
On positive duality gaps in semidefinite
programming
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A pair of Semidefinite Programs (SDP)

supx c
Tx infY B • Y

(P ) s.t.
∑m

i=1 xiAi � B Y � 0 (D)

Ai • Y = ci ∀i.

Here

•Ai, B are symmetric matrices, c, x ∈ Rm.
•A � B means thatB −A is symmetric positive semidefinite

(psd).

•A •B =
∑

i,j aijbij.
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SDP duality

supx c
Tx infY B • Y

(P ) s.t.
∑m

i=1 xiAi � B Y � 0 (D)

Ai • Y = ci ∀i.

Easy: If x and Y are feasible, then cTx ≤ B • Y.

Ideally: ∃x∗,∃Y ∗ : cTx∗ = B • Y ∗.

But: pathologies occur, as nonattainment, positive gaps.

→ in such cases we cannot certify optimality.



Example: positive duality gap
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2nd dual constraint⇒ y22 = 1⇒ dual opt = 1



Example: positive duality gap

Primal:

sup x2

s.t. x1


1 0 0

0 0 0

0 0 0

 + x2


0 0 1

0 1 0

1 0 0

 �


1 0 0

0 1 0

0 0 0


Looks quite odd: x1 “only exists” to create a zero block in the
dual matrix.



Positive gaps

• Maybe the “worst/most interesting” pathology.

• Solvers fail, or report a wrong solution.

• Good model of positive gaps in more general convex pro-
grams
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Literature

• Pathological semidefinite systems P, 2011 –

“Bad semidefinite programs: they all look the same”

• It does not distinguish among bad objective functions.

• Positive gaps related to complementarity in homogeneous
systems: Tuncel, Wolkowicz, 2012

• Weak infeasibility: Lourenco, Muramatsu, Tsuchiya, 2014

• Infeasibility, weak infeasibility: Liu, P 2015, 2017



Literature: how to solve some pathological SDPs

• Facial reduction of Borwein-Wolkowicz, Waki-Muramatsu,
Pataki: implemented by Permenter, Parrilo 2014;

Permenter,Friberg,Andersen 2015

• Very simple facial reduction (just inspect the constraints):
Zhu, P, Tran Dinh (Sieve-SDP) 2017

• SPECTRA, exact arithmetic SDP solver

Henrion-Naldi-El Din 2016

• Douglas-Rachford splitting:

Liu, Ryu, Yin 2017

• Homotopy method

Hauenstein, Liddell, Zhang 2018
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Main ideas

• Look at small instances.

Proposition: positive gap⇒ m ≥ 2.

• Fully characterize the m = 2 case.

• Show that the m = 2 case sheds light on larger m.

• Precisely: the structure that causes positive gap whenm = 2
does the same in many cases even if m > 2.

• Reformulate

• Borrow ideas from linear system of equations:

to show Ax = b is infeasible, we create an equation

〈0, x〉 = 1.



Recall: a pair of Semidefinite Programs (SDPs)

supx c
Tx infY B • Y

(P ) s.t.
∑m

i=1 xiAi � B Y � 0 (D)

Ai • Y = ci ∀i.



Reformulations of (P )− (D) are obtained by

• Choose T invertible, and

B ← T TBT, Ai← T TAiT ∀i.

• Elementary row operations on (D) : e.g., exchange two con-
straints Ai • Y = ci and Aj • Y = cj.

• Choose µ ∈ Rm and

B ← B +
∑m

i=1 µiAi.

Reformulations preserve positive gaps (if any).
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This is the easy direction.
Essentially reuse the argument from before.
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Suppose m = 2.
Then positive gap ⇔ ∃ reformulation

sup c′2x2
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Λ
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× × × M

× Σ

× −Is
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 �

Ip
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 ,

where Λ � 0, M 6= 0, c′2 > 0, s ≥ 0.

⇒ dual is

inf

Ir−p 0

0 0

 • Y ′
s.t.

Σ 0

0 −Is

 • Y ′ = c′2 > 0

Y ′ � 0,



Suppose m = 2.
Then positive gap ⇔ ∃ reformulation

sup c′2x2

s.t. x1


Λ

 +x2


× × × M

× Σ

× −Is
MT

 �

Ip

Ir−p

 ,

where Λ � 0, M 6= 0, c′2 > 0, s ≥ 0.

⇒ dual optimal value > 0.

Simple certificate of the positive pap



When does the underlying system admit a gap?

Given

(PSD)
∑m

i=1 xiAi � B

is there c ∈ Rm such that there is a positive gap?



