Combinatorial Characterizations in Semidefinite Programming Duality: how Elementary Row Operations Help

Gábor Pataki

Department of Statistics and Operations Research UNC Chapel Hill

> Talk at the CAM Colloquium University of Chicago, October 2019

A Semidefinite Program (SDP)

$$egin{array}{lll} \sup_x \ c^T x \ s.t. \ \sum_{i=1}^m x_i A_i \preceq B. \end{array} \ (SDP) \end{array}$$

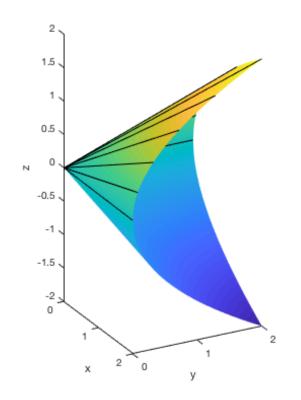
Here

- A_i, B are symmetric matrices, $c, x \in \mathbb{R}^m$.
- $A \leq B$ means that B A is symmetric positive semidefinite (psd).
- An $n \times n$ matrix Y is positive semidefinite, if all principal subdeterminants are nonnegative.
- Equivalently, if $v^T Y v \ge 0 \, \forall v \in \mathbb{R}^n$.

Some nice pictures of SDP feasible sets, 1

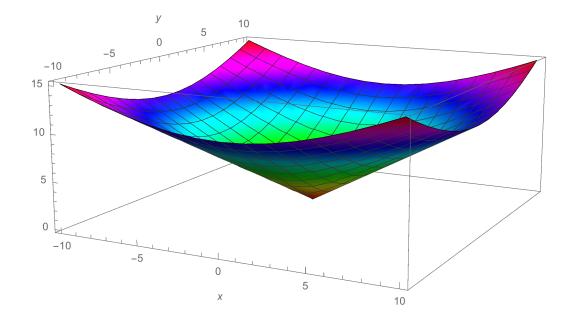
Picture of 2×2 psd cone:

$$igg\{(x,y,z): egin{pmatrix} x & z \ z & y \end{pmatrix} \succeq 0 igg\}$$



Some nice pictures of SDP feasible sets, 2

$$igg\{(x,y,z): zI \succeq egin{pmatrix} x+1 & -y \ -y & -x+1 \end{pmatrix}igg\}$$



Why is SDP important: $LP \subseteq SDP \subseteq Convex Optimization$

LP (Linear Program) as SDP:

- If A_i and B are diagonal \Rightarrow so is $B \sum_{i=1}^m x_i A_i$.
- So it is psd iff diagonal elements are nonnegative.
- So LP can be modeled as SDP.

Why is SDP important: LP \subseteq SDP \subseteq Convex Optimization

LP (Linear Program) as SDP:

- If A_i and B are diagonal \Rightarrow so is $B \sum_{i=1}^m x_i A_i$.
- So it is psd iff diagonal elements are nonnegative.
- So LP can be modeled as SDP.

SDP is a convex problem:

• Feasible set is convex, since set of psd matrices is.

Why is SDP important: applications in

- 0–1 Integer programming.
- Approx algorithms
- Chemical engineering
- Chemistry
- Coding theory
- Control theory
- Combinatorial opt
- Discrete geometry
- Eigenvalue optimization
- Facility planning
- Finance
- Geometric optimization

- Global optimization
- Graph visualization
- Inventory theory
- Machine learning
- Matrix analysis
- PDEs
- Probability theory
- Robust optimization
- Signal processing
- Statistics
- Structural optimization

Why is SDP important: beautiful theory in

- Duality
- Interior point methods
- Geometry

... and many interesting glitches

- Interior point methods do not work as well as in LP.
- Nor does duality theory.

SDP in a different shape

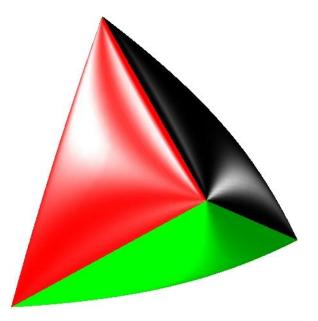
 $egin{aligned} &\inf_Y \; B ullet Y \ &s.t. \; Y \succeq 0 \ & A_i ullet Y = c_i \, (i=1,\ldots,m). \end{aligned}$

Here

- A_i, B are symmetric matrices, $c \in \mathbb{R}^m$.
- $ullet A ullet B = \sum_{i,j} a_{ij} b_{ij}$
- Example: $\{Y \succeq 0 \mid y_{ii} = 1\}$ the set of correlation matrices.

3 by 3 correlation matrices

The set
$$\{ (x, y, z) \mid \begin{pmatrix} 1 & x & y \\ x & 1 & z \\ y & z & 1 \end{pmatrix} \succeq 0 \}$$



SDP duality

The primal-dual pair of SDPs:

$$egin{aligned} \sup_x \ c^T x & \inf_Y \ Bullet Y \ s.t. \ \sum_{i=1}^m x_i A_i \preceq B & Y \succeq 0 \ A_i ullet Y & = c_i \ (i=1,\ldots,m). \end{aligned}$$

Easy: If x, Y are feasible $\Rightarrow c^T x \leq B \bullet Y$. Ideally: $\exists x^*, Y^*$ such that $c^T x^* = B \bullet Y^*$.

