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A Semidefinite Program (SDP)

sup, clx

(SDP)

Here
e A,, B are symmetric matrices, c,x € R™.

e A < B means that B — A is symmetric positive semidefinite
(psd).

e An n X n matrix Y is positive semidefinite, if all principal
subdeterminants are nonnegative.

e Equivalently, if v!Yv > 0Vv € R™.



Some nice pictures of SDP feasible sets, 1

Picture of 2 X 2 psd cone:

{(w,y,2)= ) = 0}
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Why is SDP important:
LP C SDP C Convex Optimization

LP (Linear Program) as SDP:

o If A, and B are diagonal = so is B — > " x;A,.
e So it is psd iff diagonal elements are nonnegative.
e So LP can be modeled as SDP.



Why is SDP important:
LP C SDP C Convex Optimization

LP (Linear Program) as SDP:

o If A, and B are diagonal = so is B — > " x;A,.
e So it is psd iff diagonal elements are nonnegative.
e So LP can be modeled as SDP.

SDP is a convex problem:

e Feasible set is convex, since set of psd matrices is.



Why is SDP important: applications in

e 0—1 Integer programming.

e Approx algorithms

e Chemical engineering

e Chemistry

e Coding theory

e Control theory

e Combinatorial opt

e Discrete geometry

e Eigenvalue optimization
e Facility planning

e Finance

e Geometric optimization

e GGlobal optimization

e Graph visualization

e Inventory theory

e Machine learning

e Matrix analysis

e PDEs

e Probability theory

e Robust optimization
e Signal processing

e Statistics

e Structural optimization



Why is SDP important: beautiful theory in

e Duality
e Interior point methods

e Geometry



...and many interesting glitches

e Interior point methods do not work as well as in LP.

e Nor does duality theory.



SDP in a different shape

infy BeY
st. Y =0
A;eY =¢;(z=1,...,m).

Here
e A;, B are symmetric matrices, c € R™.
e Ae B = Zz’,j a,-jbij

e Example: {Y > 0|y;; = 1} the set of correlation matrices.



3 by 3 correlation matrices

(12 y)

The set { (z,y,2)| |2z 1 z| =0}




SDP duality

The primal-dual pair of SDPs:

sup, clz infy BeY

A;oY =¢; (e =1,...

Easy: If , Y are feasible = ¢’z < BeY.
Ideally: 3z*, Y* such that c’z* = B e Y*.
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SDP duality

The primal-dual pair of SDPs:

sup, clz infy BeY

A;oY =¢c; (e =1,...,m).

Easy: If , Y are feasible = ¢’z < BeY.
Ideally: 3z*, Y* such that c’z* = B e Y*.

But: SDPs, unlike LPs can be pathological: nonattainment,
positive gaps.

Pathological SDPs often defeat SDP solvers.

Ben-Tal, Nemirovsky: “Is there something wrong with SDP
duality?”



Pathology # 1: nonattainment in dual

Primal:
sup 2x; & sup 2a;
01 10 1 —a4
s.t. 1 < s.t. ~ 0

10 00 —x; 0
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Pathology # 1: nonattainment in dual

Primal:
sup 2x; & sup 2a;
01 10 1 —x
s.t. x1 < s.t. ~ 0
10 00 —x; O

Only feasible x; is 1 = 0.
Dual: Dual variable is Y >~ 0.
inf yq;
Y11 1

s.t. ~ 0
1 yo2o

Unattained inf = 0 : y;; > 0O is feasible, but y;; = 0 is not.



Same story in pictures

Primal: Dual:
sup 2x; inf yq
s.t. —af:% >0 s.t. Yy11y22 > 1

Y11 = 0, y22 > 0.

Highest point on degenerate parabola vs. leftmost point on
hyperbola




Pathology # 2: positive duality gap

Primal:

Sup Io

(100\ (001\ (100\

st. 1 |000| +22]010 010

\0 00 \100/ \ooo
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Pathology # 2: positive duality gap

Primal:

Sup Io

(1 0 0\ (0 01) (1 0 0)

st. 1 |000| +22]010 010

\0 00 \100/ \oo0o

Only feasible x5 is x5 = 0.

