
How do Exponential Size Solutions Arise in
Semidefinite Programming?

Gábor Pataki

Department of Statistics and Operations Research

UNC Chapel Hill

Joint work with Alex Touzov

Fields Institute, May 11, 2021

Linear Programming (LP) feasibility

∃?x s.t.

Ax ≥ b (LP)

Here

•A ∈ Zm×n, b ∈ Zm

Linear Programming (LP) feasibility

∃?x s.t.

Ax ≥ b (LP)

Here

•A ∈ Zm×n, b ∈ Zm

• Poly size solutions: if (LP) feasible⇒ ∃ feasible rational x̄ in
which entries have numerator and denominator with size

≤ n logn logL

where L = largest entry in A, b.

Linear Programming (LP) feasibility

∃?x s.t.

Ax ≥ b (LP)

Here

•A ∈ Zm×n, b ∈ Zm

• Poly size solutions: if (LP) feasible⇒ ∃ feasible rational x̄ in
which entries have numerator and denominator with size

≤ n logn logL

where L = largest entry in A, b.

Use Kramer’s rule at an extreme point of (LP).

Linear Programming (LP) feasibility

∃?x s.t.

Ax ≥ b (LP)

Here

•A ∈ Zm×n, b ∈ Zm

• Poly size solutions: if (LP) feasible⇒ ∃ feasible rational x̄ in
which entries have numerator and denominator with size

≤ n logn logL

where L = largest entry in A, b.

Use Kramer’s rule at an extreme point of (LP).

•→ To solve (LP) in poly time, we find a solution x̄.

Semidefinite Programing (SDP) feasibility

∃?x s.t. ∑m
i=1 xiAi +B � 0 (SDP)

Here

•Ai, B are symmetric matrices,

• S � 0 means thatS is symmetric positive semidefinite (psd).

• Far reaching generalization of LP.

In SDPs exponential size solutions are unavoidable

•Khachiyan example

x1 ≥ x2
2, x2 ≥ x2

3, . . . , xm−1 ≥ x2
m, xm ≥ 2. (Khachiyan)

In SDPs exponential size solutions are unavoidable

•Khachiyan example

x1 ≥ x2
2, x2 ≥ x2

3, . . . , xm−1 ≥ x2
m, xm ≥ 2. (Khachiyan)

• x feasible⇒ x1 ≥ 22m−1
.

In SDPs exponential size solutions are unavoidable

•Khachiyan example

x1 ≥ x2
2, x2 ≥ x2

3, . . . , xm−1 ≥ x2
m, xm ≥ 2. (Khachiyan)

• x feasible⇒ x1 ≥ 22m−1
.

• Size of x ≥ log 22m−1
= 2m−1.

In SDPs exponential size solutions are unavoidable

•Khachiyan example

x1 ≥ x2
2, x2 ≥ x2

3, . . . , xm−1 ≥ x2
m, xm ≥ 2. (Khachiyan)

• x feasible⇒ x1 ≥ 22m−1
.

• Size of x ≥ log 22m−1
= 2m−1.

•Can be written as SDP:

xi ≥ x2
i+1 ⇔

 xi xi+1

xi+1 1

 � 0∀i.

Khachiyan picture

x1 ≥ x2
2, x2 ≥ x2

3, 2 ≥ x3 ≥ 0 (1)

Is (SDP) feasibility in P?

•Major open problem

•Open even for quadratic constraints

Is (SDP) feasibility in P?

•Major open problem

•Open even for quadratic constraints

• Exponential size solutions are a major obstacle

•How to prove in polynomial time that a possibly exponential
size solution exists?

Question 1

•Can we represent such large solutions in polynomial space?

Question 1

•Can we represent such large solutions in polynomial space?

• (Khachiyan) gives hope: no need to write out 22m−1
to con-

vince ourselves that x1 = 22m−1
is feasible.

Question 1

•Can we represent such large solutions in polynomial space?

• (Khachiyan) gives hope: no need to write out 22m−1
to con-

vince ourselves that x1 = 22m−1
is feasible.

• The system itself is a certificate.

Question 2
Are large solutions common in SDPs?

Seemingly no, since:

Question 2
Are large solutions common in SDPs?

Seemingly no, since:

• they do not come up in LPs, or “typical” SDPs.