SDP duality

The primal-dual pair of SDPs:

$$egin{aligned} \sup_x \ c^T x & \inf_Y \ Bullet Y \ s.t. \ \sum_{i=1}^m x_i A_i \preceq B & Y \succeq 0 \ A_i ullet Y & = c_i \ (i=1,\ldots,m). \end{aligned}$$

Easy: If x, Y are feasible $\Rightarrow c^T x \leq B \bullet Y$.

Ideally: $\exists x^*, Y^*$ such that $c^T x^* = B \bullet Y^*$.

But: SDPs, unlike LPs can be pathological: nonattainment, positive gaps.

Pathological SDPs often defeat SDP solvers.

Ben-Tal, Nemirovsky: "Is there something wrong with SDP duality?"

Primal:

$$\sup 2x_1 \qquad \Leftrightarrow \ \sup 2x_1 \ s.t. \ x_1 \begin{pmatrix} 0 \ 1 \ 0 \end{pmatrix} \preceq \begin{pmatrix} 1 \ 0 \ 0 \end{pmatrix} \qquad s.t. \ \begin{pmatrix} 1 \ -x_1 \ -x_1 \end{pmatrix} \succeq 0$$

Primal:

$$\sup 2x_1 \qquad \Leftrightarrow \ \sup 2x_1 \ s.t. \ x_1 \begin{pmatrix} 0 \ 1 \ 0 \end{pmatrix} \preceq \begin{pmatrix} 1 \ 0 \ 0 \end{pmatrix} \qquad s.t. \ \begin{pmatrix} 1 \ -x_1 \ -x_1 \end{pmatrix} \succeq 0$$

Only feasible x_1 is $x_1 = 0$.

Primal:

$$\sup 2x_1 \qquad \Leftrightarrow \ \sup 2x_1 \ s.t. \ x_1 \begin{pmatrix} 0 \ 1 \ 0 \end{pmatrix} \preceq \begin{pmatrix} 1 \ 0 \ 0 \end{pmatrix} \qquad s.t. \ \begin{pmatrix} 1 \ -x_1 \ -x_1 \end{pmatrix} \succeq 0$$

Only feasible x_1 is $x_1 = 0$.

Dual: Dual variable is $Y \succeq 0$.

$$egin{array}{lll} ext{inf} & y_{11} \ s.t. & egin{pmatrix} y_{11} & 1 \ 1 & y_{22} \end{pmatrix} \succeq 0 \ \end{array}$$

Primal:

$$\sup 2x_1 \qquad \Leftrightarrow \ \sup 2x_1 \ s.t. \ x_1 \begin{pmatrix} 0 \ 1 \ 0 \end{pmatrix} \preceq \begin{pmatrix} 1 \ 0 \ 0 \end{pmatrix} \qquad s.t. \ \begin{pmatrix} 1 \ -x_1 \ -x_1 \end{pmatrix} \succeq 0$$

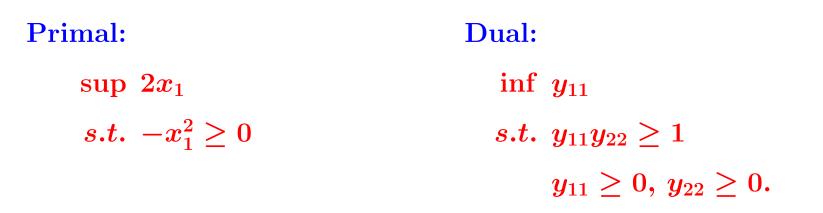
Only feasible x_1 is $x_1 = 0$.

Dual: Dual variable is $Y \succeq 0$.

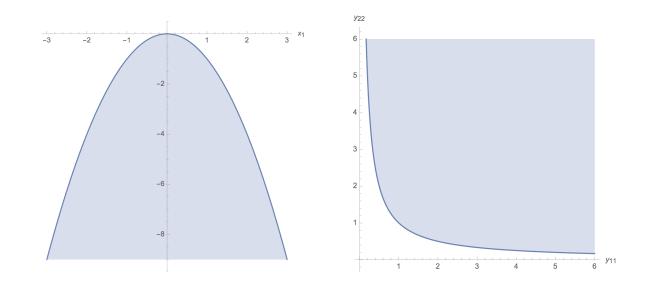
$$egin{array}{lll} ext{inf} & y_{11} \ s.t. & egin{pmatrix} y_{11} & 1 \ 1 & y_{22} \end{pmatrix} \succeq 0 \end{array}$$

Unattained $\inf = 0$: $y_{11} > 0$ is feasible, but $y_{11} = 0$ is not.

Same story in pictures

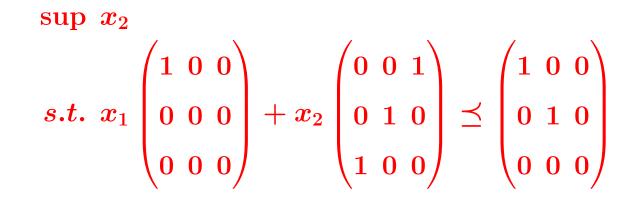


Highest point on degenerate parabola vs. leftmost point on hyperbola



Pathology # 2: positive duality gap

Primal:



Pathology # 2: positive duality gap

Primal:

$$\begin{array}{c} \sup \ x_2 \\ s.t. \ x_1 \begin{pmatrix} 1 \ 0 \ 0 \\ 0 \ 0 \ 0 \\ 0 \ 0 \ 0 \end{pmatrix} + x_2 \begin{pmatrix} 0 \ 0 \ 1 \\ 0 \ 1 \ 0 \\ 1 \ 0 \ 0 \end{pmatrix} \preceq \begin{pmatrix} 1 \ 0 \ 0 \\ 0 \ 1 \ 0 \\ 0 \ 0 \ 0 \end{pmatrix}$$

Only feasible x_2 is $x_2 = 0$.

