} \\
x_{2} x_{4} \geq x_{3}^{2} & \rightarrow y_{2}+y_{4} \geq 2 y_{3} \\
x_{3} \geq x_{4}^{2} & y_{3} \geq 2 y_{4}
\end{array}
$$

- Add $1 / 2$ times the last to the middle:

$$
x_{2} \geq x_{3}^{3 / 2} \leftarrow y_{2} \geq \frac{3}{2} y_{3}
$$

Do we need the change of variables $x \leftarrow M x$?

- In general, yes: such an operation may mess up even (Khachiyan).
- So, we may need such an operation $x \leftarrow M^{-1} x$ to unmess it.
- But, sometimes we don't.

When we do not even need a change of variables, part 1

Want to minimize $f(x)=$ univariate degree $2 n$ polynomial.
Rewrite as SDP, using sum-of-squares technique, look at dual (show the case $n=3$)

$$
y_{6}\left(\begin{array}{lll}
1 & & \\
& 0 & \\
& & 0 \\
& & \\
& & 0
\end{array}\right)+y_{4}\left(\begin{array}{lll}
0 & & 1 \\
& 1 & \\
1 & & 0 \\
& & \\
& & 0
\end{array}\right)+y_{2}\left(\begin{array}{ccc}
0 & & \\
& 0 & 1 \\
& & 1 \\
& & 0
\end{array}\right)+\cdots \succeq 0
$$

When we do not even need a change of variables, part 1

Want to minimize $f(x)=$ univariate degree $2 n$ polynomial.
Rewrite as SDP, using sum-of-squares technique, look at dual (show the case $n=3$)

Exactly in the form of (SDP'), without a change of variables.

When we do not even need a change of variables, part 1

Want to minimize $f(x)=$ univariate degree $2 n$ polynomial.
Rewrite as SDP, using sum-of-squares technique, look at dual (show the case $n=3$)
$y_{6}\left(\begin{array}{llll}1 & & \\ & 0 & & \\ & & 0 & \\ & & & 0\end{array}\right)+y_{4}\left(\begin{array}{lll}0 & & 1 \\ & 1 & \\ 1 & & 0 \\ & & \\ & & \end{array}\right)+y_{2}\left(\begin{array}{lll}0 & & \\ & 0 & \\ & & \\ & & 1 \\ & & \\ & & \end{array}\right)+\cdots \succeq 0$
Exactly in the form of (SDP'), without a change of variables.
Corollary: $y \in \mathbb{R}^{2 n}$ feasible \Rightarrow

$$
\begin{aligned}
& y_{2 n} \geq y_{2 n-2}^{1+1 /(n-1)}, y_{2 n-2} \geq y_{2 n-4}^{1+1 /(n-2)}, \ldots \\
& y_{2 n} \geq y_{2}^{n}
\end{aligned}
$$

When we do not even need a change of variables, part 2

O' Donnell, 2017 We want to certify that a polynomial

$$
p(x, y)=x_{1}+\cdots+x_{n}-2 y_{1} \geq 0
$$

for all $(x, y) \in K$, where K is a simple set.

When we do not even need a change of variables, part 2

O' Donnell, 2017 We want to certify that a polynomial

$$
p(x, y)=x_{1}+\cdots+x_{n}-2 y_{1} \geq 0
$$

for all $(x, y) \in K$, where K is a simple set.
Resulting SDP:

$$
\boldsymbol{u}_{1} \boldsymbol{E}_{11}+\sum_{i=2}^{n} \boldsymbol{u}_{i}\left(\boldsymbol{E}_{i i}-\boldsymbol{E}_{i-1, n+i-1}\right)+B \succeq 0 .
$$

Here $E_{i j}$ is the (i, j) unit matrix.
Exactly in the form of (SDP')! It yields essentially Khachiyan's example.

Certifying exponential size solutions in polynomial space, without computing them

Revisiting the reformulated problem:

(SDP')

Certifying exponential size solutions in polynomial space, without computing them

Revisiting the reformulated problem:

(SDP')
Suppose we have x_{k+1}, \ldots, x_{m} s.t. $\exists x_{1}, \ldots, x_{k}$ so this problem is strictly feasible.

Certifying exponential size solutions in polynomial space, without computing them

Revisiting the reformulated problem:

(SDP')
Suppose we have x_{k+1}, \ldots, x_{m} s.t. $\exists x_{1}, \ldots, x_{k}$ so this problem is strictly feasible.
Then we can prove that x_{1}, \ldots, x_{k} exist without having to compute them.

