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1. Introduction. One of the most fundamental questions of convex analysis is also the simplest: When is
the linear image of a closed convex set closed? Essential applications include: finding out, when the sum and
convolution of closed convex functions are closed; and uniform duality in conic linear systems. For the first, see,
for instance, Chapter 9 in Rockafellar’s classic text (Rockafellar [22]), which is entirely devoted to closedness
criteria. For the application to uniform duality, see Duffin et al. [14].
We study the case when the convex set is a cone, using the following framework:
• given a linear map M between two finite dimensional spaces, and its adjoint M∗;
• a closed, convex cone K, and its dual cone K∗ = �y � �y� x� ≥ 0 ∀x ∈K�,

(	) When is M∗K∗ closed?

Our main motivation is the following question: Is there a common root of the following three well-known,
seemingly quite unrelated sufficient conditions?

riK ∩�
M� �= �� (IMG-RI)

K ∩�
M�= lspace
K�∩�
M�� (IMG-LSPACE)

K is polyhedral� (POL)

where lspace
K� stands for K ∩ 
−K�, the lineality space of K.

1.1. A sample of the main results. The main result of this paper gives a yes answer in a surprisingly
simple form (see the ensuing explanation for less common notation):

Theorem 1.1 (Main Theorem). Let x̄ ∈ ri
�
M�∩K�, and F the minimal face of K that contains x̄. The
following conditions:

(i) �
M�∩ dir
x̄�K�=�
M�∩ cl dir
x̄�K�;
(ii) M∗F � =M∗F ⊥;
(iii) riF � ∩� 
M∗� �= �, and �
M�∩ F �⊥ =�
M�∩ linF ;
(iv) �
M�∩ F �∗ =�
M�∩ linF ;

are equivalent and necessary for the closedness of M∗K∗. If K∗ + F ⊥ is closed, then they are necessary and
sufficient.

Here, dir
x̄�K� = �y � x̄ + ty ∈ K for some t > 0� is the set of feasible directions at x̄ in K, F ⊥ is the
orthogonal complement of the linear span of F ,

F � =K∗ ∩ F ⊥� F �∗ = 
F ��∗� F �⊥ = 
F ��⊥�
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It is easy to confirm why, for instance, (i) subsumes the three classical conditions:
• If (IMG-RI) holds, then x̄ ∈ riK, and dir
x̄�K� is the linear span of K, which is a closed set.
• If (IMG-LSPACE) holds, then x̄ ∈ lspace
K�, and dir
x̄�K�=K, which is closed by definition.
• If (POL) holds, then dir
x̄�K� is closed, regardless of where x̄ is in K.

The class of cones, for which the Main Theorem provides a necessary and sufficient condition for an arbitrary M ,
is, in fact, quite large.
Definition 1.1. A closed convex cone C is called nice if

the set C∗ +E⊥ is closed for all E faces of C�

Polyhedral cones are obviously nice; later on we will show that so are the cone of positive semidefinite
matrices, and p-cones. The above property of cones is first mentioned in a paper of Borwein and Wolkowicz [11],
although they do not use this property to study our main problem.
Remark 1.1. Condition (ii) has an interesting geometric interpretation. If K is nice, then it implies

M∗K∗ � clM∗K∗ ⇔ M∗F � �M∗F ⊥� (1)

Also,

M∗F � ⊆M∗K∗� and M∗F ⊥ ⊆ clM∗K∗� (2)

with the first inclusion being obvious, and the second following from (19), shown in the proof of the Main
Theorem.
Thus, on the one hand, M∗F � and M∗F ⊥ act as “substitutes” for M∗K∗ and clM∗K∗ to check their equality.

On the other hand, since M∗F ⊥ is a subspace, the last statement in (1) is equivalent to

clM∗F � �M∗F ⊥�

which is the same as
∃w ∈M∗F ⊥ which can be strictly separated from M∗F ��

We show in Corollary 3.1 that any such w is also in clM∗K∗\M∗K∗. However, it provides a stronger certificate
of nonclosedness than an arbitrary point in clM∗K∗\M∗K∗: the latter cannot be strictly separated from M∗K∗,
while w can be strictly separated from the “substitute” of M∗K∗, namely M∗F �.
Our problem frequently appears in a different guise: given closed, convex cones K1 and K2,

(�) When is K∗
1 +K∗

2 closed?

A necessary and/or sufficient condition for either one of (	) and (�) yields such a condition for the other, as
explained in §5.

1.2. Literature review. The first reference that we are aware of that implies the sufficiency of (IMG-RI) is
Theorem 2 in Duffin [13]. (The proof in Duffin [13] works only in the case when K is full-dimensional—for
the general case, one needs to modify it.) The sufficiency of (POL) follows from the fact that a polyhedral
cone is finitely generated, so its linear image is also polyhedral. We are not aware of a reference for condition
(IMG-LSPACE), so we give a simple proof later on as part of Theorem 2.2 in §2.
Conditions (IMG-RI), (IMG-LSPACE), and (POL) have their dual counterparts; they are equivalent to

K∗ ∩� 
M∗�=K⊥ ∩� 
M∗�� (IMG-LSPACE-DUAL)

riK∗ ∩� 
M∗� �= �� (IMG-RI-DUAL)

K∗ is polyhedral� (POL-DUAL)

respectively. The equivalence of (IMG-RI) and (IMG-LSPACE-DUAL) (and of the symmetric pair
(IMG-LSPACE) and (IMG-RI-DUAL)) will be explained and proved as part of Theorem 2.2, as well.
Theorem 9.1 in Rockafellar [22] implies that for an arbitrary closed convex set C, and linear map A the

following condition is sufficient for the closedness of AC:

rec
C�∩� 
A�= lspace
rec
C��∩� 
A�� (ROCK)
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Here
rec
C�= �y � x+ ty ∈C� ∀x ∈C� ∀ t ≥ 0�

is the recession cone of C. This conditon generalizes (IMG-LSPACE-DUAL); it does not seem to have a “primal”
counterpart when C is not a cone. (Theorem 9.1. is, in fact, more general; it gives a sufficient condition for
clAC =A
clC� to hold, even when C is not closed.)
Besides the classical results listed above, several more are available for 
	� and/or 
��. We list all that are

known to us:
• A sufficient condition for 
�� was given by Waksman and Epelman [25, p. 95], which for 
	� translates

into

∀y ∈� 
M∗�∩K∗� dir
y�K∗� is closed. (WE)

