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A pair of Semidefinite Programs (SDP)

sup, clz infy BeY
A;0Y = ¢c; Vs.

Here
e A;, B are symmetric matrices, c,x € R™.

e A < B means that B — A is symmetric positive semidefinite
(psd).
e Ae B = Zi,j a,z-jbz-j.
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SDP duality

sup, clz infy BeY
A, oY = ¢; V.

Easy: If ¢ and Y are feasible, then ¢’z < BeY.
Ideally: 3z*,3Y* : c'z* = B e Y*.
But: pathologies occur, as nonattainment, positive gaps.

— in such cases we cannot certify optimality.
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Example: positive duality gap

Primal:

Sup Io

s.t. a1
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2nd dual constraint = y;5 = 1 = dual opt = 1



Example: positive duality gap

Primal:

Sup Io

(100\ (001\ (100\

st. 1 |000| +22]010 010

\0 00 \100/ \ooo

Looks quite odd: x; “only exists” to create a zero block in the
dual matrix.

PN




Positive gaps

e Maybe the “worst/most interesting” pathology.
e Solvers fail, or report a wrong solution.

e Good model of positive gaps in more general convex pro-
grams
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Literature

e Pathological semidefinite systems P, 2011 —

“Bad semidefinite programs: they all look the same”
e It does not distinguish among bad objective functions.

e Positive gaps related to complementarity in homogeneous
systems: Tuncel, Wolkowicz, 2012

e Weak infeasibility: Lourenco, Muramatsu, Tsuchiya, 2014

e Infeasibility, weak infeasibility: Liu, P 2015, 2017



Literature: how to solve some pathological SDPs

e Facial reduction of Borwein-Wolkowicz, Waki-Muramatsu,
Pataki: implemented by Permenter, Parrilo 2014;

Permenter,Friberg,Andersen 2015

e Very simple facial reduction (just inspect the constraints):
Zhu, P, Tran Dinh (Sieve-SDP) 2017

e SPECTRA, exact arithmetic SDP solver
Henrion-Naldi-El Din 2016

e Douglas-Rachford splitting:
Liu, Ryu, Yin 2017

¢ Homotopy method
Hauenstein, Liddell, Zhang 2018
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Main i1deas

e Look at small instances.
Proposition: positive gap = m > 2.
e Fully characterize the m = 2 case.
e Show that the m = 2 case sheds light on larger m.

e Precisely: the structure that causes positive gap when m = 2
does the same in many cases even if m > 2.

e Reformulate

e Borrow ideas from linear system of equations:

to show Ax = b is infeasible, we create an equation
(0, ) = 1.



Recall: a pair of Semidefinite Programs (SDPs)

sup, clz infy BeY

A;0Y = ¢c; Vs.



Reformulations of (P) — (D) are obtained by

e Choose T invertible, and
B« TTBT, A, + TTA,T V.

e Elementary row operations on (D) : e.g., exchange two con-
straints A; ¢ Y = c;and A;eY = ¢;.

e Choose i1 € R™ and

Reformulations preserve positive gaps (if any).



Then positive gap < d reformulation
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This is the easy direction.
Essentially reuse the argument from before.
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where A > 0, M # 0, ¢, > 0,s > 0.
Proof of <= Dual matrix Y > 0

1st dual constraint == AeY (1:p,1:p) =0
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Suppose m = 2.
Then positive gap < d reformulation

SUp ChLT2
[ A \ [ x x| x M\ [,
P> I,._,
s.t. x; + j
X —1I
\ ) \MT /) \

where A > 0, M # 0, ¢, > 0,s > 0.

Proof of <= Dual matrix Y ~ 0

1st dual constraint == AeY (1:p,1:p) =0
= Y(1l:p,1:p) =0

= 1st p rows and columns of Y are zero.



Suppose m = 2.
Then positive gap < d reformulation
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Suppose m = 2.

Then positive gap < d reformulation

SUp ChLT2
(A \ (x X | X M\
X | X
s.t. o1 +a2
X —1I
\ ) \MT

where A > 0, M # 0, ¢, > 0,s > 0.

= dual optimal value > 0

Simple certificate of the positive pap

PN




When does the underlying system admit a gap?

Given
(Psp) > -, TiA; X B

is there ¢ € R™ such that there is a positive gap?



Suppose m = 2. Then I(cy1, c2) with positive gap
< (Pgp) has reformulation

[ A \ [ x x| x M\ (I,
T1 +a2 i . . = i
\ )\ )\

where A > 0, M # 0, s > 0.