Question 2
Are large solutions common in SDPs?

Seemingly no, since:

• they do not come up in LPs, or “typical” SDPs.

•we may eliminate them even in (Khachiyan) by a very slight
change, as:

Question 2
Are large solutions common in SDPs?

Seemingly no, since:

• they do not come up in LPs, or “typical” SDPs.

•we may eliminate them even in (Khachiyan) by a very slight
change, as:

(1) replace
xm ≥ 2 → xm ≥ 2 + xm+1

where xm+1 is a new variable

→ x1 does not have to be large anymore.

Question 2
Are large solutions common in SDPs?

Seemingly no, since:

• they do not come up in LPs, or “typical” SDPs.

•we may eliminate them even in (Khachiyan) by a very slight
change, as:

(1) replace
xm ≥ 2 → xm ≥ 2 + xm+1

where xm+1 is a new variable

→ x1 does not have to be large anymore.

(2) by linear change of variables:

x← Gx

where G is random dense matrix.

→ (Khachiyan) becomes a big mess.

Question 2
Are large solutions common in SDPs?

Seemingly no, since:

• they do not come up in LPs, or “typical” SDPs.

•we may eliminate them even in (Khachiyan) by a very slight
change, as:

(1) replace
xm ≥ 2 → xm ≥ 2 + xm+1

where xm+1 is a new variable

→ x1 does not have to be large anymore.

(2) by linear change of variables:

x← Gx

where G is random dense matrix.

→ (Khachiyan) becomes a big mess.

→ Apparent common consent: large variables in SDPs are
rare.

However: Main result (informal)

•We can “untangle” any strictly feasible SDP and make it
into a Khachiyan type SDP.

Background

• k := singularity degree of {Y � 0 : Ai • Y = 0 ∀i }.

Background

• k := singularity degree of {Y � 0 : Ai • Y = 0 ∀i }.
•minimum number of facial reduction steps to certify maxi-

mum rank psd matrix

Background

• k := singularity degree of {Y � 0 : Ai • Y = 0 ∀i }.
•minimum number of facial reduction steps to certify maxi-

mum rank psd matrix

• k ≤ 1 when (SDP) is an LP.

Background

• k := singularity degree of {Y � 0 : Ai • Y = 0 ∀i }.
•minimum number of facial reduction steps to certify maxi-

mum rank psd matrix

• k ≤ 1 when (SDP) is an LP.

•We assume that (SDP) is strictly feasible, i.e., ∃x s.t.∑m
i=1 xiAi +B � 0.

Theorem 1 (Informal)

After a linear change of variables x←Mx, if x strictly fea-
sible and xk is large, then

x1 ≥ d2x
α2
2 , x2 ≥ d3x

α3
3 , . . . , xk−1 ≥ dkxαkk

Theorem 1 (Informal)

After a linear change of variables x←Mx, if x strictly fea-
sible and xk is large, then

x1 ≥ d2x
α2
2 , x2 ≥ d3x

α3
3 , . . . , xk−1 ≥ dkxαkk

where

2 ≥ α2 ≥
k

k − 1
, 2 ≥ α3 ≥

k − 1

k − 2
, . . . , 2 ≥ αk ≥ 2.

Theorem 1 (Informal)

After a linear change of variables x←Mx, if x strictly fea-
sible and xk is large, then

x1 ≥ d2x
α2
2 , x2 ≥ d3x

α3
3 , . . . , xk−1 ≥ dkxαkk

where

2 ≥ α2 ≥
k

k − 1
, 2 ≥ α3 ≥

k − 1

k − 2
, . . . , 2 ≥ αk ≥ 2.

The dj and αj are constants that depend on the
Ai, on B and xk+1, . . . , xm that we consider fixed.

Khachiyan type hierarchy in all strictly feasible SDPs.

Theorem 1 (Informal)

After a linear change of variables x←Mx, if x strictly fea-
sible and xk is large, then

x1 ≥ d2x
α2
2 , x2 ≥ d3x

α3
3 , . . . , xk−1 ≥ dkxαkk

where

2 ≥ α2 ≥
k

k − 1
, 2 ≥ α3 ≥

k − 1

k − 2
, . . . , 2 ≥ αk ≥ 2.