• Auslender [2] gave a necessary and sufficient condition for the linear image of an arbitrary closed convex
set to be closed.
• Bauschke and Borwein [7] present a necessary and sufficient condition for the continuous image of a closed

convex cone to be closed in terms of the strong conical hull intersection property.
• Ramana’s [19] extended dual has the following connection to our work: when K = K∗ is the cone of

positive semidefinite matrices, and b a given vector, then his results imply: we can check b �∈M∗K∗ by verifying
the feasibility of a semidefinite system, whose size is polynomial in terms of the original data.
Of these four results, the one closest to ours in spirit is the provision (WE); it is an elegant weakening

of (IMG-LSPACE-DUAL) and (POL-DUAL). However, in contrast to our conditions, no interesting class of
cones has been identified for which (WE) would be necessary and sufficient. For many relevant cones, such as
the semidefinite and second order cones, (WE) reduces to (IMG-LSPACE-DUAL) or to a restricted version of
(IMG-RI-DUAL): we show this in §5. The results of Auslender and of Bauschke and Borwein are more general
than ours; however, their conditions on closedness are also more involved.
The rest of the article is structured as follows. Section 2 deals with notation and surveys the necessary, mostly

known results to be used later on. For better insight, we provide some proofs in §2. Section 3 presents the
main results on problem 
	� and shows how from a “certificate” of nonclosedness of M∗K∗ one can actually
produce a vector in clM∗K∗\M∗K∗. Section 4 gives a variety of examples and discusses some of the complexity
implications of the Main Theorem; we prove that closedness of the linear image of the semidefinite cone can
be verified in polynomial time in the real number model of computing. Section 5 contains our results on 
��.
Finally, the appendix furnishes several, more complicated examples on the use of the Main Theorem.

2. Preliminaries and notation.

2.1. The frontier of a set. We call the difference between the closure of a set S and S the frontier of S and
write

fr
S�= clS\S� (3)

2.2. Operators, matrices, and inner products. Linear operators are denoted by capital letters; when a
matrix is considered to be an element of a Euclidean space, and not a linear operator, it is usually denoted by a
small letter. We denote by ei�n the ith unit vector in �n; we write ei if the dimension of the space is clear from
the context. The vector of all ones in �n is denoted by e; the dimension should be clear from the context. For
a vector x, and integers k, l with 1< k< l we write xk� l for the subvector 
xk� � � � � xl�

T .
The range space of an operator A [of a matrix x] is denoted by �
A� [�
x�]. The orthogonal projection

operator onto a linear space L is denoted by ProjL
 �.
If S is a set, then its linear span is denoted by linS, and the orthogonal complement of linS by S⊥. For a

vector x̄, we denote by �x̄, �+x̄, and �++x̄ the set of all multiples, nonnegative multiples, and strictly positive
multiples of x̄, respectively.
The inner product of two vectors x1 and x2 in a Euclidean space is denoted by �x1� x2�. Even if the inner

products in two different spaces are different, we still use the notation �� � for both; ambiguity will be prevented
by the context.

2.3. A Theorem of Abrams. We will extensively use the following:

Theorem 2.1 (R. A. Abrams). Let S be an arbitrary set, and A a surjective linear map. Then
(i) AS is closed⇔ S+� 
A� is closed;
(ii) AS is not closed, with Ax ∈ fr
AS�, iff S+� 
A� is not closed, with x ∈ fr
S+� 
A��.

For a proof, see, e.g., Berman [8, Lemma 3.1] or Holmes [16, Lemma 17H].
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2.4. Cones, faces, and complementary faces. We assume familiarity with the notions of faces and exposed
faces of convex sets; for references, see Rockafellar [22], Hiriart-Urruty and Lemarechal [15], or Brondsted
[12]. If C is a convex set, and x ∈C, the minimal face of C that contains x is denoted by face
x�C�. To denote
that E is a face of C, we write E �C, and we use the shorthand E �C for E �C, E �=C.
A convex set C is a cone if  C ⊆C holds for all  ≥ 0. The lineality space of C is defined as

lspace
C�=C ∩ 
−C��

and we say that C is pointed if lspace
C�= �0�.
The dual of the convex cone C is

C∗ = �z � �z� x� ≥ 0 for all x ∈C��

If C, C1, and C2 are convex cones, then

C∗∗ = clC� (4)


C1+C2�
∗ =C∗1 ∩C∗2 � (5)


C1 ∩C2�
∗ = cl
C∗1 +C∗2 �� (6)

Let E �C, and x̄ ∈ riE. Then it is straightforward to see that

C∗ ∩E⊥ =C∗ ∩ �x̄�⊥� (7)

The set in (7) is denoted by E�, and called the complementary (or conjugate) face of E. The complementary face
of H �C∗ is defined as C ∩H⊥, and is denoted by H�. The reader is warned at this point that the notation 
 ��

is ambiguous because it uses the same symbol for two different operations: one maps from the faces of C to
the faces of C∗, and one maps in the other direction.
The face 
E��� is the smallest exposed face of C that contains E, i.e., the smallest face of C that arises as

the intersection of C with a supporting hyperplane, and contains E.
The cone C is called facially exposed if all of its faces are exposed, i.e., they arise as the intersection of C

with a supporting hyperplane; in other words, if for all E �C, 
E��� =E. We remark that it is possible that C
is facially exposed, while C∗ is not.
For brevity, we write E�� for 
E���, E�∗ for 
E��∗, and E�⊥ for 
E��⊥, if E �C. Some references on the

facial structure of convex cones are articles by Barker [3]–[5] and Tam [24].
Definition 2.1. Let C be a closed convex cone. We say that C is nice if

C∗ +E⊥ is closed ∀E �C� (8)

Proposition 2.1. The cone C is nice if and only if one of the two following statements hold:

E∗ =C∗ +E⊥ ∀E �C� (9)

ProjlinE
C
∗� is closed ∀E �C� (10)

Proof. (8)⇔ (9): This equivalence follows, since

E =C ∩ linE ⇒ E∗ = cl
C∗ +E⊥� (by (6))�

(8)⇔ (10): We will use Theorem 2.1 with S =C∗, and A the orthogonal projection operator onto linE, that is,
A = B
B∗B�−1B∗, where B is any injective linear operator with �
B� = linE. Then the equivalence follows,
since E⊥ =� 
A�. �

Remark 2.1. We remark that
• if K is nice, then K must be facially exposed;
• if K1 and K2 are nice, then so is K1 ∩K2, but K1+K2 might not be nice, even if it is closed;
• the dual of a nice cone might not be nice; it might not even be facially exposed.
These results will be discussed in detail in the forthcoming paper, Pataki [17].
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2.5. Spaces and cones of interest. The space of n by n symmetric, and the cone of n by n symmetric,
positive semidefinite matrices are denoted by � n, and � n

+, respectively. If x is positive semidefinite [positive
definite], this is also denoted by x� 0 [x� 0]. The space � n is equipped with the inner product

�x� z� �=
n∑

i� j=1
xijzij �

and it is a well-known fact that � n
+ is self-dual with respect to it.