Suppose m = 2. Then ∃(c1, c2) with positive gap
⇔ (PSD) has reformulation

x1


Λ

 +x2


× × × M

× Σ

× −Is
MT

 �

Ip

Ir−p

 ,

where Λ � 0, M 6= 0, s ≥ 0.



How about m > 2?



Similar example with m = 3
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Similar example with m = 3
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Primal = 0.

Dual : Variable Y = (yij) � 0

1st two dual constraints ⇒ 1st two rows and columns of Y
are zero.



Similar example with m = 3
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We can create such an instance for any
m = 2, 3, 4, . . . with n = m+ 1

Name: single sequence SDPs

Objective is supxm.



Sparsity structure when m = 2, 3, 4 (n = m+ 1 )
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Sparsity structure when m = 2, 3, 4 (n = m+ 1 )
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Blue stripe inAi+1 : If Y � 0, A1 • Y = . . . Ai • Y = 0,
then these parts of Y are zero.
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How do we get these instances? Background: facial
reduction

GivenH affine subspace, K closed convex cone s.t. H ∩K 6= ∅,
a facial reduction algorithm (FRA) works as:

(1) If ri K ∩H = ∅, find y ∈ H⊥ ∩ (K∗ \K⊥).

(2) Replace K by K ∩ y⊥. Goto (1).

Facial reduction sequence:

The sequence y1, y2, . . . generated by the FRA.

Singularity degree:

Is the smallest number of FRA steps, until the FRA stops.

So we can talk about the singularity degree of an SDP.



Back to m = 2 example:
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Here (A1) is a facial reduction sequence for (D).
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Back to larger example:
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Back to larger example:

sup x3

s.t. x1


1

0

0
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+x2
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�


1

1

1

0


︸ ︷︷ ︸

B

Here (A1, A2) is a facial reduction sequence for (D).

A1 • Y = A2 • Y = 0 proves that dual matrix must look like

Y =


0 0 0 0

0 0 0 0

0 0 y33 y34

0 0 y43 y44





Theorem:

• sing(D) ≤ m.

• = m⇒ no gap. (Easy)

• ∀m ≥ 2, ∀g > 0∃ instance s.t.

sing(D) = m− 1 and gap is g.



Indeed, the single sequence SDPs have
sing(D) = m− 1
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We also look at the homogeneous dual

Ai • Y = 0∀i

B • Y = 0 (HD)

Y � 0
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Theorem:

• sing(HD) ≤ m+ 1. (Easy)

• = m+ 1⇒ no gap.

• ∀m ≥ 2, ∀g > 0∃ instance s.t.

sing(D) = m− 1 and sing(HD) = m and gap is g.

Proof: the double sequence SDPs
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Surprising connection between singularity degrees

sing(HD)= m+ 1︸ ︷︷ ︸
(maximal)

⇒ sing(D)= 0︸ ︷︷ ︸
(minimal)

sing(D) = 0 means it satisfies Slater’s condition
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Problem library and computational results

• Instances with m = 2, 3, . . . , 11; gap = 10.

• Integral data. Gap can be verified by hand, in exact arith-
metic.

• Four categories:

– gap single f inite clean m

– gap single f inite messy m

– gap single inf clean m,

– gap single inf messy m.

• Messy means we applied a similarity transformation T T ()T.



Results

GAP, SINGLE, FINITE GAP, SINGLE, INFINITE

CLEAN MESSY CLEAN MESSY

MOSEK 1 1 0 0

SDPA-GMP 1 1 0 0

PP+MOSEK 10 1 10 0

SIEVE-SDP + MOSEK 10 1 10 0

•PP: preprocessor of Permenter and Parrilo

• Sieve-SDP: preprocessor of Zhu, Pataki, Tran-Dinh

Note: SPECTRA works when m = 2.
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•Positive gaps: “worst/most interesting” pathol-
ogy of SDPs.

•Complete characterization form = 2 by reformulation.

•Complete characterization of positive gap systems
with m = 2.



Summary:

•Positive gaps: “worst/most interesting” pathol-
ogy of SDPs.

•Complete characterization form = 2 by reformulation.

•Complete characterization of positive gap systems
with m = 2.

• Similarly structured positive gap SDPs in any di-
mension.

•Highest singularity degree that leads to a positive
gap.

•Challenging problem library.



Papers

• P: Bad semidefinite programs: they all look the same,

2010–SIOPT 2017

• P: Characterizing bad semidefinite programs: normal forms and short
proofs

SIAM Review, 2019

• P: On positive duality gaps in semidefinite programming, submitted.



Thank you!