The dj and αj are constants that depend on the
Ai, on B and xk+1, . . . , xm that we consider fixed.

Khachiyan type hierarchy in all strictly feasible SDPs.

Assumptions are minimal.

Corollary

• In worst case (all αj = 2)

x1 ≥ constant · x2k−1

k .

Corollary

• In worst case (all αj = 2)

x1 ≥ constant · x2k−1

k .

• In best case (all αj = lower bound)

x1 ≥ constant · xkk.

Worst case example: Khachiyan SDP



x1 x2

x2 x3

x3 x4

x4

x2 x3 x4 1


� 0

Worst case example: Khachiyan SDP



x1 x2

x2 x3

x3 x4

x4

x2 x3 x4 1


� 0

• Subdeterminant with three red corners⇒ x1 ≥ x2
2

• Subdeterminant with three blue corners ⇒ x2 ≥ x2
3

• Subdeterminant with three green corners ⇒ x3 ≥ x2
4

Worst case example: Khachiyan SDP



x1 x2

x2 x3

x3 x4

x4

x2 x3 x4 1


� 0

• Subdeterminant with three red corners⇒ x1 ≥ x2
2

• Subdeterminant with three blue corners ⇒ x2 ≥ x2
3

• Subdeterminant with three green corners ⇒ x3 ≥ x2
4

Exponents are maximal.

Best case example: “Mild” SDP



x1 x2

x2 x3

x2 x3 x4

x3 x4

x4 1


� 0

Best case example: “Mild” SDP



x1 x2

x2 x3

x2 x3 x4

x3 x4

x4 1


� 0

• Subdeterminant with three red corners⇒ x1x3 ≥ x2
2

• Subdeterminant with three blue corners ⇒ x2x4 ≥ x2
3

• Subdeterminant with three green corners ⇒ x3 ≥ x2
4

Best case example: “Mild” SDP



x1 x2

x2 x3

x2 x3 x4

x3 x4

x4 1


� 0

• Subdeterminant with three red corners⇒ x1x3 ≥ x2
2

• Subdeterminant with three blue corners ⇒ x2x4 ≥ x2
3

• Subdeterminant with three green corners ⇒ x3 ≥ x2
4

From these we derive:

x1 ≥ x
4/3
2 , x2 ≥ x

3/2
3 , x3 ≥ x2

4

Exponents are minimal.

Khachiyan vs Mild

• Three variables, 2 ≥ x3 ≥ 0 (normalization)

Proof idea

(1) (SDP) −→ reformulate (change variables) to get (SDP’)

Proof idea

(1) (SDP) −→ reformulate (change variables) to get (SDP’)

(2) (SDP’) −→ messy quadratic inequalities such as

(x1 + 2x2 + 5x3)(x4 + x5) > (x2 − 3x6)
2

Proof idea

(1) (SDP) −→ reformulate (change variables) to get (SDP’)

(2) (SDP’) −→ messy quadratic inequalities such as

(x1 + 2x2 + 5x3)(x4 + x5) > (x2 − 3x6)
2

(3) messy quadratic inequalities−→ cleaned up inequalities such as

x1x4 > constant · x2
2 if xk large

Proof idea

(1) (SDP) −→ reformulate (change variables) to get (SDP’)

(2) (SDP’) −→ messy quadratic inequalities such as

(x1 + 2x2 + 5x3)(x4 + x5) > (x2 − 3x6)
2

(3) messy quadratic inequalities−→ cleaned up inequalities such as

x1x4 > constant · x2
2 if xk large

+ eliminate variables to get

xj ≥ constant ·xαj+1

j+1 ∀j

+ recursion to compute the αj+1.

Reformulating (SDP) into (SDP’)

The reformulated SDP looks like

x1

(r1︷︸︸︷ n−r1︷︸︸︷
I 0
0 0

)
+
∑k

i=2 xi


r1+...+ri−1︷ ︸︸ ︷ ri︷︸︸︷ n−r1−...−ri︷ ︸︸ ︷
× × ×
× I 0
× 0 0


+
∑m

i=k+1 xiA
′
i +B′ � 0

(SDP’)
with r1, . . . , rk > 0.

