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A Semidefinite Program (SDP)

sup, clx

(SDP)

Here
e A,, B are symmetric matrices, c,x € R™.

e A < B means that B — A is symmetric positive semidefinite
(psd).

e An n X n matrix Y is positive semidefinite, if all principal
subdeterminants are nonnegative.

e Equivalently, if v!Yv > 0Vv € R™.



Why is SDP important: applications in

e 0—1 Integer programming.

e Approx algorithms

e Chemical engineering

e Chemistry

e Coding theory

e Control theory

e Combinatorial opt

e Discrete geometry

e Eigenvalue optimization
e Facility planning

e Finance

e Geometric optimization

e GGlobal optimization

e Graph visualization

e Inventory theory

e Machine learning

e Matrix analysis

e PDEs

e Probability theory

e Robust optimization
e Signal processing

e Statistics

e Structural optimization



Why is SDP important: beautiful theory in

e Duality
e Interior point methods

e Geometry



Some nice pictures of SDP feasible sets




...and many interesting glitches

e Interior point methods do not work as well as in LP.

e Nor does duality theory.



SDP duality

The primal-dual pair of SDPs:

sup, clz infy BeY

A;oY =¢; (e =1,...

Easy: If , Y are feasible = ¢’z < BeY.
Ideally: 3z*, Y* such that c’z* = B e Y*.
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SDP duality

The primal-dual pair of SDPs:

sup, clz infy BeY

A;oY =¢c; (e =1,...,m).

Easy: If , Y are feasible = ¢’z < BeY.
Ideally: 3z*, Y* such that c’z* = B e Y*.

But: SDPs, unlike LPs can be pathological: nonattainment,
positive gaps.

Pathological SDPs often defeat SDP solvers.

Ben-Tal, Nemirovsky: “Is there something wrong with SDP
duality?”



Pathology # 1: nonattainment in dual

Primal:
sup 2x; & sup 2a;
01 10 1 —a4
s.t. 1 < s.t. ~ 0

10 00 —x; 0
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Pathology # 1: nonattainment in dual

Primal:
sup 2x; & sup 2a;
01 10 1 —x
s.t. x1 < s.t. ~ 0
10 00 —x; O

Only feasible x; is 1 = 0.
Dual: Dual variable is Y >~ 0.
inf yq;
Y11 1

s.t. ~ 0
1 yo2o

Unattained inf = 0 : y;; > 0O is feasible, but y;; = 0 is not.



Same story in pictures

Primal: Dual:
sup 2x; inf yq
s.t. —af:% >0 s.t. Yy11y22 > 1

Y11 = 0, y22 > 0.

Highest point on degenerate parabola vs. leftmost point on
hyperbola




Pathology # 2: positive duality gap

Primal:

Sup Io
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Pathology # 2: positive duality gap

Primal:

Sup Io

(1 0 0\ (0 01) (1 0 0)

st. 1 |000| +22]010 010

\0 00 \100/ \oo0o

Only feasible x5 is x5 = 0.

PN

Dual value is 1, and it is attained.
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Bad behavior defined

We are curious about the semidefinite system

(Psp) >_;2, ziAi = B
e We say that it is badly behaved if de such that
sup{clz|x € (Psp) } < +oo

but the dual program has no solution with same value

(i.e. dual does not attain, or positive gap).
e Well behaved, otherwise.
e A slackisZ=B—-)> .x;A; = 0.



Motivation

(20)= 6o

(100\ (001\ (100\

1 |000]| +x2|010 010

\0 0 0/ \100) \0 0 0/

are both badly behaved.

The systems

and
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Motivation

The systems

01 10
10 00

and

/100\ /001\ (100\

1 |000]| +x2|010 010

\000) \100) \0 0 0/

are both badly behaved.

PN

Curious similarity — of these, and about 20 others in the
literature ...1is there a combinatorial structure?
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Why all bad SDPs look the same

e Semidefinite system:

(Psp) > .. ,x;A; X B

e W.l.o.g. the max (rank) slack is
I. 0
00

Then (Psp) badly behaved < 3V a lin. combination of the
A; as

Vo v
V=" ", where Va; = 0, R(V}Y) € R(Va2).
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Why all bad SDPs look the same

e Semidefinite system:

(Psp) > .. ,x;A; X B

e W.l.o.g. the max (rank) slack is
I. 0
00

Then (Psp) badly behaved < 3V a lin. combination of the
A; as

T v
V=" "], where Va; = 0, R(V}5) Z R(V22).
Vip Ve
1% Z
—T—
01 10
o Ex: x4

10 00
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e Matrices Z,V prove that (Psp) is badly behaved.
e But: they do not provide a “bad” c objective function
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What is missing?

e Matrices Z,V prove that (Psp) is badly behaved.
e But: they do not provide a “bad” c objective function
e Nor a poly time, or easy to verify proof of bad behavior

e Aside: how do we prove that Ax — b is infeasible? — row
echelon form.

