How do Exponential Size Solutions Arise in Semidefinite Programming?

Gábor Pataki
Department of Statistics and Operations Research
UNC Chapel Hill

Joint work with Alex Touzov
Talk at Joint Mathematics Meeting 2021
Linear Programming (LP) feasibility

\[\exists \ x \ s.t. \quad Ax \geq b \quad (LP) \]

Here

- \(A \in \mathbb{Z}^{m\times n}, \ b \in \mathbb{Z}^m. \)
- \((LP)\) feasible \(\Rightarrow \exists \) feasible rational \(\bar{x} \) with size (\# of bits needed to describe it) is
 \[\leq 2n^2(\log n)(\log L) \]
 where \(L = \) largest entry in \(A, b. \)
Linear Programming (LP) feasibility

\exists \ ? \ x \ \text{s.t.} \quad Ax \geq b \quad (LP)

Here

- \(A \in \mathbb{Z}^{m \times n}, \ b \in \mathbb{Z}^m. \)
- \((LP)\) feasible \(\Rightarrow\) \(\exists\) feasible rational \(\bar{x}\) with size (\# of bits needed to describe it) is \(\leq 2n^2 (\log n)(\log L)\)
 where \(L = \) largest entry in \(A, b.\)
- \(\rightarrow\) To solve LP feasibility in poly time, we find a solution \(\bar{x}\.\)
Semidefinite Programming (SDP) feasibility

\[\exists \exists x \text{ s.t. } \sum_{i=1}^{m} x_i A_i + B \succeq 0 \] \hspace{1cm} (SDP)

Here

- \(A_i, B \) are symmetric matrices,
- \(S \succeq 0 \) means that \(S \) is symmetric positive semidefinite (psd).
- Far reaching generalization of LP.
In SDPs exponential size solutions are unavoidable

- **Khachiyan example**

 \[x_1 \geq x_2^2, \ x_2 \geq x_3^2, \ldots, x_{m-1} \geq x_m^2, \ x_m \geq 2. \]

 (Khachiyan)

- **x feasible \(\Rightarrow\) \(x_1 \geq 2^{2m-1}. \)**
In SDPs exponential size solutions are unavoidable

- Khachiyan example
 \[x_1 \geq x_2^2, \ x_2 \geq x_3^2, \ldots, x_{m-1} \geq x_m^2, \ x_m \geq 2. \] (Khachiyan)

- \(x \) feasible \(\Rightarrow \) \(x_1 \geq 2^{2^{m-1}} \).

- Size of \(x \geq \log 2^{2^{m-1}} = 2^{m-1} \).

- Can be written as SDP:
 \[x_i \geq x_{i+1}^2 \Leftrightarrow \begin{pmatrix} x_i & x_{i+1} \\ x_{i+1} & 1 \end{pmatrix} \succeq 0 \forall i. \]
$$x_1 \geq x_2^2, \ x_2 \geq x_3^2, \ 2 \geq x_3 \geq 0$$ (1)
Is \textbf{(SDP)} feasibility in \textit{P}?

- Major open problem
- Open even for QCQPs
Is (SDP) feasibility in P?

- Major open problem
- Open even for QCQPs
- Exponential size solutions are a major obstacle
- How to prove in polynomial time that a possibly exponential size solution exists?
Question 1

• Can we represent such large solutions in polynomial space?
• (Khachiyan) gives hope: no need to write out 2^{2m-1} to convince ourselves that $x_1 = 2^{2m-1}$ is feasible.
Question 2
Are large solutions common in SDPs?

Seemingly no, since:
Question 2
Are large solutions common in SDPs?

Seemingly *no*, since:

- they do not come up in LPs, or “typical” SDPs.
Question 2
Are large solutions common in SDPs?

Seemingly *no*, since:

- they do not come up in LPs, or “typical” SDPs.
- we may eliminate them even in *(Khachiyan)* by a very slight change, as:
Question 2
Are large solutions common in SDPs?

Seemingly *no*, since:

• they do not come up in LPs, or “typical” SDPs.
• we may eliminate them even in \((\text{Khachiyan})\) by a very slight change, as:

(1) replace

\[x_m \geq 2 \rightarrow x_m \geq 2 + x_{m+1} \]

where \(x_{m+1}\) is a new variable

\[\rightarrow x_1 \text{ does not have to be large anymore.} \]
Question 2
Are large solutions common in SDPs?