Reformulating (SDP) into (SDP’)

The reformulated SDP looks like

x1

(r1︷︸︸︷ n−r1︷︸︸︷
I 0
0 0

)
+
∑k

i=2 xi


r1+...+ri−1︷ ︸︸ ︷ ri︷︸︸︷ n−r1−...−ri︷ ︸︸ ︷
× × ×
× I 0
× 0 0


+
∑m

i=k+1 xiA
′
i +B′ � 0

(SDP’)
with r1, . . . , rk > 0.

To get this reformulation, we also used similarity transformations
T>()T.

(SDP’) → messy quadratic inequalities

· · ·+ x2



× × × × × ×

× 1

×

×

×

×


+ x3



× × × × × ×

× 2 × 4 × ×

× × 1

× 4

× ×

× ×


+ x4



× × × × × ×

× 5 × 7 × ×

× × × × × ×

× 7 × 1

× ×

× ×


+ · · · � 0

(SDP’) → messy quadratic inequalities

· · ·+ x2



× × × × × ×

× 1

×

×

×

×


+ x3



× × × × × ×

× 2 × 4 × ×

× × 1

× 4

× ×

× ×


+ x4



× × × × × ×

× 5 × 7 × ×

× × × × × ×

× 7 × 1

× ×

× ×


+ · · · � 0

• 2× 2 subdeterminant→

(x2 + 2x3 + 5x4 + . . .)(x4 + . . .) > (4x3 + 7x4 + . . .)2

(SDP’) → messy quadratic inequalities

· · ·+ x2



× × × × × ×

× 1

×

×

×

×


+ x3



× × × × × ×

× 2 × 4 × ×

× × 1

× 4

× ×

× ×


+ x4



× × × × × ×

× 5 × 7 × ×

× × × × × ×

× 7 × 1

× ×

× ×


+ · · · � 0

• 2× 2 subdeterminant→

(x2 + 2x3 + 5x4 + . . .)(x4 + . . .) > (4x3 + 7x4 + . . .)2

• The . . . mean a combination of higher numbered variables.

(SDP’) → messy quadratic inequalities

· · ·+ x2



× × × × × ×

× 1

×

×

×

×


+ x3



× × × × × ×

× 2 × 4 × ×

× × 1

× 4

× ×

× ×


+ x4



× × × × × ×

× 5 × 7 × ×

× × × × × ×

× 7 × 1

× ×

× ×


+ · · · � 0

• 2× 2 subdeterminant→

(x2 + 2x3 + 5x4 + . . .)(x4 + . . .) > (4x3 + 7x4 + . . .)2

• The . . . mean a combination of higher numbered variables.

•Cleaned up version (suppress higher numbered terms):

x2x4 > const · x2
3, if xk is large

How to compute the αj+1 in xj ≥ const · xαj+1

j+1 ?

αj+1 =


2−

1

αj+2 . . . αtj+1

if tj+1 ≤ k

2 if tj+1 = k + 1

for j = 1, . . . , k − 1.

How to compute the αj+1 in xj ≥ const · xαj+1

j+1 ?

αj+1 =


2−

1

αj+2 . . . αtj+1

if tj+1 ≤ k

2 if tj+1 = k + 1

for j = 1, . . . , k − 1.

Similar to continued fractions.

How to compute the αj+1 in xj ≥ const · xαj+1

j+1 ?

αj+1 =


2−

1

αj+2 . . . αtj+1

if tj+1 ≤ k

2 if tj+1 = k + 1

for j = 1, . . . , k − 1.

Similar to continued fractions.

Here

tj+1 = index of a rightmost block withxj+1

Shift xj+1 to right ⇒ tj+1 increases.

How to compute the αj+1 in xj ≥ const · xαj+1

j+1 ?

αj+1 =


2−

1

αj+2 . . . αtj+1

if tj+1 ≤ k

2 if tj+1 = k + 1

for j = 1, . . . , k − 1.

Similar to continued fractions.

Here

tj+1 = index of a rightmost block withxj+1

Shift xj+1 to right ⇒ tj+1 increases.

⇒ αj+1 increases.