The faces of � n
+ have an attractive and simple description. After applying a rotation qT 
·�q, any face can be

brought to the form

F = face
((

Ir 0

0 0

)∣∣∣∣� n
+

)
=
{(

x 0

0 0

)∣∣∣∣x ∈� r
+

}
�

For a proof, see Barker and Carlson [6], or Pataki [18, Appendix A] for a somewhat simpler one. For a face of
this form we will frequently use the shorthand

F =
(⊕ 0

0 0

)
� linF =

(× 0

0 0

)
� F � =

(
0 0

0 ⊕
)
� F �∗ =

(× ×
× ⊕

)
� (11)

when the size of the partition is clear from the context. The ⊕ sign denotes a positive semidefinite submatrix,
and a × a submatrix with arbitrary elements. We will also use the same shorthand for an element of F , F �, etc.
as well.
If 1<p<+�, then the p-cone in n-space is defined as

Kp�n = �
x1� x2� n� ∈�1×�n−1 � x1 ≥ �x2� n�p��
We have K∗

p�n =Kq�n, where 1/p+ 1/q = 1. It is straightforward to see that Kp�n is full dimensional, pointed,
and that all of its nontrivial faces (i.e., apart from the origin and itself) are of the form

�+x̄ with x̄1 = �x̄2� n�p�
The second-order cone, or Lorentz cone, in n-space is K2� n. Due to its importance, we will use another notation
for it as well, and write

�Ɔ
n� �=K2� n�

The cones � n
+, and Kp�n are facially exposed. They are also nice; the easiest way to prove this is by showing

that they satisfy (10). In the case of � n
+, the projection in question is just a smaller copy of the original cone. In

the case of �Ɔ
n� the linear span of any nontrivial face is a line, and all cones contained in a line are closed.
(Recall that a nice cone must be facially exposed, as we show in the forthcoming paper, Pataki [17]; this article
will not rely on this result, however.)
A list of the typical faces of these cones with the corresponding complementary faces can be found in Table 1

(with the example of the nonnegative orthant being trivial).

2.6. Minimal cones. Let L be a subspace, C a closed convex cone, and

x̄ ∈ ri
L∩C�� E �= face
x̄�C��

Then, for any y ∈C ∩L there is z ∈C ∩L with x̄ ∈ 
y� z�. As a result, y and z are in E, so
L∩C = L∩E� (12)

Thus, E is the minimal face of C, whose intersection with L is the same as that of C itself.

Table 1. The faces and complementary faces in �n
+, �

n
+, and Kp�n.

K A typical F F �

�n
+ face

e�0�T ��n

+� face

0� e�T ��n
+�

� n
+ face

((
I 0

0 0

)
�� n

+

)
face

((
0 0

0 I

)
�� n

+

)

Kp�n cone��x�p� x�T � cone�
�x�q�−x�T �
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We can also view E as the maximal face of C that contains a vector of L in its relative interior, since it is
easy to see that

riEi ∩L �= � 
Ei �C� i= 1�2�⇒ ri face
E1 ∪E2�C�∩L �= ��
The face E is called the minimal cone of the conic linear system L∩C, and denoted by mincone
L∩C�.

2.7. The image of a closed convex cone, and a theorem of the alternative.

Lemma 2.1. Let M be a linear map, K a closed convex cone, and L a subspace. Then

M−1K = 
M∗K∗�∗� (C1)


M−1K�∗ = cl
M∗K∗�� (C2)

If riK ∩�
M� �= �� then 
M−1K�∗ =M∗K∗� (C3)

M−1L= 
M∗L⊥�⊥� (L1)


M−1L�⊥ =M∗L⊥� (L2)

Proof. Equation (C1) follows by

y ∈M−1K ⇔ My ∈K ⇔ �My�z� = �y�M∗z� ≥ 0 ∀ z ∈K∗ ⇔ y ∈ 
M∗K∗�∗�

and (C2) by taking duals. The proof of (C3) is more difficult, and it is omitted. In light of (C2), (C3) is clearly
equivalent to (IMG-RI). The last two equations come from (C1) and (C2), and using L∗ = L⊥. �

Theorem 2.2. Suppose that L is a subspace, and C is a closed, convex cone. Then the following statements
are equivalent:

(i) L∩ riC �= �.
(ii) L⊥ ∩ 
C∗\C⊥�=�.
(iii) L+C = L+ 
−C�= L+ linC.

Proof. ¬
i�⇔¬
ii�: Suppose that L=�
A� with A a linear operator, and fix c ∈ riC. For a cone D, let
us write x≤D y to denote y− x ∈D. Then L∩ riC =� if and only if the value of the conic linear program

sup x0

s.t. −Ax+ cx0 ≤C 0
(13)

is zero, which is equivalent to it having a bounded optimal value. But (13) is strictly feasible, i.e., there is x, x0
such that Ax− cx0 ∈ riC; clearly x= 0, x0 =−1 will do. So its boundedness is equivalent to the dual program
being feasible: see, e.g., Duffin [13], or Bonnans and Shapiro [10], or Renegar [21] for more recent treatments
of the duality theory of conic linear programs. The dual of (13) is

inf �y�0�
s.t. y ≥C∗ 0

−A∗y = 0

�c� y� = 1�

(14)

But (7) with E = C implies that for y ∈ C∗ the relation �y� c�> 0 holds, iff y �∈ C⊥. Hence the feasibility of
(14) is equivalent to the existence of y ∈� 
A∗�∩ 
C∗\C⊥�.

i�⇒ 
iii�: It is enough to prove the first equality, since linC = C − C. Fix c ∈ L ∩ riC, and let x ∈ −C,

l ∈ L. Then for a sufficiently large +> 0 we get

+c+ x ∈C ⇒ 
+c+ x�+ l ∈C +L ⇒ x+ l ∈C +L�
with the second implication following from +c ∈ L. Hence, L + 
−C� ⊆ L + C, and the opposite inclusion
follows by taking the negative of both sets.

iii�⇒ 
i�: Let x ∈ riC. Since −x ∈ linC, there exist l ∈ L, c ∈C such that

−x= l+ c�
hence x+ c=−l is in L, and it is trivially in riC. �
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Remark 2.2. The equivalence 
i�⇔ 
ii� in Theorem 2.2 appears quite frequently in the theory of cones,
and conic linear programs. The earliest reference we know of is Theorem 3.5 in Berman [8], in the case when
C is full-dimensional.
• With L=� 
A�, C =�n

+, where A is some linear operator, it yields Stiemke’s theorem (see Schrijver [23,
p. 95]):

there is a vector x with x > 0, and Ax= 0, if and only if AT y ≥ 0 implies AT y = 0.

• With C =K, L=�
M�, it proves the equivalence of conditions (IMG-RI) and (IMG-LSPACE-DUAL);
• With C =K∗, L=� 
M∗� it proves the equivalence of conditions (IMG-LSPACE) and (IMG-RI-DUAL).