Pathology # 2: positive duality gap

Primal:

$$\sup x_2 = x_1 \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} + x_2 \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix} \preceq \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

Only feasible x_2 is $x_2 = 0$.

Dual value is 1, and it is attained.

Bad behavior defined

We are curious about the semidefinite system

 $(P_{SD}) \sum_{i=1}^m x_i A_i \preceq B$

Bad behavior defined

We are curious about the semidefinite system

 $(P_{SD}) \sum_{i=1}^m x_i A_i \preceq B$

• We say that it is badly behaved if $\exists c$ such that $\sup\{c^T x \mid x \in (P_{SD})\} < +\infty$

but the dual program has no solution with same value (i.e. dual does not attain, or positive gap).

- Well behaved, otherwise.
- A slack is $Z = B \sum_i x_i A_i \succeq 0$.

Motivation

The systems

$$x_1 egin{pmatrix} 0 & 1 \ 1 & 0 \end{pmatrix} \preceq egin{pmatrix} 1 & 0 \ 0 & 0 \end{pmatrix}$$

and

$$x_1 egin{pmatrix} 1 & 0 & 0 \ 0 & 0 & 0 \ 0 & 0 & 0 \end{pmatrix} + x_2 egin{pmatrix} 0 & 0 & 1 \ 0 & 1 & 0 \ 1 & 0 & 0 \end{pmatrix} \preceq egin{pmatrix} 1 & 0 & 0 \ 0 & 1 & 0 \ 0 & 0 & 0 \end{pmatrix}$$

are both badly behaved.

Motivation

The systems

$$x_1 egin{pmatrix} 0 & 1 \ 1 & 0 \end{pmatrix} \preceq egin{pmatrix} 1 & 0 \ 0 & 0 \end{pmatrix}$$

and

$$x_1egin{pmatrix} 1 & 0 & 0 \ 0 & 0 & 0 \ 0 & 0 & 0 \end{pmatrix}+x_2egin{pmatrix} 0 & 0 & 1 \ 0 & 1 & 0 \ 1 & 0 & 0 \end{pmatrix} \preceq egin{pmatrix} 1 & 0 & 0 \ 0 & 1 & 0 \ 0 & 1 & 0 \ 0 & 0 & 0 \end{pmatrix}$$

are both badly behaved.

Curious similarity – of these, and about 20 others in the literature

• Semidefinite system:

 $(P_{SD}) \quad \sum_{i=1}^m x_i A_i \preceq B$

• W.l.o.g. the max (rank) slack is

 $Z=egin{pmatrix} I_r & 0 \ 0 & 0 \end{pmatrix}.$

• Semidefinite system:

 $(P_{SD}) \quad \sum_{i=1}^m x_i A_i \preceq B$

- W.l.o.g. the max (rank) slack is $Z = \begin{pmatrix} I_r & 0 \\ 0 & 0 \end{pmatrix}.$
- Then (P_{SD}) badly behaved $\Leftrightarrow \exists V$ a lin. combination of the A_i as

$$V = egin{pmatrix} \stackrel{r}{V_{11}} V_{12} \ V_{12} \ V_{12}^T V_{22} \end{pmatrix}, ext{ where } V_{22} \succeq 0, ext{ R}(V_{12}^T)
ot \subseteq ext{ R}(V_{22}).$$

• Semidefinite system:

$$(P_{SD}) \quad \sum_{i=1}^m x_i A_i \preceq B$$

• W.l.o.g. the max (rank) slack is $Z = \begin{pmatrix} I_r & 0 \\ 0 & 0 \end{pmatrix}.$

Then (P_{SD}) badly behaved $\Leftrightarrow \exists V$ a lin. combination of the A_i as

$$V = egin{pmatrix} \stackrel{r}{\overbrace{V_{11}}} V_{12} \ V_{12} \ V_{12}^T \ V_{22} \end{pmatrix}, ext{ where } V_{22} \succeq 0, ext{ R}(V_{12}^T)
ot \subseteq ext{ R}(V_{22}).$$

• Ex:
$$x_1 \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \preceq \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$$

• Semidefinite system:

$$(P_{SD}) \quad \sum_{i=1}^m x_i A_i \preceq B$$

• W.l.o.g. the max (rank) slack is $Z = \begin{pmatrix} I_r & 0 \\ 0 & 0 \end{pmatrix}.$

Then (P_{SD}) badly behaved $\Leftrightarrow \exists V$ a lin. combination of the A_i as

$$V = egin{pmatrix} \stackrel{r}{\overbrace{V_{11}}} V_{12} \ V_{12} \ V_{12}^T \ V_{22} \end{pmatrix}, ext{ where } V_{22} \succeq 0, ext{ R}(V_{12}^T)
ot \subseteq ext{ R}(V_{22}).$$

• Ex:
$$x_1 \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \preceq \overbrace{\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}}^Z$$

• Semidefinite system:

$$(P_{SD}) \quad \sum_{i=1}^m x_i A_i \preceq B$$

• W.l.o.g. the max (rank) slack is $Z = \begin{pmatrix} I_r & 0 \\ 0 & 0 \end{pmatrix}.$