Example



x1 x2

x2 x3

x2 x3 x4

x3 x4

x4 1


︸ ︷︷ ︸
α =(4/3, 3/2, 2)

Example



x1 x2

x2 x3

x2 x3 x4

x3 x4

x4 1


︸ ︷︷ ︸
α =(4/3, 3/2, 2)

→



x1 x2

x2 x3

x3 x4

x2 x3 x4

x4 1


︸ ︷︷ ︸
α =(5/3, 3/2, 2)

Example



x1 x2

x2 x3

x2 x3 x4

x3 x4

x4 1


︸ ︷︷ ︸
α =(4/3, 3/2, 2)

→



x1 x2

x2 x3

x3 x4

x2 x3 x4

x4 1


︸ ︷︷ ︸
α =(5/3, 3/2, 2)

→



x1 x2

x2 x3

x3 x4

x3 x4

x2 x4 1


︸ ︷︷ ︸
α =(2, 3/2, 2)

Example



x1 x2

x2 x3

x2 x3 x4

x3 x4

x4 1


︸ ︷︷ ︸
α =(4/3, 3/2, 2)

→



x1 x2

x2 x3

x3 x4

x2 x3 x4

x4 1


︸ ︷︷ ︸
α =(5/3, 3/2, 2)

→



x1 x2

x2 x3

x3 x4

x3 x4

x2 x4 1


︸ ︷︷ ︸
α =(2, 3/2, 2)

In other words

x1 ≥ x4/3
2 → x1 ≥ x5/3

2 → x1 ≥ x2
2

Connection to Fourier-Motzkin elimination

•We are eliminating variables to get to xj ≥ constx
αj+1

j+1 .

• This process can be viewed as Fourier-Motzkin elimination
via yi := log xi.

Connection to Fourier-Motzkin elimination

•We are eliminating variables to get to xj ≥ constx
αj+1

j+1 .

• This process can be viewed as Fourier-Motzkin elimination
via yi := log xi.

• Example

x1x3 ≥ x2
2

x2x4 ≥ x2
3

x3 ≥ x2
4

Connection to Fourier-Motzkin elimination

•We are eliminating variables to get to xj ≥ x
αj+1

j+1 .

• This process can be viewed as Fourier-Motzkin elimination
via yi := log xi.

• Example

x1x3 ≥ x2
2

x2x4 ≥ x2
3

x3 ≥ x2
4

→
y1 + y3 ≥ 2y2

y2 + y4 ≥ 2y3

y3 ≥ 2y4

Connection to Fourier-Motzkin elimination

•We are eliminating variables to get to xj ≥ x
αj+1

j+1 .

• This process can be viewed as Fourier-Motzkin elimination
via yi := log xi.

• Example

x1x3 ≥ x2
2

x2x4 ≥ x2
3

x3 ≥ x2
4

→
y1 + y3 ≥ 2y2

y2 + y4 ≥ 2y3

y3 ≥ 2y4

•Add 1/2 times the last to the middle:

y2 ≥ 3
2
y3

Connection to Fourier-Motzkin elimination

•We are eliminating variables to get to xj ≥ x
αj+1

j+1 .

• This process can be viewed as Fourier-Motzkin elimination
via yi := log xi.

• Example

x1x3 ≥ x2
2

x2x4 ≥ x2
3

x3 ≥ x2
4

→
y1 + y3 ≥ 2y2

y2 + y4 ≥ 2y3

y3 ≥ 2y4

•Add 1/2 times the last to the middle:

x2 ≥ x
3/2
3 ← y2 ≥ 3

2
y3

Do we need the change of variables x←Mx?

• In general, yes: such an operation may mess up even (Khachiyan).

• So, we may need such an operation x←M−1x to unmess
it.

• But, sometimes we don’t.

When we do not even need a change of variables,
part 1

Want to minimize f(x) = univariate degree 2n polynomial.

Rewrite as SDP, using sum-of-squares technique, look at dual
(show the case n = 3)

y6


1

0

0

0

+ y4


0 1

1

1 0

0

+ y2


0

0 1

1

1 0

+ · · · � 0

When we do not even need a change of variables,
part 1

Want to minimize f(x) = univariate degree 2n polynomial.

Rewrite as SDP, using sum-of-squares technique, look at dual
(show the case n = 3)

y6


1

0

0

0

+ y4


0 1

1

1 0

0

+ y2


0

0 1

1

1 0

+ · · · � 0

Exactly in the form of (SDP’), without a change of variables.