The equivalence 
i�⇔ 
iii� is elementary, and we have not been able to find a reference even in the LP case.
With C =K∗, L= � 
M∗� it proves that (IMG-RI-DUAL) is equivalent to K∗ +� 
M∗�= linK∗ +� 
M∗�, so
in this case M∗K∗ =M∗
linK∗�, which is a closed set.
Let A be a linear map, and S, T arbitrary sets. Then clearly

A−1
S�⊆A−1
T � ⇔ �
A�∩ S ⊆�
A�∩ T � (15)

AS ⊆AT ⇔ � 
A�+ S ⊆� 
A�+ T � (16)

3. Main results on the closedness of M∗K∗. Let M be a linear operator, K a closed convex cone, and fix

x̄ ∈ ri
�
M�∩K�� F = face
x̄�K�� (17)

Recall the notation F � =K∗ ∩ F ⊥, F �∗ = 
F ��∗.
Lemma 3.1. M∗K∗ ∩M∗F ⊥ =M∗F ��

Proof. The inclusion ⊇ is trivial. To see ⊆, let y ∈M∗K∗ ∩M∗F ⊥, i.e.,

y =M∗u=M∗v� with u ∈K∗� v ∈ F ⊥�
Then

u− v ∈� 
M∗�∩ 
K∗ + F ⊥�⊆� 
M∗�∩ F ∗�
Therefore

�x̄� u− v� = 0 ⇒ u− v ∈ F ⊥ ⇒ u ∈ F ⊥ ⇒ u ∈ F �� (18)

Here the first statement comes from x̄ ∈�
M�, u− v ∈� 
M∗�. The first implication follows from invoking (7)
with F playing the role of both C and E, the second from v ∈ F ⊥, and the last from using u ∈K∗. �

We now prove the Main Theorem. We first restate it for the reader’s convenience:

Theorem 1.1 (Main Theorem). Let x̄ and F be as in (17). The conditions
(i) �
M�∩ dir
x̄�K�=�
M�∩ cl dir
x̄�K�;
(ii) M∗F � =M∗F ⊥;
(iii) riF � ∩� 
M∗� �= �, and �
M�∩ F �⊥ =�
M�∩ linF ;
(iv) �
M�∩ F �∗ =�
M�∩ linF

are equivalent, and necessary for the closedness of M∗K∗. If K∗ + F ⊥ is closed, then they are necessary and
sufficient.

Proof. M∗K∗ closed ⇒ (ii): We have


M−1K�∗ = clM∗K∗


M−1K�∗ = 
M−1F �∗ =M∗F ∗�

with the last equality coming from �
M�∩ riF �= �, and using (C3) in Lemma 2.1. Therefore
clM∗K∗ =M∗F ∗� (19)

and so M∗K∗ is closed, if and only if
M∗K∗ =M∗F ∗� (20)
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But (20) implies

M∗K∗ ⊇M∗
K∗ + F ⊥� ⇔ M∗K∗ ⊇M∗F ⊥ ⇔ M∗K∗ ∩M∗F ⊥ ⊇M∗F ⊥

⇔ M∗F � ⊇M∗F ⊥ ⇔ M∗F � =M∗F ⊥� (21)

In (21), the only nontrivial equivalence is the third, and this follows from Lemma 3.1.
M∗K∗ closed⇔ (ii), when K∗ + F ⊥ is closed: In this case, (20) and the first equation in (21) are equivalent.
(ii)⇔ (iii): First note

M∗F � =M∗F ⊥ ⇔ � 
M∗�+ F � =� 
M∗�+ F ⊥
⇔ � 
M∗�+ F � =� 
M∗�+ linF � and � 
M∗�+ linF � =� 
M∗�+ F ⊥
⇔ � 
M∗�∩ riF � �= � and � 
M∗�+ linF � =� 
M∗�+ F ⊥�

The first equivalence is from (16), and the second from F � ⊆ linF � ⊆ F ⊥. The third follows from the equivalence
(i)⇔ (iii) in Theorem 2.2 with L=� 
M∗�, C = F �. By taking orthogonal complements

� 
M∗�+ linF � =� 
M∗�+ F ⊥ ⇔ �
M�∩ F �⊥ =�
M�∩ linF �

¬
ii�⇔¬
iv�: We have

M∗F � �M∗F ⊥ ⇔ clM∗F � �M∗F ⊥ ⇔ 
clM∗F ��∗ � 
M∗F ⊥�∗ ⇔ 
M∗F ��∗ � 
M∗F ⊥�∗

⇔ M−1
F �∗��M−1
linF � ⇔ �
M�∩ F �∗ ��
M�∩ linF �

The first equivalence follows from M∗F ⊥ being a subspace, and the second by noting that both cones in the
second equation are closed, hence they are equal if and only if their duals are. The third is obvious from the
definition of the dual cone, and the fourth is from Lemma 2.1, and noting that the dual of a subspace is its
orthogonal complement. The last equivalence is from (15).
(iv)⇔ (i): We need the following proposition.

Proposition 3.1.
�
M�∩ linF =�
M�∩ 
K+ linF ��

Proof of Proposition 3.1. We only need to show ⊇. Fix z ∈K, f ∈ linF such that

z+ f ∈�
M��

We will show z ∈ linF . For /> 0, let

x
/� �= x̄+ /
z+ f �= 
x̄+ /f �+ /z�

If / is sufficiently small, then clearly

x̄+ /f ∈ F ⇒ x
/� ∈K ⇒ x
/� ∈ F �

with the second implication coming from x
/� ∈�
M�. Hence z ∈ linF , as required. �

To complete the proof of (iv)⇔ (i), note that by Proposition 3.1 (iv) is equivalent to

�
M�∩ F �∗ =�
M�∩ 
K+ linF �� (22)

But

K+ linF = dir
x̄�K��

F �∗ = cl dir
x̄�K�0

see, for instance, (3.2.8) and (3.2.10) in Pataki [18]. Plugging these into (22) gives (i), as required. �
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Remark 3.1. For better insight, it is worthwhile to work out why the conditions of the Main Theorem are
satisfied when K is the nonnegative orthant. Let us assume that M maps from �n to �m, and also denote by M
the corresponding matrix. Let I0 be a maximal subset of �1� � � � �m� such that

Mx≥ 0 ⇒ 
Mx�i = 0 ∀ i ∈ I0�
and I+ �= �1� � � � �m�\I0. Then F , and its related sets are of the form

F =
(⊕
0

)
� F � =

(
0
⊕
)
� F �∗ =

(×
⊕
)
� linF =

(×
0

)
� F ⊥ =

(
0
×
)
� (23)

Here ⊕ denotes a nonnegative subvector, × a subvector with arbitrary components, and we assume that the
indices in I+ are numbered continuously starting from 1. For a vector y ∈ �m we will denote the subvector
corresponding to I0, and I+ by y0, and y+, respectively. Also, M0 and M+ will stand for the submatrix of M with
rows in I0, and I+, respectively (naturally, this notation does not carry over for the rest of this paper). In linear
programming terminology, we say that M0x≥ 0 is the subsystem of Mx≥ 0 consisting of all implicit equalities;
see, e.g., Chapter 8 in Schrijver [23].
To see why condition (iv) is satisfied, we note that

�
M�∩ F �∗ = �y =Mx � y0 ≥ 0�� (24)

�
M�∩ linF = �y =Mx � y0 = 0�� (25)