PN

Dual value is 1, and it is attained.
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Bad behavior defined

We are curious about the semidefinite system

(Psp) >_;2, ziAi = B
e We say that it is badly behaved if de such that
sup{clz|x € (Psp) } < +oo

but the dual program has no solution with same value

(i.e. dual does not attain, or positive gap).
e Well behaved, otherwise.
e A slackisZ=B—-)> .x;A; = 0.



Motivation

(20)= 6o

(100\ (001\ (100\

1 |000]| +x2|010 010

\0 0 0/ \100) \0 0 0/

are both badly behaved.

The systems

and

PN




Motivation

The systems

01 10
10 00

and

/100\ (001\ /100\

1 |000]| +x2|010 010

\000) \100) \0 0 0/

are both badly behaved.

PN

Curious similarity — of these, and about 20 others in the
literature



Why all bad SDPs look the same

e Semidefinite system:

(Psp) > .. ,x;A; X B

e W.l.o.g. the max (rank) slack is

I, 0
Z = .
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e W.l.o.g. the max (rank) slack is
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00

e Then (Psp) badly behaved < 3V a lin. combination of the
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Why all bad SDPs look the same

e Semidefinite system:

(Psp) > .. ,x;A; X B

e W.l.o.g. the max (rank) slack is
I. 0
00

Then (Psp) badly behaved < 3V a lin. combination of the
A; as

Vo v
V=" ", where Va; = 0, R(V}Y) € R(Va2).
Vi Va
Z
——
01 10
o Ex: x;

10 00



Why all bad SDPs look the same

e Semidefinite system:

(Psp) > .. ,x;A; X B

e W.l.o.g. the max (rank) slack is
I. 0
00

Then (Psp) badly behaved < 3V a lin. combination of the
A; as

T v
V=" "], where Va; = 0, R(V}5) Z R(V22).
Vip Ve
1% Z
—T—
01 10
o Ex: x4

10 00
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What is missing?

e Matrices Z,V prove that (Psp) is badly behaved.
e But: they do not provide a “bad” c objective function
e Nor a poly time, or easy to verify proof of bad behavior

e Aside: how do we prove that Ax — b is infeasible? — row
echelon form.

® We will borrow ideas from the row echelon form.



Reformulations of

(Psp) > ;- xiA; X B

are obtained by a sequence of:

e Apply a rotation VI ()V to all matrices, where V is invert-
ible.

o A, +— z;n:l )\jAj where \; # 0

e Exchange A; and A;.



Reformulations of

(Psp) > ;- xiA; X B

are obtained by a sequence of:

e Apply a rotation VI ()V to all matrices, where V is invert-
ible.

eB«+ B+)> " uA
o A, +— z;n:l )\jAj where \; # 0
e Exchange A; and A;.

Mostly: just elementary row operations done on (D). E.g.
exchange constraints

A;eY =c; and AjeY = c;



Theorem: (Pgp) is badly behaved < it has a
reformulation:

F; O F, G, I, 0
(Psp,bad) Zf:l Lq -+ Z:’;kﬂ Lq =
00 G H; 00

where
i

1) Z is max slack; 2)
H;

) lin. indep. 3) H,, = 0



Theorem: (Pgp) is badly behaved < it has a

reformulation:
Peons) 5 F0) | s F; Gi\ _ (L0
SD,bad i—1 Li i—kt1 Li _
oo "\ et H, 0 0

where
i

H;

1) Z is max slack; 2) lin. indep. 3) H,, = 0

How to get there? Block (Gaussian elimination!

(Vec Al\ i (GiAHi)

— X 0
X X

Kvec A, )



Theorem: (Pgp) is badly behaved < it has a

reformulation:
Peons) 5 F0) | s F; Gi\ _ (L0
SD,bad i—1 Li i—kt1 Li _
oo "\ et H, 0 0

where
i

H;

1) Z is max slack; 2) lin. indep. 3) H,, = 0

Proof that (Psp.yqq) is badly behaved:

x feasible = zp,1 ==z, =0

= sup —x,, = 0

But: no dual soln with value 0



Example: before and after

6 10 19 32
<

10 16 32 52

L1

is badly behaved, but how do we tell?