When we do not even need a change of variables,
part 1

Want to minimize f(x) = univariate degree 2n polynomial.

Rewrite as SDP, using sum-of-squares technique, look at dual
(show the case n = 3)

y6


1

0

0

0

+ y4


0 1

1

1 0

0

+ y2


0

0 1

1

1 0

+ · · · � 0

Exactly in the form of (SDP’), without a change of variables.

Corollary: y ∈ R2n feasible⇒

y2n ≥ y
1+1/(n−1)
2n−2 , y2n−2 ≥ y1+1/(n−2)

2n−4 , . . .

y2n ≥ yn2 .

When we do not even need a change of variables,
part 2

O’ Donnell, 2017 We want to certify that a polynomial

p(x, y) = x1 + · · ·+ xn − 2y1 ≥ 0

for all (x, y) ∈ K, where K is a simple set.

When we do not even need a change of variables,
part 2

O’ Donnell, 2017 We want to certify that a polynomial

p(x, y) = x1 + · · ·+ xn − 2y1 ≥ 0

for all (x, y) ∈ K, where K is a simple set.

Resulting SDP:

u1E11 +
∑n

i=2 ui
(
Eii − Ei−1,n+i−1

)
+B � 0.

Here Eij is the (i, j) unit matrix.

Exactly in the form of (SDP’) ! It yields essentially Khachiyan’s
example.

Certifying exponential size solutions in polynomial
space, without computing them

Revisiting the reformulated problem:

x1

(r1︷︸︸︷ n−r1︷︸︸︷
I 0
0 0

)
+
∑k

i=2 xi


r1+...+ri−1︷ ︸︸ ︷ ri︷︸︸︷ n−r1−...−ri︷ ︸︸ ︷
× × ×
× I 0
× 0 0


+
∑m

i=k+1 xiA
′
i +B′ � 0

(SDP’)

Certifying exponential size solutions in polynomial
space, without computing them

Revisiting the reformulated problem:

x1

(r1︷︸︸︷ n−r1︷︸︸︷
I 0
0 0

)
+
∑k

i=2 xi


r1+...+ri−1︷ ︸︸ ︷ ri︷︸︸︷ n−r1−...−ri︷ ︸︸ ︷
× × ×
× I 0
× 0 0


+
∑m

i=k+1 xiA
′
i +B′ � 0

(SDP’)
Suppose we have xk+1, . . . , xm s.t. ∃ x1, . . . , xk so this prob-

lem is strictly feasible.

Certifying exponential size solutions in polynomial
space, without computing them

Revisiting the reformulated problem:

x1

(r1︷︸︸︷ n−r1︷︸︸︷
I 0
0 0

)
+
∑k

i=2 xi


r1+...+ri−1︷ ︸︸ ︷ ri︷︸︸︷ n−r1−...−ri︷ ︸︸ ︷
× × ×
× I 0
× 0 0


+
∑m

i=k+1 xiA
′
i +B′ � 0

(SDP’)
Suppose we have xk+1, . . . , xm s.t. ∃ x1, . . . , xk so this prob-

lem is strictly feasible.

Then we can prove that x1, . . . , xk exist without having
to compute them.

Verifying that x1, . . . , xk exist, without computing
them

Could compute them in reverse order, to make larger and
larger lower right corners of

∑m
i=1 xiA

′
i +B′ positive definite.

Start with Z :=
∑m

i=k+1 xiA
′
i +B′

Verifying that x1, . . . , xk exist, without computing
them

Could compute them in reverse order, to make larger and
larger lower right corners of

∑m
i=1 xiA

′
i +B′ positive definite.

Start with Z :=
∑m

i=k+1 xiA
′
i +B′.

× × × ×
× × × ×
× × × ×
× × × +




Ik+1

� 0

Z

Verifying that x1, . . . , xk exist, without computing
them

Could compute them in reverse order, to make larger and
larger lower right corners of

∑m
i=1 xiA

′
i +B′ positive definite.

Start with Z :=
∑m

i=k+1 xiA
′
i +B′.