How about m > 27
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Similar example with m = 3

sup a3

| A

s.t. oy + X2 + a3

Primal = 0.
Dual : Variable Y = (y;;) = 0

1st two dual constraints = 1st two rows and columns of Y
are zero.
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We can create such an instance for any
m=2,3,4,... withn=m-+1

Name: single sequence SDPs

Objective is sup xy,.






Sparsity structure when m = 2,3,4 (n =m + 1)

)
P~

&
0
0
0 0
0 0 0 0

Blue stripein 4; :IfY =0, AjeY =...A;0Y =0,
then these parts of Y are zero.

0
0
0




How do we get these instances? Background: facial
reduction

Given H affine subspace, K closed convex cone s.t. H N K # (),
a facial reduction algorithm (FRA) works as:

() Ifri KNH =0, findy € H-N (K*\ KL).
(2) Replace K by K Ny*. Goto (1).
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How do we get these instances? Background: facial
reduction

Given H affine subspace, K closed convex cones.t. H N K # 0,
a facial reduction algorithm (FRA) works as:

(OWIfriKNH=0, indy e H- N (K*\ K1).
(2) Replace K by K N y~*. Goto (1).

Facial reduction sequence:

The sequence vy, Y3, ... generated by the FRA.

Singularity degree:

Is the smallest number of FRA steps, until the FRA stops.

So we can talk about the singularity degree of an SDP.



Back to m = 2 example:
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Here (A;) is a facial reduction sequence for (D).



Back to m = 2 example:
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Here (A;) is a facial reduction sequence for (D).

A, eY = 0 proves that dual matrix must look like
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Back to larger example:

Sup Is
(i} fo 1) fo )
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Here (A;, A,) is a facial reduction sequence for (D).




Back to larger example:

Sup Is

s.t. &1 ~+a9
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Here (A;, A,) is a facial reduction sequence for (D).

AieY = AseY = 0 proves that dual matrix must look like

(00 0 0)

00 0 O

0 0 y33 Y34
KO 0 Y43 Yasa )




Theorem:

e sing(D) < m.
e — m = no gap. (Easy)

e Vm > 2, Vg > 0 d instance s.t.

sing(D) = m — 1 and gap is g.



Indeed, the single sequence SDPs have
sing(D) =m — 1

"))
F P~
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We also look at the homogeneous dual

A;eY = 0V2
Y = 0



Theorem:
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Theorem:

e sing(HD) < m + 1. (Easy)
e — m + 1 = no gap.

e Vm > 2, Vg > 0 d instance s.t.
sing(D) = m — 1 and sing(HD) = m and gap is g.
Proof: the double sequence SDPs

ol
") FF) ) (™

0
0
0 0 0
0 0 0 0 0




Surprising connection between singularity degrees

sing(HD)=m + 1 = sing(D)= 0

(maximal) (minimal)

sing(D) = 0 means it satisfies Slater’s condition
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Problem library and computational results

e Instances with m = 2,3,...,11; gap = 10.

e Integral data. Gap can be verified by hand, in exact arith-
metic.

e Four categories:
—gap_single_finite_clean_-m
— gap_single finite messy m
—gap_single_ inf_clean_m,

— gap_single_ inf_messy m.

¢ Messy means we applied a similarity transformation 77 ()T.



Results

GAP, SINGLE, FINITE | GAP, SINGLE, INFINITE
CLEAN MESSY CLEAN MESSY
MOSEK 1 1 0 0
SDPA-GMP 1 1 0 0
PP+MOSEK 10 1 10 0
SIEVE-SDP + MOSEK 10 1 10 0

e PP: preprocessor of Permenter and Parrilo

e Sieve-SDP: preprocessor of Zhu, Pataki, Tran-Dinh
Note: SPECTRA works when m = 2.
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Summary:

e Positive gaps: “worst/most interesting” pathol-
ogy of SDPs.

e Complete characterization for m = 2 by reformulation.

e Complete characterization of positive gap systems
with m = 2.

e Similarly structured positive gap SDPs in any di-
mension.

e Highest singularity degree that leads to a positive
gap.

e Challenging problem library.



Papers

e P: Bad semidefinite programs: they all look the same,
2010-SIOPT 2017

e P: Characterizing bad semidefinite programs: normal forms and short
proofs

SIAM Review, 2019

e P: On positive duality gaps in semidefinite programming, submitted.



Thank you!