Seemingly no, since:

• they do not come up in LPs, or “typical” SDPs.
• we may eliminate them even in (Khachiyan) by a very slight change, as:

 (1) replace
 \[x_m \geq 2 \rightarrow x_m \geq 2 + x_{m+1} \]
 where \(x_{m+1} \) is a new variable
 \(\rightarrow x_1 \) does not have to be large anymore.

 (2) by linear change of variables:
 \[x \leftarrow Gx \]
 where \(G \) is random dense matrix.
 \(\rightarrow \) (Khachiyan) becomes a big mess.
Question 2
Are large solutions common in SDPs?

Seemingly no, since:

- they do not come up in LPs, or “typical” SDPs.
- we may eliminate them even in (Khachiyan) by a very slight change, as:
 (1) replace
 \[x_m \geq 2 \rightarrow x_m \geq 2 + x_{m+1} \]
 where \(x_{m+1} \) is a new variable
 \(\rightarrow \) \(x_1 \) does not have to be large anymore.
(2) by linear change of variables:
 \[x \leftarrow Gx \]
 where \(G \) is random dense matrix.
 \(\rightarrow \) (Khachiyan) becomes a big mess.
 \(\rightarrow \) Apparent common consent: large variables in SDPs are rare.
However: Main result (informal)

• We can “untangle” any strictly feasible SDP and make it into a Khachiyan type SDP.
Background

- $k :=$ singularity degree of $\{ Y \succeq 0 : A_i \bullet Y = 0 \forall i \}$.
- minimum number of facial reduction steps to certify maximum rank psd matrix
- $k \leq 1$ when (SDP) is an LP.
Background

- \(k := \) singularity degree of \(\{ Y \succeq 0 : A_i \bullet Y = 0 \forall i \} \).

- minimum number of facial reduction steps to certify maximum rank psd matrix

- \(k \leq 1 \) when (SDP) is an LP.

- We assume that (SDP) is strictly feasible, i.e., \(\exists x \) s.t.

\[\sum_{i=1}^{m} x_i A_i + B \succ 0. \]
Theorem 1 (Informal)

After a linear change of variables $x \leftarrow Mx$, if x strictly feasible and x_k is large, then

$$x_1 \geq d_2 x_2^{\alpha_2}, \ x_2 \geq d_3 x_3^{\alpha_3}, \ldots, \ x_{k-1} \geq d_k x_k^{\alpha_k}$$

where

$$2 \geq \alpha_2 \geq \frac{k}{k-1}, \ 2 \geq \alpha_3 \geq \frac{k-1}{k-2}, \ldots, \ 2 \geq \alpha_k \geq 2.$$
Theorem 1 (Informal)

After a linear change of variables $x \leftarrow Mx$, if x strictly feasible and x_k is large, then

$$x_1 \geq d_2 x_2^{\alpha_2}, \quad x_2 \geq d_3 x_3^{\alpha_3}, \ldots, \quad x_{k-1} \geq d_k x_k^{\alpha_k}$$

where

$$2 \geq \alpha_2 \geq \frac{k}{k-1}, \quad 2 \geq \alpha_3 \geq \frac{k-1}{k-2}, \ldots, \quad 2 \geq \alpha_k \geq 2.$$

The d_j and α_j are constants that depend on the A_i, on B and x_{k+1}, \ldots, x_m that we consider fixed.

Khachiyan type hierarchy in all strictly feasible SDPs.

Assumptions are minimal.
Corollary

• In worst case (all $\alpha_j = 2$)

 \[x_1 \geq \text{constant} \cdot x_k^{2^{k-1}}. \]

• In best case (all $\alpha_j = \text{lower bound}$)

 \[x_1 \geq \text{constant} \cdot x_k^k. \]
Worst case example: Khachiyan SDP

\[
\begin{pmatrix}
 x_1 & x_2 \\
 x_2 & x_3 \\
 x_3 & x_4 \\
 x_4 & 1
\end{pmatrix} \succeq 0
\]