× × × ×
× × × ×
× × × ×
× × × +




Ik+1

� 0

Z

7−→
+xkA

′
k

xk � 0

Verifying that x1, . . . , xk exist, without computing
them

Could compute them in reverse order, to make larger and
larger lower right corners of

∑m
i=1 xiA

′
i +B′ positive definite.

Start with Z :=
∑m

i=k+1 xiA
′
i +B′.

× × × ×
× × × ×
× × × ×
× × × +




× × × ×
× × × ×
× × + ×
× × × +




Ik+1

� 0

Z

7−→
+xkA

′
k

xk � 0

Ik

� 0

xkA
′
k + Z

Verifying that x1, . . . , xk exist, without computing
them

Could compute them in reverse order, to make larger and
larger lower right corners of

∑m
i=1 xiA

′
i +B′ positive definite.

Start with Z :=
∑m

i=k+1 xiA
′
i +B′.

× × × ×
× × × ×
× × × ×
× × × +




× × × ×
× × × ×
× × + ×
× × × +




Ik+1

� 0

Z

7−→
+xkA

′
k

xk � 0

Ik

� 0

xkA
′
k + Z

7−→
+xk−1A

′
k−1

xk−1 � 0

Verifying that x1, . . . , xk exist, without computing
them

Could compute them in reverse order, to make larger and
larger lower right corners of

∑m
i=1 xiA

′
i +B′ positive definite.

Start with Z :=
∑m

i=k+1 xiA
′
i +B′.

× × × ×
× × × ×
× × × ×
× × × +




× × × ×
× × × ×
× × + ×
× × × +




× × × ×
× + × ×
× × + ×
× × × +




Ik+1

� 0

Z

7−→
+xkA

′
k

xk � 0

Ik

� 0

xkA
′
k + Z

7−→
+xk−1A

′
k−1

xk−1 � 0

Ik−1

� 0

xk−1A
′
k−1 + xkA

′
k + Z

Verifying that x1, . . . , xk exist, without computing
them

Could compute them in reverse order, to make larger and
larger lower right corners of

∑m
i=1 xiA

′
i +B′ positive definite.

Start with Z :=
∑m

i=k+1 xiA
′
i +B′.

× × × ×
× × × ×
× × × ×
× × × +




× × × ×
× × × ×
× × + ×
× × × +




× × × ×
× + × ×
× × + ×
× × × +




Ik+1

� 0

Z

7−→
+xkA

′
k

xk � 0

Ik

� 0

xkA
′
k + Z

7−→
+xk−1A

′
k−1

xk−1 � 0

Ik−1

� 0

xk−1A
′
k−1 + xkA

′
k + Z

7−→
+xk−2A

′
k−2

xk−2 � 0

. . .

Verifying that x1, . . . , xk exist, without computing
them

Could compute them in reverse order, to make larger and
larger lower right corners of

∑m
i=1 xiA

′
i +B′ positive definite.

Start with Z :=
∑m

i=k+1 xiA
′
i +B′

× × × ×
× × × ×
× × × ×
× × × +




× × × ×
× × × ×
× × + ×
× × × +




× × × ×
× + × ×
× × + ×
× × × +




Ik+1

� 0

Z

7−→
+xkA

′
k

xk � 0

Ik

� 0

xkA
′
k + Z

7−→
+xk−1A

′
k−1

xk−1 � 0

Ik−1

� 0

xk−1A
′
k−1 + xkA

′
k + Z

7−→
+xk−2A

′
k−2

xk−2 � 0

. . .

Question: Are all SDPs with large solutions in this regular-
ized form (maybe after a similarity transformation)?

Conclusion

• Exponential size solutions in SDP, going back to famous
Khachiyan example.

•Khachiyan type hierarchy among leading variables in every
strictly feasible SDP (after linear change of variables)

• Formulas to compute the exponents (like continued frac-
tions)

Conclusion

• Exponential size solutions in SDP, going back to famous
Khachiyan example.

•Khachiyan type hierarchy among leading variables in every
strictly feasible SDP (after linear change of variables)

• Formulas to compute the exponents (like continued frac-
tions)

• Partial answer to: how to represent exponential size solu-
tions in polynomial space?

• Every known SDP with large solutions is in our normal form
(SDP’).

• Paper: https://arxiv.org/abs/2103.00041

https://arxiv.org/abs/2103.00041

Thank you!