An elementary proof of why these two sets are equal is in Claim (8) in Schrijver [23, p. 100]. In LP terminology,
the equality of these two sets expresses the geometrically intuitive fact that the inequalities in M0x≥ 0 already
imply that all of them hold as equalities, irrespective of what the inequalities in M+x ≥ 0 are. Since K + linF
now equals F �∗, this argument also illustrates Proposition 3.1.
As to condition (ii), we have

M∗F � = �MT
0 z � z≥ 0��

M∗F ⊥ = �MT
0 z � z free��

Farkas’ lemma for linear inequalities implies that the equality of these two sets is just a restatement of

�x �M0x≥ 0�= �x �M0x= 0�� (26)

In turn, Equation (26) is the same as M−1
F �∗�=M−1
linF �; and this last statement is equivalent to �
M�∩
F �∗ =�
M�∩ linF .
Finally, condition (iii) is satisfied, since the subspaces �
M� and � 
M∗� contain a strictly complementary

pair of nonnegative vectors, and F �⊥ = linF .
Remark 3.2. Suppose that K∗ + F ⊥ is not closed for some F � K. In this case, there is a map M such

that conditions (i) through (iv) in the Main Theorem hold, but M∗K∗ is not closed: such a self-adjoint map
is the orthogonal projection onto linF . Then, by the equivalence of (9) and (10), M∗K∗ is not closed, but
�
M�= linF , hence condition (iv) in the Main Theorem holds.
That is, the conditions of the Main Theorem are sufficient for the closedness of M∗K∗ for all M (with x̄, F ,

etc. defined by the particular M) if and only if K is nice.
Conditions (i) and (iv) provide a certificate for the nonclosedness of M∗K∗, equivalently of K∗ +� 
M∗�. It

is natural to ask whether from such a certificate we can construct a point in fr
M∗K∗�. The answer is yes, as
shown by

Corollary 3.1. Let

z ∈ �
M�∩ 
F �∗\ linF �=�
M�∩ 
cl dir
x̄�K�\dir
x̄�K���
and suppose that v satisfies

v ∈ F ⊥� �v� z�< 0� (27)

Then

v ∈ fr
K∗ +� 
M∗�� and (28)

M∗v ∈ fr
M∗K∗�� (29)
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Proof. Writing z=My with y ∈M−1
F �∗�, we have

�M∗v� y� = �v�My� = �v� z�< 0�

Hence,

M∗v ∈ M∗F ⊥\
M−1
F �∗��∗ =M∗F ⊥\ clM∗F ��

Therefore,
M∗v ∈M∗F ∗ = clM∗K∗�

and Lemma 3.1 implies M∗v �∈M∗K∗ (for this to hold, already M∗v ∈M∗F ⊥\M∗F � would be enough). This
proves (29), and using (ii) in Theorem 2.1 proves (28).
Since

y ∈M−1
F �∗�⊆ 
M−1
F �∗��∗∗ = 
clM∗F ��∗�

y is the normal vector of an hyperplane that strictly separates a point of M∗F ⊥, namely M∗v from M∗F �

(equivalently, from clM∗F �).

4. Examples and some complexity issues. This section gives a variety of examples: in each one, the Main
Theorem is used to prove whether or not a set M∗K∗ is closed, with M a linear map, and K a nice cone. More
examples are in the appendix.
In most examples, we also provide an ad hoc argument to prove (non)closedness; these will work with

K∗ +� 
M∗� instead, when it is easier to do so (cf. Theorem 2.1).
The examples in this section are quite simple, so in these it is straightforward to conclude the (non)closedness

via the ad hoc argument, as well. Examples A.1 and A.2 in the appendix are more intricate (though not large):
for these, the ad hoc arguments become quite cumbersome, while the proofs based on the Main Theorem remain
concise and transparent.
In each example, we will show the following:
(i) A face F of K, identified by a representative x̄ ∈ riF ∩�
M�, and
(ii) (a) When the purpose is proving nonclosedness, a vector z ∈�
M�.

(b) When the purpose is proving closedness, a vector ū ∈K∗ ∩� 
M∗�.
Then the conditions of the Main Theorem will be employed as follows:
• Condition (iv) to verify the nonclosedness of M∗K∗: To this end, we must

(i) Verify
F =mincone
�
M�∩K�� (30)

(ii) Verify
z ∈�
M�∩ 
F �∗\ linF �� (31)

• Condition (iii) for checking the closedness of M∗K∗: To this end one needs to
(i) Verify that ū ∈ riF �.
(ii) If so, then F = face
x̄�K� must be the minimal cone of �
M�∩K (so this does not need to be checked

separately!). We then need to check

�
M�∩ F �⊥ =�
M�∩ linF � (32)

In the first group of examples, K = K∗ = � n
+. In this case, M� �k → � n and M∗� � n → �k are defined via

symmetric matrices m1� � � � �mk as

M
x�=
k∑
i=1
ximi� 
x= 
x1� � � � � xk�T ∈�k�

M∗
y�= 
�m1� y�� � � � � �mk� y��T � 
y ∈� n��

(33)

The matrix x̄ will always be of the form

x̄=
(
Ir 0

0 0

)
� (34)
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In this case, we recall from (11) that the relevant sets to prove closedness/nonclosedness are

F =
(⊕ 0

0 0

)
� linF =

(× 0

0 0

)
� F � =

(
0 0

0 ⊕
)
� F �∗ =

(× ×
× ⊕

)
� (35)

In the examples—even in the more involved ones in the appendix—it will be straightforward to verify (30). As
to (31),

z ∈ F �∗\ linF ⇔ z=
( z11 z12

zT12 z22

)
� with z22 � 0� and 
z12 �= 0� or z22 �= 0��

so checking this is a straightforward, polynomial time computation. Note that even if the matrices m1� � � � �mk

are rational, it is still possible that x̄ has irrational entries, or rational ones with exponentially many digits; for
these issues see, e.g., the discussion in Ramana [19]. Hence the computation is guaranteed to be polynomial
only in the real number model of computing (see Blum et al. [9]), not in the Turing model.
To establish closedness, we need to first verify that for a pair of positive semidefinite matrices 
x̄� ū�, ū ∈

ri face
x̄�K��, i.e., they are strictly complementary (see Alizadeh et al. [1], or Pataki [18]). If ū is of the form

ū=
(
0 0

0 Is

)
� (36)

then this task is obvious: we only need to check whether r + s = n. Also, condition �
M�∩ F �⊥ =�
M�∩
linF—the equality of two subspaces—can be confirmed by standard linear algebraic techniques.
Clearly, M∗� n

+ is closed if and only if M∗
v�

n
+ is closed, if v is an invertible matrix, and Mv the operator whose

rangespace is generated by vTm1v� � � � � v
Tmkv. So, even if x̄ is not in the form (34), the procedure to verify

nonclosedness is only slightly changed: we first have to compute a matrix v whose columns are appropriately
scaled eigenvectors of x̄, replace x̄ by vT x̄v, and M by Mv. If our aim is to check closedness, and ū is not in
the form (36), then we will need to compute a matrix v of appropriately scaled shared eigenvectors of x̄ and ū,
and replace x̄ by vT x̄v, ū by vT ūv, and M by Mv.
In fact, these arguments prove

Theorem 4.1. Given a linear map M ,
(i) the closedness of M∗� n

+ can be verified in polynomial time in the real number model of computing;
(ii) suppose there is an algorithm that for given x̄ ∈ � n

+, can verify in polynomial time in the real number
model

x̄ ∈ ri
�
M�∩� n
+��

Then the nonclosedness of M∗� n
+ can be verified in polynomial time in the real number model of computing.

