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A Semidefinite Program (SDP)

supx c
Tx

s.t.
∑m

i=1 xiAi � B.
(SDP )

Here

•Ai, B are symmetric matrices, c, x ∈ Rm.
•A � B means thatB −A is symmetric positive semidefinite

(psd).

• An n× n matrix Y is positive semidefinite, if all principal
subdeterminants are nonnegative.

• Equivalently, if vTY v ≥ 0∀v ∈ Rn.



Why is SDP important: applications in

• 0–1 Integer programming.

•Approx algorithms

•Chemical engineering

•Chemistry

•Coding theory

•Control theory

•Combinatorial opt

•Discrete geometry

• Eigenvalue optimization

• Facility planning

• Finance

•Geometric optimization

•Global optimization

•Graph visualization

• Inventory theory

•Machine learning

•Matrix analysis

• PDEs

• Probability theory

•Robust optimization

• Signal processing

• Statistics

• Structural optimization



Why is SDP important: beautiful theory in

•Duality

• Interior point methods

•Geometry



Some nice pictures of SDP feasible sets



. . . and many interesting glitches

• Interior point methods do not work as well as in LP.

•Nor does duality theory.



SDP duality

The primal-dual pair of SDPs:

supx c
Tx infY B • Y

s.t.
∑m

i=1 xiAi � B Y � 0

Ai • Y = ci (i = 1, . . . ,m).

Easy: If x, Y are feasible⇒ cTx ≤ B • Y.

Ideally: ∃x∗, Y ∗ such that cTx∗ = B • Y ∗.



SDP duality

The primal-dual pair of SDPs:

supx c
Tx infY B • Y

s.t.
∑m

i=1 xiAi � B Y � 0

Ai • Y = ci (i = 1, . . . ,m).

Easy: If x, Y are feasible⇒ cTx ≤ B • Y.

Ideally: ∃x∗, Y ∗ such that cTx∗ = B • Y ∗.

But: SDPs, unlike LPs can be pathological: nonattainment,
positive gaps.

Pathological SDPs often defeat SDP solvers.

Ben-Tal, Nemirovsky: “Is there something wrong with SDP
duality?”



Pathology # 1: nonattainment in dual

Primal:

sup 2x1 ⇔ sup 2x1
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−x1 0
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Pathology # 1: nonattainment in dual

Primal:

sup 2x1 ⇔ sup 2x1

s.t. x1

0 1

1 0

 �
1 0

0 0

 s.t.

 1 −x1

−x1 0

 � 0

Only feasible x1 is x1 = 0.

Dual: Dual variable is Y � 0.

inf y11

s.t.

y11 1

1 y22

 � 0

Unattained inf = 0 : y11 > 0 is feasible, but y11 = 0 is not.



Same story in pictures

Primal: Dual:

sup 2x1 inf y11

s.t. −x2
1 ≥ 0 s.t. y11y22 ≥ 1

y11 ≥ 0, y22 ≥ 0.

Highest point on degenerate parabola vs. leftmost point on
hyperbola



Pathology # 2: positive duality gap

Primal:

sup x2

s.t. x1


1 0 0

0 0 0

0 0 0

+ x2


0 0 1

0 1 0

1 0 0

 �


1 0 0

0 1 0

0 0 0


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Pathology # 2: positive duality gap

Primal:

sup x2

s.t. x1


1 0 0

0 0 0

0 0 0

+ x2


0 0 1

0 1 0

1 0 0

 �


1 0 0

0 1 0

0 0 0


Only feasible x2 is x2 = 0.

Dual value is 1, and it is attained.
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Bad behavior defined

We are curious about the semidefinite system

(PSD)
∑m

i=1 xiAi � B

•We say that it is badly behaved if ∃c such that

sup{ cTx |x ∈ (PSD) } < +∞

but the dual program has no solution with same value

(i.e. dual does not attain, or positive gap).

•Well behaved, otherwise.

•A slack is Z = B −
∑

i xiAi � 0.
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The systems

x1

0 1

1 0

 �
1 0

0 0


and

x1


1 0 0

0 0 0

0 0 0

+ x2


0 0 1

0 1 0

1 0 0

 �


1 0 0

0 1 0

0 0 0


are both badly behaved.

Curious similarity – of these, and about 20 others in the
literature . . . is there a combinatorial structure?
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Why all bad SDPs look the same

• Semidefinite system:

(PSD)
∑m

i=1 xiAi � B

•W.l.o.g. the max (rank) slack is

Z =

Ir 0

0 0

 .
Then (PSD) badly behaved⇔ ∃V a lin. combination of the
Ai as

V =


r︷︸︸︷
V11 V12

V T
12 V22

 , where V22 � 0, R(V T
12) 6⊆ R(V22).

• Ex: x1

V︷ ︸︸ ︷0 1

1 0

 �
Z︷ ︸︸ ︷1 0

0 0


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What is missing?

•Matrices Z, V prove that (PSD) is badly behaved.

• But: they do not provide a “bad” c objective function

•Nor a poly time, or easy to verify proof of bad behavior

•Aside: how do we prove that Ax = b is infeasible? → row
echelon form.