- Subdeterminant with three red corners \(\Rightarrow x_1 \geq x_2^2 \)
- Subdeterminant with three blue corners \(\Rightarrow x_2 \geq x_3^2 \)
- Subdeterminant with three green corners \(\Rightarrow x_3 \geq x_4^2 \)

Exponents are maximal.
Best case example: “Mild” SDP

\[
\begin{pmatrix}
 x_1 & x_2 \\
 x_2 & x_3 \\
 x_2 & x_3 & x_4 \\
 x_3 & x_4 \\
 x_4 & 1
\end{pmatrix} \succeq 0
\]

• Subdeterminant with three red corners \(\Rightarrow x_1 x_3 \geq x_2^2 \)
• Subdeterminant with three blue corners \(\Rightarrow x_2 x_4 \geq x_3^2 \)
• Subdeterminant with three green corners \(\Rightarrow x_3 \geq x_4^2 \)
Best case example: “Mild” SDP

\[
\begin{pmatrix}
 x_1 & x_2 \\
 x_2 & x_3 \\
 x_2 & x_3 & x_4 \\
 x_3 & x_4 \\
 x_4 & 1
\end{pmatrix} \succeq 0
\]

• Subdeterminant with three red corners $\Rightarrow x_1 x_3 \geq x_2^2$
• Subdeterminant with three blue corners $\Rightarrow x_2 x_4 \geq x_3^2$
• Subdeterminant with three green corners $\Rightarrow x_3 \geq x_4^2$

From these we derive:

\[
x_1 \geq x_2^{4/3}, \ x_2 \geq x_3^{3/2}, \ x_3 \geq x_4^2
\]

Exponents are minimal.
Khachiyon vs Mild

- Three variables, $2 \geq x_3 \geq 0$ (normalization)
Proof idea

(SDP) \rightarrow reformulate (change variables)
Proof idea

(SDP) \rightarrow reformulate (change variables)

\rightarrow messy quadratic inequalities such as

$$(x_1 + 2x_2 + 5x_3)(x_4 + x_5) \geq (x_2 - 3x_6)^2$$
Proof idea

\[(\text{SDP}) \quad \rightarrow \quad \text{reformulate (change variables)}\]

\[\rightarrow \text{messy quadratic inequalities such as} \quad (x_1 + 2x_2 + 5x_3)(x_4 + x_5) \geq (x_2 - 3x_6)^2\]

\[\rightarrow \text{cleaned up quadratic inequalities} \quad x_j \geq \text{constant} \cdot x_j^{\alpha j+1}\]
Proof idea

(SDP) \rightarrow reformulate (change variables)

\rightarrow messy quadratic inequalities such as

$$(x_1 + 2x_2 + 5x_3)(x_4 + x_5) \geq (x_2 - 3x_6)^2$$

\rightarrow cleaned up quadratic inequalities

$$x_j \geq \text{constant} \cdot x_{j+1}^{\alpha_{j+1}}$$

+ recursion to compute the α_{j+1}.
The reformulated SDP

... looks like

\[x_1 \begin{pmatrix} r_1 & n-r_1 \\ I & 0 \\ 0 & 0 \end{pmatrix} + \sum_{i=2}^{k} x_i \begin{pmatrix} r_1+\ldots+r_{i-1} & r_i & n-r_1-\ldots-r_i \\ \times & \times & \times \\ \times & I & 0 \\ \times & 0 & 0 \end{pmatrix} \]

\[+ \sum_{i=k+1}^{m} x_i A'_i + B' \succeq 0 \]

with \(r_1, \ldots, r_k > 0 \).

To get this reformulation, we also used similarity transformations \(T^\top()T \).
Reformulated SDP \rightarrow messy polynomials

Here \bullet means a nonzero block.
Reformulated SDP \rightarrow messy polynomials

Here \bullet means a nonzero block.
Submatrix with \bullet corners:

$$
\begin{pmatrix}
x_j + \ldots & \text{const } x_{j+1} + \ldots \\
\text{const } x_{j+1} + \ldots & x_{t_{j+1}} + \ldots
\end{pmatrix} \succ 0.
$$

where $\cdots = \text{higher numbered variables}$
Determinant \rightarrow messy polynomial.
How to compute the α_{j+1} in $x_j \geq \text{const} \cdot x_{j+1}^{\alpha_{j+1}}$?