In a submitted report (Pataki [17]) we show that indeed there is an algorithm as required in (ii) of Theorem 4.1.
It is not known whether one can actually compute a matrix x̄ in ri
�
M�∩� n

+� efficiently. At any rate, in our
examples—several of which, namely the ones in the appendix, are quite involved—this is easy by inspection,
and so is finding the certificate of nonclosedness z ∈�
M�∩ 
F �∗\ linF �. Thus, our machinery seems useful
even in handcomputations to recognize the closedness or nonclosedness of M∗� n

+.
In contrast, an ad hoc argument to verify nonclosedness of M∗K∗ or equivalently of � 
M∗�+K∗ works by

(i) guessing that some matrix v is in fr
� 
M∗�+K∗�;
(ii) proving v ∈ cl
� 
M∗�+K∗�;
(iii) proving v �∈� 
M∗�+K∗.

Even if one correctly guesses a v, step (ii) can be troublesome. Also, the obvious proof—an infinite sequence
in � 
M∗�+K∗ that converges to v—is not polynomial time checkable. Constructing the argument in step (iii)
is also a matter of luck unless our machinery is used; the same applies to verifying closedness of M∗K∗, when
it is closed.
Example 4.1. Let M� �2→� 2, K =K∗ =� 2

+,

m1 =
(
1 0

0 0

)
� m2 =

(
1 0

0 1

)
� x̄=m1�

Now M∗K∗ is not closed.
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• Let us first confirm this by using the Main Theorem. Obviously F = face
x̄�K� equals mincone
�
M�∩K�.
Since

F =
(⊕ 0

0 0

)
� linF =

(× 0

0 0

)
� F � =

(
0 0

0 ⊕
)
� F �∗ =

(× ×
× ⊕

)
�

hence

m2 ∈�
M�∩ 
F �∗\ linF ��
so the nonclosedness follows from condition (iv). Note that

ū=
(
0 0

0 1

)
∈� 
M∗�∩ riF ��

hence the first part of criterion (iii) does hold.
• Next we produce a vector in fr
M∗K∗� using the recipe of Corollary 3.1. Clearly,

v ∈ F ⊥� �v�m2�< 0 ⇔ v11 = 0� v12 < 0�

The set of all solutions appropriately normalized is

v=
(

0 −1
−1 v22

)
� for some v22� (37)

Then

w=M∗v= 
0�−2� ∈ fr
M∗K∗�� (38)

and

v ∈ fr
K∗ +� 
M∗��� (39)

• We can prove nonclosedness by verifying (39) via an ad hoc argument. For simplicity, assume v22 = 0.
Since ( / −1

−1 1//

)
︸ ︷︷ ︸

∈K∗

+
(
0 0

0 −1//
)

︸ ︷︷ ︸
∈� 
M∗�

=
(
/ −1
−1 0

)
→ v� as /↘ 0�

we conclude v ∈ cl
� 
M∗�+K∗�. But � 
M∗� consists of the multiples of the matrix

p1 =
(
0 0

0 1

)
�

Since we cannot make v positive semidefinite by adding any multiple of p1 to it, we obtain v �∈� 
M∗�+K∗.
• Some remarks on the structure of M∗K∗:
—In this example, M∗F � is closed: it is simply �
0�0��.
—It is easy to see that

fr
M∗K∗�= �
0�+� � + �= 0�� (40)

so all elements of fr
M∗K∗� arise from the recipe of Corollary 3.1: if z=−m2/2, then

v=
(
0 +

+ 0

)
(41)

satisfies (27), and M∗v= 
0�+�. In particular, −w= 
0�2� ∈ fr
M∗K∗�.
Example 4.2. Let M� �2→� 3, K =K∗ =� 3

+,

m1 =


1 0 0

0 0 0

0 0 0


 � m2 =



0 0 1

0 0 1

1 1 0


 � x̄=m1�

Now M∗K∗ is closed, although neither of the classical conditions (IMG-RI) or (IMG-LSPACE) holds. To see
this
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• using criterion (iii) in the Main Theorem, note that

x̄=


1 0 0

0 0 0

0 0 0


 ∈K ∩�
M�� ū=



0 0 0

0 1 0

0 0 1


 ∈K∗ ∩� 
M∗�

are a strictly complementary pair, so F = face
x̄�K� is the minimal cone of K ∩�
M�. Therefore, F and its
related sets look like

F =


⊕ 0 0

0 0 0

0 0 0


 � linF =



× 0 0

0 0 0

0 0 0


 � F � =



0 0 0

0 ⊕
0


 � F �∗ =



× × ×
× ⊕
×


 �

The second part of condition (iii) is straightforward to check.
• directly, observe

M∗K∗ =�+ ×��

Next, we give an example with the second-order cone. Now M� �k → �n and M∗� �n→ �k are defined via
vectors m1� � � � �mk as

M
x�=
k∑
i=1
ximi 
x= 
x1� � � � � xk�T ∈�k��

M∗
y�= 
�m1� y�� � � � � �mk� y��T 
y ∈�n��

(42)

Example 4.3. Let M� �2→�3�K =K∗ =�Ɔ
3�,

m1 =


1

1

0


 � m2 =



0

0

1


 � x̄=m1�

Now M∗K∗ is not closed.
• We can check the nonclosedness of M∗K∗ by using Condition (iv) in the Main Theorem: since F =

face
x̄�K� is again trivially the minimal cone of �
M�∩K, so

linF =�



1

1

0


 � F � =�+




1

−1
0


 �

and, therefore,
m2 ∈�
M�∩ 
F �∗\ linF �

proves nonclosedness.
• We now find a vector in fr
M∗K∗� via our recipe:

v ∈ F ⊥ ⇔ v=


v1

−v1
v3


 for some v1� v3�

so v is a solution of (27) with z=m2 iff v3 < 0. So

v=


v1

−v1
−1


 ∈ fr
K∗ +� 
M∗��� M∗v= 
0�−1�T ∈ fr
M∗K∗�

for any v1.
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• To check the nonclosedness by an ad hoc argument, we will prove

v=



0

0

−1


 ∈ fr
K∗ +� 
M∗���

First note that � 
M∗� consists of the multiples of the vector

p=



1

−1
0


 �

Therefore, v ∈ cl
K∗ +� 
M∗�� follows, if for some suitable  

v
/� �=



 

− + /
−1


 ∈�Ɔ
3�� as /↘ 0� (43)

since �v
/� �− p− v� = /. But a simple calculation shows that

 ≥ /

2
+ 1
2/

satisfies (43).
We cannot make v belong to �Ɔ
3� by adding any multiple of p to it; as a result, v �∈K∗ +� 
M∗�.