Example: before and after

6 10 19 32
<

10 16 32 52

L1

is badly behaved, but how do we tell?

After reformulation:

01 10
L1 = ’
10 00

which is trivially badly behaved.



Large example: before reformulation

(54 46 50 4 \
46 —38 87 —106
50 87 —60 296
\4 —106 296 —368)
+4

(110 91 105 —6 )
91 —72 171 —210
105 171 —72 528

(36 30

\—2 —70 176 —224)

\—6 _210 528 —672)

35 —2

30 —24 57 —70
=

35 57 —24 176

Hard to tell if well or badly behaved

(42 35 40 0O

35 —28 67 —8
+a3

40 67 —36 21¢

\0 —82 216 —21

(389 323 370 —12
323 —257 610 —74
370 610 —288 192(

\—12 748 1920 —247



Large example: after reformulation

00)
00

00
00)

(21

10

OO\
00

00

[0

0

00
00)

(0 0
0 0

2 1)

3 —1

\1 —1

0 2
20)

0
0

3 —1)

2 —1

3

2

\—1 —1

4 0
00)

PN

(10

01

OO\
00

00
\00

As before: 3 = x4, =0 = sup—x4, =0

But: no dual solution with value 0

00
00)
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Corollaries:

e Similar reformulation for well-behaved systems.
e The question:
Is (Psp) well behaved?
is in NP N coN P in real number model of computing.

e Certificate: reformulation, and proof that Z is max rank
slack.



How about proving infeasibility?

This part is joint with Minghui Liu.



Semidefinite System (spectrahedron)
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Semidefinite System (spectrahedron)

Ai.X
X

bi(i =1,...,m) (P)
0

Y

Here
e A, are symmetric matrices.
e Ae B = Zi,j aijbij.

e Thorny issue: How to prove infeasibility?



Preferable way: by a separating hyperplane

10 |

separating
hyperplane



Such a hyperplane may not exist!

On one hand

01
N psd cone = ) — infeasible SDP

1 X
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Such a hyperplane may not exist!

On one hand

01
N psd cone = @ — infeasible SDP

1 X

On the other hand
e 1

1 1/€

~ 0Ve >0 — no separating hyperplane

That hyperbola again ...

Y22

6

5



Literature: exact certificates of infeasibility

e Ramana 1995

e Ramana, Tuncel, Wolkowicz, 1997

e Klep, Schweighofer 2013

e Waki, Muramatsu 2013: variant of facial reduction of
e Borwein, Wolkowicz 1981

e These are more involved than a separating hyperplane
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e Goal: Find an exact certificate of infeasibility that is ‘“al-
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Ideas from (Gaussian elimination

e Goal: Find an exact certificate of infeasibility that is ‘“al-
most” as simple as a a separating hyperplane.

e How do we prove that Ax — b is infeasible? — row echelon
form.

® We will borrow ideas from the row echelon form.



Infeasible example, and proof of infeasibility

(100)

000|eX =0

\000)
/001\

010|eX = —1

\100)




Infeasible example, and proof of infeasibility

(100)

000|eX =0

\000)
/001\
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X

Y
o

e Suppose X feasible = X{; =0
= X12 = X313 =0
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Infeasible example, and proof of infeasibility

(100)

000|eX =0

\000)
/001\

010|eX = —1

\100)

X

Y
o

e Suppose X feasible = X{; =0
= X12 = X313 =0
— X22 — —]_

e Main idea: We will find such a structure in every infeasible
semidefinite system.



Reformulation

A;e X =b; (e=1,...,m)
X >0

(P)

e We obtain a reformulation of (P) by a sequence of the fol-
lowing:

(1) Elementery row operations on the equations.
(2) A; +— VA,V (1 =1,,...,m), where V is invertible.

@ (1) is inherited from Gaussian elimination.



Reformulation

A;e X =b; (e=1,...,m)
X >0

(P)

e We obtain a reformulation of (P) by a sequence of the fol-
lowing:

(1) Elementery row operations on the equations.
(2) A; +— VA,V (1 =1,,...,m), where V is invertible.