® We will borrow ideas from the row echelon form.
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(Psp) > ;- xiA; X B

are obtained by a sequence of:
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ible.

o A, +— z;n:l )\jAj where \; # 0

e Exchange A; and A;.



Reformulations of

(Psp) > ;- xiA; X B

are obtained by a sequence of:

e Apply a rotation VI ()V to all matrices, where V is invert-
ible.

eB«+ B+)> " uA
o A, +— z;n:l )\jAj where \; # 0
e Exchange A; and A;.

Mostly: just elementary row operations done on (D). E.g.
exchange constraints

A;eY =c; and AjeY = c;



Theorem: (Pgp) is badly behaved < it has a
reformulation:

F; O F, G, I, 0
(Psp,bad) Zf:l Lq -+ Z:’;kﬂ Lq =
00 G H; 00

where
i

1) Z is max slack; 2)
H;

) lin. indep. 3) H,, = 0



Theorem: (Pgp) is badly behaved < it has a

reformulation:
Peons) 5 F0) | s F; Gi\ _ (L0
SD,bad i—1 Li i—kt1 Li _
oo "\ et H, 0 0

where
i

H;

1) Z is max slack; 2) lin. indep. 3) H,, = 0

How to get there? Block (Gaussian elimination!

(Vec Al\ i (GiAHi)

— X 0
X X

Kvec A, )



Theorem: (Pgp) is badly behaved < it has a

reformulation:
Peons) 5 F0) | s F; Gi\ _ (L0
SD,bad i—1 Li i—kt1 Li _
oo "\ et H, 0 0

where
i

H;

1) Z is max slack; 2) lin. indep. 3) H,, = 0

Proof that (Psp.yqq) is badly behaved:

x feasible = zp,1 ==z, =0

= sup —x,, = 0

But: no dual soln with value 0



Example: before and after

6 10 19 32
<
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is badly behaved, but how do we tell?



Example: before and after

6 10 19 32
<

10 16 32 52

L1

is badly behaved, but how do we tell?

After reformulation:

01 10
L1 = ’
10 00

which is trivially badly behaved.



Large example: before reformulation

(54 46 50 4 \
46 —38 87 —106
50 87 —60 296
\4 —106 296 —368)
+4

(110 91 105 —6 )
91 —72 171 —210
105 171 —72 528

(36 30

\—2 —70 176 —224)

\—6 _210 528 —672)

35 —2

30 —24 57 —70
=

35 57 —24 176

Hard to tell if well or badly behaved

(42 35 40 0O

35 —28 67 —8
+a3

40 67 —36 21¢

\0 —82 216 —21

(389 323 370 —12
323 —257 610 —74
370 610 —288 192(

\—12 748 1920 —247



Large example: after reformulation

00)
00

00
00)

(21

10

OO\
00

00

[0

0

00
00)

(0 0
0 0

2 1)

3 —1

\1 —1

0 2
20)

0
0

3 —1)

2 —1

3

2

\—1 —1

4 0
00)

PN

(10

01

OO\
00

00
\00

As before: 3 = x4, =0 = sup—x4, =0

But: no dual solution with value 0

00
00)
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e Similar reformulation for well-behaved systems.
e The question:

Is (Psp) well behaved?

is in NP N coN P in real number model of computing.



Corollaries:

e Similar reformulation for well-behaved systems.
e The question:
Is (Psp) well behaved?
is in NP N coN P in real number model of computing.

e Certificate: reformulation, and proof that Z is max rank
slack.
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A “circular” proof
The bad part

(Psp) satisfies the ”Bad condition” (32, V) —
it has a ”Bad reformulation” (Psp pqq) —
it is badly behaved.
The good part
(Psp) satisfies the ” Good condition” —>
it has a ”Good reformulation” (Psp go0d) —>

it is well behaved.

Proof Linear algebra.
Tying it together
”(ood condition” fails —> ”Bad condition” holds.

Proof Duality theorem of SDP, assuming Slater condition.



Conclusion
e Pathologies in duality: well- and badly behaved semidefi-
nite (feasible) systems.
e Combinatorial type characterizations.

e Reformulations to easily recognize good and bad behavior
— NP M co— NP certificates.
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Thank youl!