5. On the closedness of the sum of two closed cones. In this section, we study the relationship of the two
problems that we recall from §1:
Given a closed, convex cone K, its dual cone K∗, and a linear map M ,

(	) When is M∗K∗ closed?

Given closed, convex cones K1 and K2,

(�) When is K∗
1 +K∗

2 closed?

The two are equivalent in the sense that a necessary and/or sufficient condition for either one yields such a
condition for the other.
We can apply a condition for 
	� to derive one for 
��: take

K =K1×K2� K∗ =K∗
1 ×K∗

2 � M
x�= 
x� x�� M∗
y1� y2�= y1+ y2� (44)

This way, (IMG-RI), (IMG-LSPACE), (IMG-LSPACE-DUAL), and (IMG-RI-DUAL) respectively yield the suf-
ficient conditions

riK1 ∩ riK2 �= �� (SUM-RI)

K1 ∩K2 = lspace
K1�∩ lspace
K2�� (SUM-LSPACE)

K∗
1 ∩ 
−K∗

2 �=K⊥
1 ∩K⊥

2 � (SUM-LSPACE-DUAL)

riK∗
1 ∩ 
− riK∗

2 � �= �� (SUM-RI-DUAL)

The applicability of 
�� to 
	� seems less well known. Theorem 2.1 implies

M∗K∗ is closed ⇔ K∗ +� 
M∗� is closed. (45)

Therefore, a condition for 
�� provides one for 
	� by letting K1 =K, K2 =�
M�.
A sufficient condition for 
�� was given by Waksman and Epelman [25, p. 95]. It reads

∀x ∈K∗
1 ∩ 
−K∗

2 �� dir
x�K∗
1 � and dir
−x�K∗

2 � are closed� (SUM-WE)
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For 
	�, this translates into

∀y ∈K∗ ∩� 
M∗�� dir
y�K∗� is closed. (WE)

For many interesting cones, for instance the semidefinite cone, dir
y�K∗� is closed, only if y ∈ riK∗, or y ∈K⊥;
see, e.g., Ramana et al. [20]. The following result shows that for such cones (WE) reduces to the classic condition
(IMG-LSPACE-DUAL), or a restricted version of (IMG-RI-DUAL):

Proposition 5.1. Suppose that (WE) is satisfied by M∗ and K∗, and K∗ is such that for y ∈ K∗, the set
dir
y�K∗� is closed only if y ∈ riK∗, or y ∈K⊥. Then

(i) K∗ ∩� 
M∗�=K⊥ ∩� 
M∗�, or
(ii) K∗ ∩� 
M∗�= cone�ȳ� for some ȳ ∈ riK∗.

Proof. Let ȳ ∈ ri
K∗ ∩� 
M∗��. Since (WE) holds, either ȳ ∈K⊥, or ȳ ∈ riK∗. We need only to look at the
second case further. Let z ∈K∗ ∩� 
M∗�, z �= ȳ. If z % riK∗, then a point on the open line-segment 
z� ȳ� will
be in the relative interior of a face distinct from K⊥, and K∗, as the relative interiors of the faces of K∗ form a
partition of K∗, cf. Rockafellar [22, Theorem 18.2]. Now we have only to exclude

z ∈ riK∗� and z% cone�ȳ�� (46)

Suppose, to the contrary, that (46) holds. Let us extend the line segment from z to ȳ past ȳ [past z] in riK∗, and
denote by u1 [u2] the intersection point with the relative boundary of K

∗ (i.e., with K∗\ riK∗). At least one of u1
and u2 is not in K

⊥ (both being in K⊥ would imply y ∈K⊥); suppose this point is u1. Then u1 ∈K∗ ∩� 
M∗�,
and dir
u1�K

∗� is not closed, a contradiction. �

Our main result follows. The reader can easily check why its conditions follow from (SUM-RI),
(SUM-LSPACE), and the polyhedrality of K1 and K2.

Theorem 5.1 (Main Theorem for Sum). Let x̃ ∈ ri
K1 ∩ K2�, F1 = face
x̃�K1�, F2 = face
x̃�K2�. The
conditions

(i) dir
x̃�K1�∩ dir
x̃�K2�= cl dir
x̃�K1�∩ cl dir
x̃�K2�,
(ii) F �1 + F �2 = F ⊥1 + F ⊥2 ,
(iii) riF �1 ∩− riF �2 �= �, and F �⊥1 ∩ F �⊥2 = linF1 ∩ linF2,
(iv) F �∗1 ∩ F �∗2 = linF1 ∩ linF2,

are equivalent, and necessary for the closedness of K∗
1 +K∗

2 . If K
∗
1 +F ⊥1 and K∗

2 +F ⊥2 are closed—in particular,
if K1 and K2 are both nice—then they are necessary and sufficient.

Proof. We use the Main Theorem with the choice of M and K prescribed in (44). This way
• x̄ ∈ ri
�
M�∩K�⇔ x̄= 
x̃� x̃�, with x̃ ∈ ri
K1 ∩K2�.
• x̄ ∈�
M�∩ riF with F �K⇔ x̃ ∈ riF1 ∩ riF2 with F1 �K1, F2 �K2.
• ũ ∈� 
M∗�∩ riF � with F = F1× F2, F1 �K1, F2 �K2⇔ ũ ∈ riF �1 ∩− riF �2 .

Using these correspondences, the conditions of the Main Theorem are equivalent to their counterparts in this
theorem. �

Remark 5.1. Following the recipe of Corollary 3.1, if condition (iv) in the Main Theorem for Sum is
violated, then from a given

z ∈ 
F �∗1 ∩ F �∗2 �\
linF1 ∩ linF2�= 
cl dir
x̃�K1�∩ cl dir
x̃�K2��\
dir
x̃�K1�∩ dir
x̃�K2��

we can construct
w ∈ 
F ⊥1 + F ⊥2 �\ cl
F �1 + F �2 �⊆ fr
K∗

1 +K∗
2 ��

as follows (we leave working out the exact correspondence to the reader): We find 
v1� v2� satisfying


v1� v2� ∈ F ⊥1 × F ⊥2 � �v1+ v2� z�< 0� (47)

then take w= v1+ v2.
In fact, the system (47) has a solution iff it has one with v1 = 0, or one with v2 = 0. The reason is as follows:

Condition (ii) in the Main Theorem for Sum is violated, if and only if

cl
F �1 + F �2 �� F ⊥1 + F ⊥2 (48)

⇔ cl
F �1 + F �2 �� F ⊥1 or cl
F �1 + F �2 �� F ⊥2 � (49)