$$
\alpha_{j+1} = \begin{cases}
2 - \frac{1}{\alpha_{j+2} \cdots \alpha_{t_{j+1}}} & \text{if } t_{j+1} \leq k \\
2 & \text{if } t_{j+1} = k + 1
\end{cases}
$$

for $j = 1, \ldots, k - 1$.
How to compute the α_{j+1} in $x_j \geq \text{const} \cdot x_j^{\alpha_{j+1}}$?

$$\alpha_{j+1} = \begin{cases}
2 - \frac{1}{\alpha_{j+2} \ldots \alpha_{t_{j+1}}} & \text{if } t_{j+1} \leq k \\
2 & \text{if } t_{j+1} = k + 1
\end{cases}$$

for $j = 1, \ldots, k - 1$.

Similar to continued fractions.
How to compute the α_{j+1} in $x_j \geq \text{const} \cdot x_{j+1}^{\alpha_{j+1}}$?

$$\alpha_{j+1} = \begin{cases}
2 - \frac{1}{\alpha_{j+2} \cdots \alpha_{t_{j+1}}} & \text{if } t_{j+1} \leq k \\
2 & \text{if } t_{j+1} = k + 1
\end{cases}$$

for $j = 1, \ldots, k - 1$.

Similar to continued fractions.

Here

$$t_{j+1} = \text{index of a rightmost block where } x_{j+1} \text{ shows up.}$$

We shift x_{j+1} to right $\Rightarrow \alpha_{j+1}$ increases.
Example

\[
\begin{pmatrix}
 x_1 & x_2 \\
 & x_2 & x_3 \\
 & x_2 & x_3 & x_4 \\
 & x_3 & x_4 \\
 & x_4 & 1
\end{pmatrix}
\]

\[
\alpha = (4/3, \frac{3}{2}, 2)
\]
Example

\[
\begin{pmatrix}
 x_1 & x_2 \\
 x_2 & x_3 \\
 x_3 & x_4 \\
 x_4 & 1
\end{pmatrix}
\]
\[\alpha = (4/3, \ 3/2, \ 2)\]

\[
\begin{pmatrix}
 x_1 & x_2 \\
 x_2 & x_3 \\
 x_3 & x_4 \\
 x_4 & 1
\end{pmatrix}
\]
\[\alpha = (5/3, \ 3/2, \ 2)\]
Example

\[
\begin{pmatrix}
x_1 & x_2 \\
x_2 & x_3 \\
x_2 & x_3 & x_4 \\
x_3 & x_4 & 1 \\
\end{pmatrix}
\quad \xRightarrow{\alpha = (4/3, 3/2, 2)} \quad \begin{pmatrix}
x_1 & x_2 \\
x_2 & x_3 \\
x_2 & x_3 & x_4 \\
x_3 & x_4 & 1 \\
\end{pmatrix}
\quad \xRightarrow{\alpha = (5/3, 3/2, 2)} \quad \begin{pmatrix}
x_1 & x_2 \\
x_2 & x_3 \\
x_2 & x_3 & x_4 \\
x_3 & x_4 & 1 \\
\end{pmatrix}
\quad \xRightarrow{\alpha = (2, 3/2, 2)}
\]
Connection to Fourier-Motzkin elimination

- We are eliminating variables to get to $x_j \geq x_j^{\alpha j+1}$.
- This process can be viewed as Fourier-Motzkin elimination via $y_i := \log x_i$.
Connection to Fourier-Motzkin elimination

• We are eliminating variables to get to \(x_j \geq x_{\alpha j+1}^{j+1} \).

• This process can be viewed as Fourier-Motzkin elimination via \(y_i := \log x_i \).

• Example

\[
\begin{align*}
 x_1x_3 & \geq x_2^2 \\
 x_2x_4 & \geq x_3^2 \\
 x_3 & \geq x_4^2
\end{align*}
\]
Connection to Fourier-Motzkin elimination

- We are eliminating variables to get to $x_j \geq x_{j+1}^{\alpha_j}$.
- This process can be viewed as Fourier-Motzkin elimination via $y_i := \log x_i$.
- Example

 \[
 \begin{align*}
 x_1x_3 & \geq x_2^2 & y_1 + y_3 & \geq 2y_2 \\
 x_2x_4 & \geq x_3^2 & y_2 + y_4 & \geq 2y_3 \\
 x_3 & \geq x_4^2 & y_3 & \geq 2y_4
 \end{align*}
 \]
Connection to Fourier-Motzkin elimination

• We are eliminating variables to get to \(x_j \geq x_{j+1}^{\alpha j+1} \).