Then (P_{SD}) badly behaved $\Leftrightarrow \exists V$ a lin. combination of the A_i as

$$V = egin{pmatrix} \overrightarrow{V_{11}} & V_{12} \ V_{12} & V_{12} \end{pmatrix}, ext{ where } V_{22} \succeq 0, ext{ R}(V_{12}^T)
ot \subseteq ext{ R}(V_{22}).$$

• Ex:
$$x_1 \overbrace{\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}}^V \preceq \overbrace{\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}}^Z$$

- Matrices Z, V prove that (P_{SD}) is badly behaved.
- But: they do not provide a "bad" *c* objective function
- Nor a poly time, or easy to verify proof of bad behavior

- Matrices Z, V prove that (P_{SD}) is badly behaved.
- But: they do not provide a "bad" *c* objective function
- Nor a poly time, or easy to verify proof of bad behavior
- Aside: how do we prove that Ax = b is infeasible?

- Matrices Z, V prove that (P_{SD}) is badly behaved.
- But: they do not provide a "bad" *c* objective function
- Nor a poly time, or easy to verify proof of bad behavior
- Aside: how do we prove that Ax = b is infeasible? \rightarrow row echelon form.

- Matrices Z, V prove that (P_{SD}) is badly behaved.
- But: they do not provide a "bad" *c* objective function
- Nor a poly time, or easy to verify proof of bad behavior
- Aside: how do we prove that Ax = b is infeasible? \rightarrow row echelon form.
- We will borrow ideas from the row echelon form.

Reformulations of

 $(P_{SD}) \sum_{i=1}^m x_i A_i \preceq B$

are obtained by a sequence of:

- Apply a rotation $V^T()V$ to all matrices, where V is invertible.
- $B \leftarrow B + \sum_{i=1}^m \mu_i A_i$
- $A_i \leftarrow \sum_{j=1}^m \lambda_j A_j ext{ where } \lambda_i
 eq 0$
- Exchange A_i and A_j .

Reformulations of

 $(P_{SD}) \sum_{i=1}^m x_i A_i \preceq B$

are obtained by a sequence of:

- Apply a rotation $V^T()V$ to all matrices, where V is invertible.
- $B \leftarrow B + \sum_{i=1}^m \mu_i A_i$
- $A_i \leftarrow \sum_{j=1}^m \lambda_j A_j$ where $\lambda_i \neq 0$
- Exchange A_i and A_j .

Mostly: just elementary row operations done on (D). E.g. exchange constraints

 $A_i \bullet Y = c_i$ and $A_j \bullet Y = c_j$

Theorem: (P_{SD}) is badly behaved \Leftrightarrow it has a reformulation:

$$(P_{SD,bad}) \sum_{i=1}^k x_i egin{pmatrix} F_i & 0 \\ 0 & 0 \end{pmatrix} + \sum_{i=k+1}^m x_i egin{pmatrix} F_i & G_i \\ G_i^T & H_i \end{pmatrix} \preceq egin{pmatrix} I_r & 0 \\ 0 & 0 \end{pmatrix} = Z,$$
 where

1) Z is max slack; 2) $\begin{pmatrix} G_i \\ H_i \end{pmatrix}$ lin. indep. 3) $H_m \succeq 0$

Theorem: (P_{SD}) is badly behaved \Leftrightarrow it has a reformulation:

$$(P_{SD,bad}) \sum_{i=1}^{k} x_i \begin{pmatrix} F_i & 0 \\ 0 & 0 \end{pmatrix} + \sum_{i=k+1}^{m} x_i \begin{pmatrix} F_i & G_i \\ G_i^T & H_i \end{pmatrix} \preceq \begin{pmatrix} I_r & 0 \\ 0 & 0 \end{pmatrix} = Z,$$
 where

1)
$$Z$$
 is max slack; 2) $\begin{pmatrix} G_i \\ H_i \end{pmatrix}$ lin. indep. 3) $H_m \succeq 0$

How to get there? Block Gaussian elimination!

$$egin{pmatrix} \operatorname{vec} A_1 \ dots \ \operatorname{vec} A_m \end{pmatrix}
ightarrow egin{pmatrix} F_i & (G_i, H_i) \ imes & 0 \ imes & imes \end{pmatrix}
ightarrow egin{pmatrix} \operatorname{vec} A_m \end{pmatrix}
ightarrow egin{pmatrix} \operatorname{vec} A_m \end{pmatrix}
ightarrow egin{pmatrix} F_i & (G_i, H_i) \ imes & 0 \ imes & imes \end{pmatrix}$$

Theorem: (P_{SD}) is badly behaved \Leftrightarrow it has a reformulation:

$$(P_{SD,bad}) \sum_{i=1}^{k} x_i egin{pmatrix} F_i & 0 \\ 0 & 0 \end{pmatrix} + \sum_{i=k+1}^{m} x_i egin{pmatrix} F_i & G_i \\ G_i^T & H_i \end{pmatrix} \preceq egin{pmatrix} I_r & 0 \\ 0 & 0 \end{pmatrix} = Z,$$
 where

1)
$$Z$$
 is max slack; 2) $\begin{pmatrix} G_i \\ H_i \end{pmatrix}$ lin. indep. 3) $H_m \succeq 0$

Proof that $(P_{SD,bad})$ is badly behaved:

$$x ext{ feasible } \Rightarrow \ x_{k+1} = \dots = x_m = 0$$

$$\Rightarrow \qquad \sup -x_m = 0$$

But: no dual soln with value 0

Example: before and after

$$x_1 egin{pmatrix} 6 & 10 \ 10 & 16 \end{pmatrix} ec egin{pmatrix} 19 & 32 \ 32 & 52 \end{pmatrix}$$

is badly behaved, but how do we tell?