If the first case in (49) holds, and v1 is in the difference of the corresponding sets, then 
v1�0� satisfies (47); if
the second case in (49) holds, and v2 is in the difference of the sets, then 
0� v2� satisfies (47).
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Example 5.1. Let

K1 =� 2
+� K2 =

{
x ∈� 2

∣∣∣∣
〈
x�

(
0 0

0 1

)〉
≤ 0

}
�

then

K∗
1 =� 2

+� K∗
2 = cone

{(
0 0

0 −1
)}

�

Using the notation of the Main Theorem for Sum,

x̃=
(
1 0

0 0

)
� F1 =

(⊕ 0

0 0

)
� F2 =

{
x ∈� 2

∣∣∣∣
〈
x�

(
0 0

0 1

)〉
= 0

}
�

hence

F �∗1 =
(× ×
× ⊕

)
� F �2 =K∗

2 � F �∗2 =K2�

Since

z=
(
0 1

1 0

)
∈ 
F �∗1 ∩ F �∗2 �\ linF1�

we conclude that K∗
1 +K∗

2 is not closed. Solving (47) with v2 = 0 gives

v1 =
(

0 −1
−1 0

)
∈ F ⊥1 \ cl
F �1 + F �2 �⊆ fr
K∗

1 +K∗
2 ��

The fact that v1 is in fr
K
∗
1 +K∗

2 � is also easy to check directly.
Of course, nonclosedness of K∗

1 +K∗
2 also follows from the fact that it is equal to K∗

1 + linK∗
2 , and the latter

set is the same as K∗ +� 
M∗� of Example 4.1, where its nonclosedness was already proven.

Appendix. More examples on the closedness/nonclosedness of M∗K∗. In this appendix, we give several,
more involved examples of mappings M� �m → � n for some m, n integers. In these proving closedness or
nonclosedess ofM∗K∗ will be quite nontrivial via ad hoc arguments, but still straightforward using the conditions
of the Main Theorem.
Example A.1. Let M� �5→� 4

+, K =K∗ =� 4
+, and the generators of �
M� called m1� � � � �m5 as below:


1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0


 �




0 −1 −1 0

−1 1 0 0

−1 0 0 0

0 0 0 0


 �




0 0 −1 1

0 0 0 1

−1 0 0 0

1 1 0 0


 �



0 3 0 0

3 −1 1 0

0 1 0 0

0 0 0 0


 �



0 0 0 0

0 0 0 −1
0 0 1 0

0 −1 0 0


 �

and

x̄=m1�

Again, M∗K∗ is not closed.
• To confirm this by using the Main Theorem, we will first verify that F = face
x̄�K� equals

mincone
�
M�∩K�. Suppose
x=

5∑
i=1
 imi � 0�

Then
x44 = 0⇒ x��4 = 0⇒ 3 = 5 = 0⇒ x33 = 0⇒ x��3 = 0⇒ 2 = 4 = 0�

Here x�� j denotes the jth column of x, the first and fourth implications come from the positive semidefiniteness
of x, and the others are trivial. This proves that x̄—up to a nonnegative factor—is the only positive semidefinite
matrix in �
M�; i.e., face
x̄�K�=mincone
�
M�∩K�. Thus

m2 ∈�
M�∩ 
F �∗\ linF ��
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proves nonclosedness via condition (iv) in the Main Theorem. Two matrices in fr
K∗ +� 
M∗�� that can be
produced from m2 are

v1 =



0 1 0 0

1 0 0 0

0 0 0 0

0 0 0 0


 � v2 =



0 0 1 0

0 0 0 0

1 0 0 0

0 0 0 0


 �

• Proving nonclosedness without our machinery is quite troublesome. The generators of � 
M∗� can be
chosen as


0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 1


 �




0 0 0 −1
0 0 0 1

0 0 2 0

−1 1 0 0


 �



0 0 1 1

0 2 1 0

1 1 0 0

1 0 0 0


 �



0 0 0 0

0 0 0 0

0 0 0 1

0 0 1 0


 �




0 −1 1 1

−1 0 3 0

1 3 0 0

1 0 0 0


 �

Let us call these matrices p1� � � � � p5 in the above order.
First, we must guess a matrix

w ∈ fr
K∗ +� 
M∗���

By inspection one may think ±v1 and ±v2 to be in fr
K∗ +� 
M∗�� because they both “look similar” to the
matrix w in Example 4.1, and in that example the set fr
K∗ +� 
M∗�� is symmetric around the origin. However,
not all these will work, since

−v2+p1+p2+p3 =



0 0 0 0

0 2 1 1

0 1 2 0

0 1 0 1


� 0�

so −v2 ∈K∗ +� 
M∗�.
Proving

v1 ∈ cl
K∗ +� 
M∗�� (A1)

is easy. Since

�
M�∩K =



⊕ 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0


 � (A2)

we obtain

cl
� 
M∗�+K∗�= 
�
M�∩K�∗ =



⊕ × × ×
× × × ×
× × × ×
× × × ×


 �

so (A1) follows. (We remark that it is so easy to calculate cl
� 
M∗�+K∗� only because �
M�∩K is generated
by one matrix, namely x̄; in general, it would be trickier to show (A1).)
Next, we verify

v1 �∈K∗ +� 
M∗�� (A3)

Assume to the contrary that

v1
 � �= v1+
5∑
i=1
 ipi � 0 for some  1� � � � � 5�

Let us focus only on a part of v1
 �, and denote the uninteresting components as well as components determined
by symmetry by “ ∗”:

v1
 � �=



0 − 5+ 1  3+ 5

∗

∗ 2 3
∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗


� 0� (A4)
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By positive semidefiniteness, we must have v1
 �12 = 0, hence  5 = 1. This, together with v1
 �13 = 0, implies
 3 =−1, but this leads to v1
 �22 =−2, a contradiction.
In comparison to the method based on the Main Theorem, we see that just proving v1 �∈ K∗ +� 
M∗� is as

hard as verifying F =mincone
�
M� ∩K�. However, the rest of the proof via the Main Theorem is routine,
whereas in the improvised method the other steps are just as involved, or more so.
Example A.2. Let M� �4→� 4, K =K∗ =� 4

+,

m1=



1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0


� m2=



0 1 0 0

1 −1 0 1

0 0 1 0

0 1 0 0


� m3=



0 0 1 0

0 1 0 0

1 0 −1 0

0 0 0 0


� m4=



0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0


�

Condition (iii) in the Main Theorem proves closedness of M∗K∗, since

x̄=



1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0


 ∈K ∩�
M�� and ū=



0 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


 ∈K∗ ∩� 
M∗�

are a strictly complementary pair. Hence F = face
x̄�K� is equal to mincone
�
M�∩K�, and �
M�∩ F �⊥ =
�
M�∩ linF is obvious: a matrix x=∑4

i=1 imi can belong to F
�⊥ (i.e., have its lower 3 by 3 principal minor

zero) only if  2 = 3 = 4 = 0.
In this example, we could not think of any reasonably short ad hoc argument to prove closedness.
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