Verifying that x_{1}, \ldots, x_{k} exist, without computing them

Could compute them in reverse order, to make larger and larger lower right corners of $\sum_{i=1}^{m} x_{i} A_{i}^{\prime}+B^{\prime}$ positive definite. Start with $Z:=\sum_{i=k+1}^{m} x_{i} A_{i}^{\prime}+B^{\prime}$

Verifying that x_{1}, \ldots, x_{k} exist, without computing them

Could compute them in reverse order, to make larger and larger lower right corners of $\sum_{i=1}^{m} x_{i} A_{i}^{\prime}+B^{\prime}$ positive definite. Start with $Z:=\sum_{i=k+1}^{m} x_{i} A_{i}^{\prime}+B^{\prime}$.

$$
\left(\begin{array}{cccc}
\left(\begin{array}{cccc}
\times & \times & \times & \times \\
\times & \times & \times & \times \\
\times & \times & \times & \times \\
\times & \times & \times \underbrace{\mathcal{I}_{k+1}}_{\succ}+1 \\
+1
\end{array}\right. \\
& & \underbrace{\succ 0}
\end{array}\right.
$$

Verifying that x_{1}, \ldots, x_{k} exist, without computing them

Could compute them in reverse order, to make larger and larger lower right corners of $\sum_{i=1}^{m} x_{i} A_{i}^{\prime}+B^{\prime}$ positive definite. Start with $Z:=\sum_{i=k+1}^{m} x_{i} A_{i}^{\prime}+B^{\prime}$.

$$
\underbrace{\left(\begin{array}{cccc}
\times & \times & \times & \times \\
\times & \times & \times & \times \\
\times & \times & \times & \times \\
\times & \times & \times \underbrace{+}_{\succ 0}
\end{array}\right)}_{Z} \begin{gathered}
\mathcal{I}_{k+1} \\
x_{k} \gg 0 \\
+x_{k} A_{k}^{\prime} \\
>
\end{gathered}
$$

Verifying that x_{1}, \ldots, x_{k} exist, without computing them

Could compute them in reverse order, to make larger and larger lower right corners of $\sum_{i=1}^{m} x_{i} A_{i}^{\prime}+B^{\prime}$ positive definite. Start with $Z:=\sum_{i=k+1}^{m} x_{i} A_{i}^{\prime}+B^{\prime}$.

Verifying that x_{1}, \ldots, x_{k} exist, without computing them

Could compute them in reverse order, to make larger and larger lower right corners of $\sum_{i=1}^{m} x_{i} A_{i}^{\prime}+B^{\prime}$ positive definite. Start with $Z:=\sum_{i=k+1}^{m} x_{i} \boldsymbol{A}_{i}^{\prime}+\boldsymbol{B}^{\prime}$.

Verifying that x_{1}, \ldots, x_{k} exist, without computing them

Could compute them in reverse order, to make larger and larger lower right corners of $\sum_{i=1}^{m} x_{i} A_{i}^{\prime}+B^{\prime}$ positive definite. Start with $Z:=\sum_{i=k+1}^{m} x_{i} A_{i}^{\prime}+B^{\prime}$.

Verifying that x_{1}, \ldots, x_{k} exist, without computing them

Could compute them in reverse order, to make larger and larger lower right corners of $\sum_{i=1}^{m} x_{i} A_{i}^{\prime}+B^{\prime}$ positive definite. Start with $Z:=\sum_{i=k+1}^{m} x_{i} A_{i}^{\prime}+B^{\prime}$.

Verifying that x_{1}, \ldots, x_{k} exist, without computing them

Could compute them in reverse order, to make larger and larger lower right corners of $\sum_{i=1}^{m} x_{i} A_{i}^{\prime}+B^{\prime}$ positive definite. Start with $Z:=\sum_{i=k+1}^{m} x_{i} A_{i}^{\prime}+B^{\prime}$

Question: Are all SDPs with large solutions in this regularized form (maybe after a similarity transformation)?

Conclusion

- Exponential size solutions in SDP, going back to famous Khachiyan example.
- Khachiyan type hierarchy among leading variables in every strictly feasible SDP (after linear change of variables)
- Formulas to compute the exponents (like continued fractions)

Conclusion

- Exponential size solutions in SDP, going back to famous Khachiyan example.
- Khachiyan type hierarchy among leading variables in every strictly feasible SDP (after linear change of variables)
- Formulas to compute the exponents (like continued fractions)
- Partial answer to: how to represent exponential size solutions in polynomial space?
- Every known SDP with large solutions is in our normal form (SDP').
- Paper: https://arxiv.org/abs/2103.00041

Thank you!