Example: before and after

$$egin{array}{ccc} x_1 egin{pmatrix} 6 & 10 \ 10 & 16 \end{pmatrix} ect egin{pmatrix} 19 & 32 \ 32 & 52 \end{pmatrix}$$

is badly behaved, but how do we tell?

After reformulation:

$$x_1egin{pmatrix} 0&1\ 1&0\end{pmatrix} \preceq egin{pmatrix} 1&0\ 0&0\end{pmatrix},$$

which is trivially badly behaved.

Large example: before reformulation

$$x_{1} \begin{pmatrix} 54 & 46 & 50 & 4 \\ 46 & -38 & 87 & -106 \\ 50 & 87 & -60 & 296 \\ 4 & -106 & 296 & -368 \end{pmatrix} + x_{2} \begin{pmatrix} 110 & 91 & 105 & -6 \\ 91 & -72 & 171 & -210 \\ 105 & 171 & -72 & 528 \\ -6 & -210 & 528 & -672 \end{pmatrix} + x_{3} \begin{pmatrix} 42 & 35 & 40 & 0 \\ 35 & -28 & 67 & -8 \\ 40 & 67 & -36 & 216 \\ 0 & -82 & 216 & -27 \\ 0 & -82 & 216 & -27 \\ 30 & -24 & 57 & -70 \\ 35 & 57 & -24 & 176 \\ -2 & -70 & 176 & -224 \end{pmatrix} \preceq \begin{pmatrix} 389 & 323 & 370 & -12 \\ 323 & -257 & 610 & -74 \\ 370 & 610 & -288 & 1920 \\ -12 & -748 & 1920 & -243 \end{pmatrix}$$

Hard to tell if well or badly behaved

Large example: after reformulation

As before: $x_3 = x_4 = 0 \Rightarrow \sup -x_4 = 0$

But: no dual solution with value 0

• Similar reformulation for well-behaved systems.

- Similar reformulation for well-behaved systems.
- The question:
 - Is (P_{SD}) well behaved?

is in $NP \cap coNP$ in real number model of computing.

- Similar reformulation for well-behaved systems.
- The question:
 - Is (P_{SD}) well behaved?
 - is in $NP \cap coNP$ in real number model of computing.
- \bullet Certificate: reformulation, and proof that Z is max rank slack.

- Similar reformulation for well-behaved systems.
- The question:
 - Is (P_{SD}) well behaved?
 - is in $NP \cap coNP$ in real number model of computing.
- \bullet Certificate: reformulation, and proof that Z is max rank slack.

How about proving infeasibility? This part is joint with Minghui Liu. Semidefinite System (spectrahedron)

$$egin{aligned} A_i ullet X &= b_i \, (i=1,\ldots,m) \ X \succeq 0 \end{aligned}$$

Semidefinite System (spectrahedron)

$$egin{aligned} A_i ullet X &= b_i \, (i = 1, \dots, m) \ & X \succeq 0 \end{aligned}$$

Here

• A_i are symmetric matrices.

• $A \bullet B = \sum_{i,j} a_{ij} b_{ij}$.

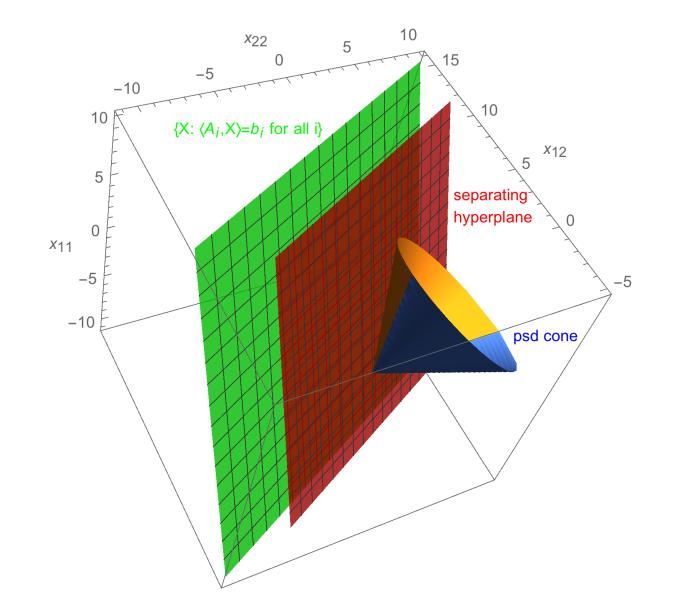
Semidefinite System (spectrahedron)

$$egin{array}{lll} A_i ullet X &= b_i \, (i=1,\ldots,m) \ & X \succeq 0 \end{array}$$

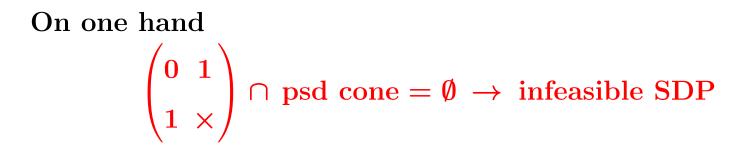
Here

- A_i are symmetric matrices.
- $A \bullet B = \sum_{i,j} a_{ij} b_{ij}$.
- Thorny issue: How to prove infeasibility?