•We will borrow ideas from the row echelon form.



Reformulations of

(PSD)
∑m

i=1 xiAi � B

are obtained by a sequence of:

•Apply a rotation V T ()V to all matrices, where V is invert-
ible.

•B ← B +
∑m

i=1 µiAi

•Ai←
∑m

j=1 λjAj where λi 6= 0

• Exchange Ai and Aj.



Reformulations of

(PSD)
∑m

i=1 xiAi � B

are obtained by a sequence of:

•Apply a rotation V T ()V to all matrices, where V is invert-
ible.

•B ← B +
∑m

i=1 µiAi

•Ai←
∑m

j=1 λjAj where λi 6= 0

• Exchange Ai and Aj.

Mostly: just elementary row operations done on (D). E.g.
exchange constraints

Ai • Y = ci and Aj • Y = cj



Theorem: (PSD) is badly behaved ⇔ it has a
reformulation:

(PSD,bad)
∑k

i=1 xi

Fi 0

0 0

+
∑m

i=k+1 xi

 Fi Gi

GT
i Hi

 �
Ir 0

0 0

 = Z,

where

1) Z is max slack; 2)

Gi

Hi

 lin. indep. 3) Hm � 0
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(PSD,bad)
∑k

i=1 xi

Fi 0

0 0

+
∑m

i=k+1 xi

 Fi Gi

GT
i Hi

 �
Ir 0

0 0

 = Z,

where

1) Z is max slack; 2)

Gi

Hi

 lin. indep. 3) Hm � 0

How to get there? Block Gaussian elimination!


vecA1

...

vecAm

 →
( Fi︷ ︸︸ ︷ (Gi,Hi)︷ ︸︸ ︷
× 0
× ×

)



Theorem: (PSD) is badly behaved ⇔ it has a
reformulation:

(PSD,bad)
∑k

i=1 xi

Fi 0

0 0

+
∑m

i=k+1 xi

 Fi Gi

GT
i Hi

 �
Ir 0

0 0

 = Z,

where

1) Z is max slack; 2)

Gi

Hi

 lin. indep. 3) Hm � 0

Proof that (PSD,bad) is badly behaved:

x feasible ⇒ xk+1 = · · · = xm = 0

⇒ sup−xm = 0

But: no dual soln with value 0



Example: before and after

x1

 6 10

10 16

 �
19 32

32 52


is badly behaved, but how do we tell?



Example: before and after

x1

 6 10

10 16

 �
19 32

32 52


is badly behaved, but how do we tell?

After reformulation:

x1

0 1

1 0

 �
1 0

0 0

 ,
which is trivially badly behaved.



Large example: before reformulation

x1


54 46 50 4

46 −38 87 −106

50 87 −60 296

4 −106 296 −368

+x2


110 91 105 −6

91 −72 171 −210

105 171 −72 528

−6 −210 528 −672

+x3


42 35 40 0

35 −28 67 −82

40 67 −36 216

0 −82 216 −272



+x4


36 30 35 −2

30 −24 57 −70

35 57 −24 176

−2 −70 176 −224

 �


389 323 370 −12

323 −257 610 −748

370 610 −288 1920

−12 −748 1920 −2432


Hard to tell if well or badly behaved



Large example: after reformulation

x1


0 1 0 0

1 −2 0 0

0 0 0 0

0 0 0 0

+x2


2 1 0 0

1 0 0 0

0 0 0 0

0 0 0 0

+x3


0 0 2 1

0 0 3 −1

2 3 0 2

1 −1 2 0



+x4


0 0 3 −1

0 0 2 −1

3 2 4 0

−1 −1 0 0

 �


1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0


As before: x3 = x4 = 0⇒ sup−x4 = 0

But: no dual solution with value 0
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Corollaries:

• Similar reformulation for well-behaved systems.

• The question:

Is (PSD) well behaved?

is in NP ∩ coNP in real number model of computing.

•Certificate: reformulation, and proof that Z is max rank
slack.
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A “circular” proof

The bad part

(PSD) satisfies the ”Bad condition”(∃Z, V ) =⇒

it has a ”Bad reformulation”(PSD,bad) =⇒

it is badly behaved.

The good part

(PSD) satisfies the ”Good condition” =⇒

it has a ”Good reformulation”(PSD,good) =⇒

it is well behaved.

Proof Linear algebra.

Tying it together

”Good condition” fails =⇒ ”Bad condition” holds.

Proof Duality theorem of SDP, assuming Slater condition.



Conclusion

• Pathologies in duality: well- and badly behaved semidefi-
nite (feasible) systems.

•Combinatorial type characterizations.

•Reformulations to easily recognize good and bad behavior
→ NP ∩ co−NP certificates.



Papers

• P: On the closedness of the linear image of a closed convex
cone,

2007, Math. of OR

• P: Bad semidefinite programs: they all look the same,

2010–SIOPT 2017

• P: Characterizing bad semidefinite programs: normal forms
and short proofs

SIAM Review, to appear

•Others in a similar vein, with co-authors Minghui Liu, Yuz-
ixuan Zhu, Quoc Tran-Dinh: http://gaborpataki.web.unc.edu/



Thank you!