• This process can be viewed as Fourier-Motzkin elimination via \(y_i := \log x_i \).

• Example

\[
\begin{align*}
x_1x_3 & \geq x_2^2 & y_1 + y_3 & \geq 2y_2 \\
x_2x_4 & \geq x_3^2 & \rightarrow y_2 + y_4 & \geq 2y_3 \\
x_3 & \geq x_4^2 & y_3 & \geq 2y_4
\end{align*}
\]

• Add 1/2 times the last to the middle:

\[
x_2 \geq x_3^{3/2} \quad \leftarrow \quad y_2 \geq \frac{3}{2}y_3
\]
Do we need the change of variables \(x \leftarrow Mx \)?

- In general, yes: such an operation may mess up even (Khachiyan).
- So, we may need such an operation \(x \leftarrow M^{-1}x \) to unmess it.
- But, sometimes we don’t.
Poly opt. SDPs do not need reformulation

We want to minimize $f(x) = \text{univariate degree } 2n \text{ polynomial}.$

Rewrite as SDP, dual matrix has Hankel structure ($y_0 = 1$):

$$
\begin{pmatrix}
 y_0 & y_1 & y_2 & \cdots & y_n \\
 y_1 & y_2 & \cdots & y_{n+1} \\
 y_2 & \cdots & y_{n+2} \\
 \vdots & \ddots & \vdots \\
 y_n & y_{n+1} & y_{n+2} & \cdots & y_{2n}
\end{pmatrix} \succeq 0. \quad \text{(Poly-SDP)}
$$
Poly opt. SDPs do not need reformulation

We want to minimize $f(x) = \text{univariate degree } 2n \text{ polynomial.}$

Rewrite as SDP, dual matrix has Hankel structure ($y_0 = 1$):

$$\begin{pmatrix}
y_0 & y_1 & y_2 & \cdots & y_n \\
y_1 & y_2 & \cdots & y_{n+1} \\
y_2 & \cdots & y_{n+2} \\
\vdots & & & \vdots \\
y_n & y_{n+1} & y_{n+2} & \cdots & y_{2n}
\end{pmatrix} \succeq 0. \quad \text{(Poly-SDP)}$$

Exactly in the form we want without a change of variables.
Poly opt. SDPs do not need reformulation

We want to minimize \(f(x) = \text{univariate degree } 2n \text{ polynomial} \).

Rewrite as SDP, dual matrix has Hankel structure \((y_0 = 1)\):

\[
\begin{pmatrix}
 y_0 & y_1 & y_2 & \cdots & y_n \\
 y_1 & y_2 & \cdots & y_{n+1} \\
 y_2 & \cdots & y_{n+2} \\
 \vdots & \ddots & \ddots \\
 y_n & y_{n+1} & y_{n+2} & \cdots & y_{2n}
\end{pmatrix} \succeq 0. \quad (\text{Poly-SDP})
\]

Exactly in the form we want without a change of variables.

Corollary: \(y \in \mathbb{R}^{2n} \text{ feasible (Poly-SDP)} \Rightarrow \)

\[
y_{2n} \geq y_{2n-2}^{1+1/(n-1)}, \quad y_{2n-2} \geq y_{2n-4}^{1+1/(n-2)}, \ldots
\]

\[
y_{2n} \geq y_2^n.
\]
Conclusion

• Exponential size solutions in SDP, going back to famous Khachiyan example.
• Khachiyan type hierarchy among leading variables (after linear change of variables)
• Formulas to compute the exponents.
Conclusion

- Exponential size solutions in SDP, going back to famous Khachiyan example.
- Khachiyan type hierarchy among leading variables in every strictly feasible SDP (after linear change of variables)
- Formulas to compute the exponents.
- Connection to: continued fractions and Fourier-Motzkin elimination
- Assumptions we make are minimal.
- Paper coming very soon.
Thank you!