Preferable way: by a separating hyperplane



Such a hyperplane may not exist!



Such a hyperplane may not exist!

On one hand

$$\begin{pmatrix} 0 & 1 \\ 1 & \times \end{pmatrix} \cap \text{psd cone} = \emptyset \to \text{ infeasible SDP}$$

On the other hand

$$\begin{pmatrix} \epsilon & 1 \\ 1 & 1/\epsilon \end{pmatrix} \succeq 0 \,\forall \, \epsilon > 0 \ \rightarrow \ \text{no separating hyperplane}$$

Such a hyperplane may not exist!

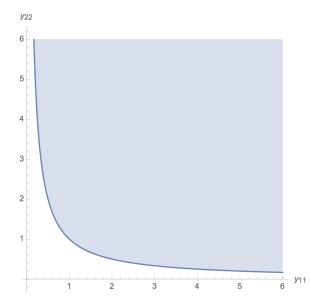
On one hand

$$\begin{pmatrix} 0 & 1 \\ 1 & \times \end{pmatrix} \cap \text{psd cone} = \emptyset \to \text{ infeasible SDP}$$

On the other hand

$$\begin{pmatrix} \epsilon & 1 \\ 1 & 1/\epsilon \end{pmatrix} \succeq 0 \,\forall \, \epsilon > 0 \ \rightarrow \ \text{no separating hyperplane}$$

That hyperbola again ...



Literature: exact certificates of infeasibility

- Ramana 1995
- Ramana, Tuncel, Wolkowicz, 1997
- Klep, Schweighofer 2013
- Waki, Muramatsu 2013: variant of facial reduction of
- Borwein, Wolkowicz 1981
- These are more involved than a separating hyperplane

Ideas from Gaussian elimination

• Goal: Find an exact certificate of infeasibility that is "almost" as simple as a a separating hyperplane.

Ideas from Gaussian elimination

- Goal: Find an exact certificate of infeasibility that is "almost" as simple as a a separating hyperplane.
- How do we prove that Ax = b is infeasible? \rightarrow row echelon form.

Ideas from Gaussian elimination

- Goal: Find an exact certificate of infeasibility that is "almost" as simple as a a separating hyperplane.
- How do we prove that Ax = b is infeasible? \rightarrow row echelon form.
- We will borrow ideas from the row echelon form.

Infeasible example, and proof of infeasibility

Infeasible example, and proof of infeasibility

• Suppose X feasible
$$\Rightarrow X_{11} = 0$$

 $\Rightarrow X_{12} = X_{13} = 0$
 $\Rightarrow X_{22} = -1$

Infeasible example, and proof of infeasibility

• Suppose X feasible
$$\Rightarrow X_{11} = 0$$

 $\Rightarrow X_{12} = X_{13} = 0$
 $\Rightarrow X_{22} = -1$

• Main idea: We will find such a structure in every infeasible semidefinite system.

Reformulation

$$egin{array}{lll} A_i ullet X &= b_i \ (i=1,\ldots,m) \ X \succeq 0 \end{array}$$

- We obtain a reformulation of (P) by a sequence of the following:
- (1) Elementery row operations on the equations. (2) $A_i \leftarrow V^T A_i V$ (i = 1, ..., m), where V is invertible.
- \bullet (1) is inherited from Gaussian elimination.

Reformulation

$$egin{array}{lll} A_i ullet X &= b_i \ (i=1,\ldots,m) \ X \succeq 0 \end{array}$$

- We obtain a reformulation of (P) by a sequence of the following:
- (1) Elementery row operations on the equations. (2) $A_i \leftarrow V^T A_i V \ (i = 1, ..., m)$, where V is invertible.
- \bullet (1) is inherited from Gaussian elimination.
- Fact: Reformulations preserve (in)feasibility.

Some linear algebra

$$egin{pmatrix} I_r & 0 \ 0 & 0 \end{pmatrix} ullet X = 0, \ X \succeq 0 \ \Rightarrow ?$$

Some linear algebra

$$egin{pmatrix} I_r & 0 \ 0 & 0 \end{pmatrix} ullet X = 0, \, X \succeq 0 \, \Rightarrow \, X = egin{pmatrix} 0_r & 0 \ 0 & X_{22} \end{pmatrix}, \, X_{22} \succeq 0. \end{split}$$

$$egin{aligned} A_i' ullet X &= 0 \ (i=1,\ldots,k) \ A_{k+1}' ullet X &= -1 \ & (\mathrm{P}_{\mathrm{ref}}) \ & dots \ X \succeq 0 \end{aligned}$$

where $k \geq 0$, and for $i = 1, \ldots, k + 1$ the A'_i look like

with $r_1,\ldots,r_{k+1}\geq 0$.

$$egin{aligned} A_i' ullet X &= 0 \ (i=1,\ldots,k) \ A_{k+1}' ullet X &= -1 \ & (\mathrm{P}_{\mathrm{ref}}) \ & dots \ X \succeq 0 \end{aligned}$$

where $k \geq 0$, and for $i = 1, \ldots, k + 1$ the A'_i look like

$$A_1' = egin{pmatrix} r_1 & n-r_1 \ I & 0 \ 0 & 0 \end{pmatrix}, \ A_i' = egin{pmatrix} r_1+...+r_{i-1} & r_i & n-r_1-...-r_i \ imes & imes & imes \ imes & imes \ imes & imes \ imes & imes \ imes \$$

with $r_1,\ldots,r_{k+1}\geq 0$.

Proof of " \Leftarrow " :

$$egin{aligned} A_i' ullet X &= 0 \ (i=1,\ldots,k) \ A_{k+1}' ullet X &= -1 \ & (\mathrm{P}_{\mathrm{ref}}) \ & dots \ X \succeq 0 \end{aligned}$$

where $k \geq 0$, and for $i = 1, \ldots, k + 1$ the A'_i look like

$$A_1' = egin{pmatrix} r_1 & n-r_1 \ I & 0 \ 0 & 0 \end{pmatrix}, \ A_i' = egin{pmatrix} r_1+...+r_{i-1} & r_i & n-r_1-...-r_i \ imes & imes & imes \ imes & imes \ imes & imes \ imes & imes \ imes \$$

with $r_1,\ldots,r_{k+1}\geq 0$.

Proof of " \Leftarrow ": Suppose that X feasible in (P_{ref})

$$egin{aligned} A_i' ullet X &= 0 \ (i=1,\ldots,k) \ A_{k+1}' ullet X &= -1 \ & (\mathrm{P}_{\mathrm{ref}}) \ & dots \ X \succeq 0 \end{aligned}$$

where $k \geq 0$, and for $i = 1, \ldots, k + 1$ the A'_i look like

$$A_1' = egin{pmatrix} r_1 & n-r_1 \ \hline I & 0 \ 0 & 0 \ \end{pmatrix}, \ A_i' = egin{pmatrix} r_1+...+r_{i-1} & r_i & n-r_1-...-r_i \ \hline imes & imes & imes \ imes \ imes & imes \ imes \ imes & imes \ imes \$$

with $r_1,\ldots,r_{k+1}\geq 0$.

Proof of " \Leftarrow ": Suppose that X feasible in (Pref) \Rightarrow first r_1 rows of X are 0

$$egin{aligned} A_i' ullet X &= 0 \ (i=1,\ldots,k) \ A_{k+1}' ullet X &= -1 \ & (\mathrm{P}_{\mathrm{ref}}) \ & dots \ X \succeq 0 \end{aligned}$$

where $k \geq 0$, and for $i = 1, \ldots, k + 1$ the A'_i look like

$$A_1' = egin{pmatrix} r_1 & n-r_1 \ \hline I & 0 \ 0 & 0 \ \end{pmatrix}, \ A_i' = egin{pmatrix} r_1+...+r_{i-1} & r_i & n-r_1-...-r_i \ \hline imes & imes & imes \ imes \ imes & imes \ imes \ imes & imes \ imes \$$

with $r_1,\ldots,r_{k+1}\geq 0$.

Proof of " \Leftarrow ": Suppose that X feasible in (P_{ref}) \Rightarrow first r_1 rows of X are 0

 \Rightarrow first $r_1 + \ldots + r_k$ rows of X are 0

$$egin{aligned} A_i' ullet X &= 0 \ (i=1,\ldots,k) \ A_{k+1}' ullet X &= -1 \ & (\mathrm{P}_{\mathrm{ref}}) \ & dots \ X \succeq 0 \end{aligned}$$

where $k \geq 0$, and for $i = 1, \ldots, k + 1$ the A'_i look like

$$A_1' = egin{pmatrix} r_1 & n-r_1 \ I & 0 \ 0 & 0 \end{pmatrix}, \ A_i' = egin{pmatrix} r_1+...+r_{i-1} & r_i & n-r_1-...-r_i \ imes & imes & imes \ imes & imes \ imes & imes \ imes & imes \ imes \$$

with $r_1,\ldots,r_{k+1}\geq 0$.

Proof of " \Leftarrow ": Suppose that X feasible in (P_{ref}) \Rightarrow first r_1 rows of X are 0

. . .

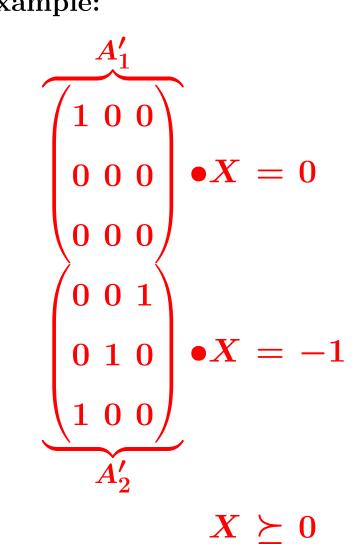
$$\Rightarrow \text{ first } r_1 + \ldots + r_k \text{ rows of } X \text{ are } 0 \\ \Rightarrow A'_{k+1} \bullet X \ge 0$$

Back to the Example

• Back to the example:

Back to the Example

• Back to the example:



Proof outline

- Based on simplified facial reduction algorithm: construct the A'_i one by one.
- "Difficult" direction is about 1.5 pages.
- Alternative: adapt a traditional facial reduction algorithm, the closest one is by Waki and Muramatsu.

Is this just theory?

- We cannot construct the reformulations in poly time :(
- To do so, we would need to solve SDPs exactly.
- However...

Application 1: simple proof that SDP feasibility is in $NP \cap coNP$ in real number model

• Proof of NP: show feasible X.

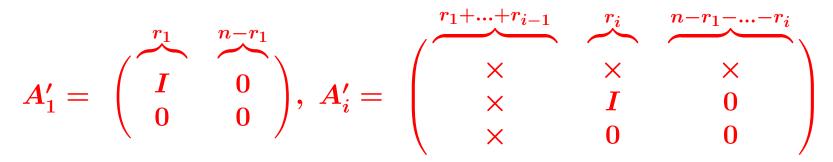
Application 1: simple proof that SDP feasibility is in $NP \cap coNP$ in real number model

- Proof of NP: show feasible X.
- Proof of **co-NP**: reformulation and how we got it:
 - $-V \in \mathbb{R}^{n \times n}$ to encode all similarity transformations.
 - $-T \in \mathbb{R}^{m \times m}$ to encode elementary row ops.

Application 2: generating infeasible SDPs (\mathbf{P}) infeasible \Leftrightarrow it has a reformulation

$$egin{aligned} A_i' ullet X &= 0 \ (i=1,\ldots,k) \ A_{k+1}' ullet X &= -1 \ & (\mathrm{P_{ref}}) \ & dots \ X &\succeq 0 \end{aligned}$$

where $k \geq 0$, and for $i = 1, \ldots, k + 1$ the A'_i look like

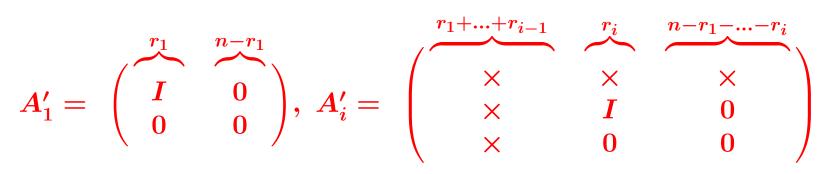


with $r_1,\ldots,r_{k+1}\geq 0$.

Application 2: generating infeasible SDPs (\mathbf{P}) infeasible \Leftrightarrow it has a reformulation

$$egin{aligned} A_i' ullet X &= 0 \ (i=1,\ldots,k) \ A_{k+1}' ullet X &= -1 \ & (\mathrm{P_{ref}}) \ & dots \ X &\succeq 0 \end{aligned}$$

where $k \geq 0$, and for $i = 1, \ldots, k + 1$ the A'_i look like



with $r_1, \ldots, r_{k+1} \geq 0$.

- Using this result, we can generate all infeasible SDP problems, as:
- (1) Generate a system like (P_{ref}) .
- (2) Reformulate it.

Application 2: generating infeasible SDPs

- We can generate challenging instances!
- Problem library by Liu-P 2016: infeasible and weakly infeasible SDPs

Application 2: generating infeasible SDPs

- We can generate challenging instances!
- Problem library by Liu-P 2016: infeasible and weakly infeasible SDPs
- As to solving them: Douglas-Rachford splitting of Liu-Ryu-Yin 2017;
- Homotopy method of Hauenstein, Liddell, Zhang 2018

Application 3: recognizing infeasibility in practice

- Sometimes we do not even have to reformulate an SDP to find the trivial structure that proves infeasibility ... or to reduce the SDP.
- Zhu–P–Tran-Dinh Sieve-SDP preprocessor

Application 3: recognizing infeasibility in practice

- Sometimes we do not even have to reformulate an SDP to find the trivial structure that proves infeasibility ... or to reduce the SDP.
- Zhu–P–Tran-Dinh Sieve-SDP preprocessor
- Before and after picture of an SDP

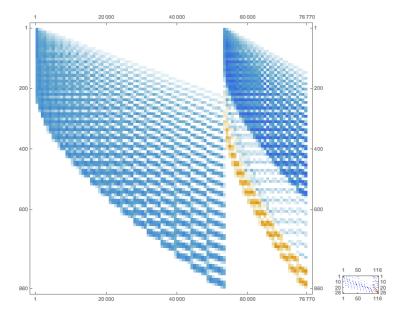


Figure 1: Instance "ex4.2_order20": size and sparsity before and after preprocessing

Conclusion

- Pathologies in duality: well- and badly behaved semidefinite (feasible) systems.
- Combinatorial type characterizations.
- Reformulations to easily recognize good and bad behavior $\rightarrow NP \cap co NP$ certificates.

Conclusion

- Pathologies in duality: well- and badly behaved semidefinite (feasible) systems.
- Combinatorial type characterizations.
- Reformulations to easily recognize good and bad behavior $\rightarrow NP \cap co NP$ certificates.
- Exact, simple certificate of infeasibility of a semidefinite system based on elementary reformulation.
- Algorithm to systematically generate all infeasible SDPs.
- Other application: preprocessing by Sieve-SDP.

Papers

- P: Bad semidefinite programs: they all look the same, 2010–SIOPT 2017
- Liu–P: Exact duality in semidefinite programming based on elementary reformulations, SIOPT 2015
- Liu–P: Exact duals and short certificates fo infeasibility and weak infeasibility in conic linear programming,

Math. Programming 2017.

Papers

- P: Bad semidefinite programs: they all look the same, 2010–SIOPT 2017
- Liu–P: Exact duality in semidefinite programming based on elementary reformulations, SIOPT 2015
- Liu–P: Exact duals and short certificates fo infeasibility and weak infeasibility in conic linear programming, Math. Programming 2017.
- P: Characterizing bad semidefinite programs: normal forms and short proofs
 - SIAM Review, to appear
- Zhu–P–Tran-Dinh: Sieve-SDP: a simple algorithm to preprocess semidefinite programs

Mathematical Programming Computation, 2019

• P: On positive duality gaps in semidefinite programming, 2018

Thank you!