@ (1) is inherited from Gaussian elimination.

e Fact: Reformulations preserve (in)feasibility.



Some linear algebra



Some linear algebra

I. 0 0, O
.X:O,XEO:>X: ,XQZEO.

00 0 Xoo



Theorem: (P) infeasible <> it has a reformulation

Ale X =0((t=1,...,k)
A;c—i—l o X = —1 (Pref)
X >0

where k£ > 0, and for 2 = 1,...,k + 1 the A} look like
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X X X

1
Al = ( 0 8 )v A} = X I 0
X 0 0

with ry,..., 7,1 > 0.



Theorem: (P) infeasible <> it has a reformulation

Ale X =0((t=1,...,k)
A;HQX = —1
X >0

where k > 0, and for 2 = 1,

1 n—rq

A~

=
A’1:<I 0>,A;:
0 0

with ry,..., 7,1 > 0.

Proof of “ <« 7 :

(Pref)

...,k + 1 the A} look like

T1+...+7;_1
_A

7 N\

X
X
X

T

X
I
0

n—mry—...—r;
_A\

7 N\

X
0
0
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Theorem: (P) infeasible <> it has a reformulation

Ale X =0((t=1,...,k)
A;c—i—l o X = —1 (Pref)
X >0
where k£ > 0, and for 2 = 1,...,k + 1 the A} look like
T1te 71 r; N—r1—...—7T;
™ n—ry . -\ ~ p ~
X X X
I 0
A,l — ( 0 0 )7 A;, — X 1 0
X 0 0
with ry,..., 7,1 > 0.

Proof of “ <= ” : Suppose that X feasible in (P,.)
= first r; rows of X are 0

= first r{ +...+ rp rows of X are O

= A, ,,0X >0



Back to the Example

e Back to the example:

[100)

000|eX =0

\0 O 0)
(00 1\

010|eX = —1

\10 0)




Back to the Example

e Back to the example:
Aj
r/l 0 O\\
000|eX =0

\000)
/001\

010|eX = —1




Proof outline

e Based on simplified facial reduction algorithm: construct
the A one by one.

e “Difficult” direction is about 1.5 pages.

e Alternative: adapt a traditional facial reduction algorithm,
the closest one is by Waki and Muramatsu.



Is this just theory?

e We cannot construct the reformulations in poly time :(
e To do so, we would need to solve SDPs exactly.

e However...



Application 1: simple proof that SDP feasibility is
in NP N coNP in real number model

® Proof of NP: show feasible X.



Application 1: simple proof that SDP feasibility is
in NP N coNP in real number model

® Proof of NP: show feasible X.

® Proof of co-NP: reformulation and how we got it:

—V € R ™ to encode all similarity transformations.

—T € R™*™ to encode elementary row ops.



Application 2: generating infeasible SDPs
(P) infeasible <> it has a reformulation

AleX =0 (i=1,...,k)

A;c—i—l o X = —1 (Pref)
X >0
where k£ > 0, and for 2 = 1,...,k + 1 the A} look like
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Al = ( é 8 )a A} = X I 0
X 0 0

with T1geee9sTkt1 Z 0.



Application 2: generating infeasible SDPs
(P) infeasible <> it has a reformulation

AleX =0(i=1,...,k)

A;c—i—l o X = —1 (Pref)
X >0
where k£ > 0, and for 2 = 1,...,k + 1 the A} look like
B "°1‘|‘-~J-;|"'°z'—1 r; n—ry—...—7r;
1 1 - N~ N ~
X X X
I 0
A,l — ( 0 0 )a Af,l, — X 1 0
X 0 0
with T1geee9sTkt1 Z 0.

e Using this result, we can generate all infeasible SDP prob-
lems, as:

(1) Generate a system like (P,f).
(2) Reformulate it.
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e We can generate challenging instances!

e Problem library by Liu-P 2016: infeasible and weakly infea-
sible SDPs



Application 2: generating infeasible SDPs

e We can generate challenging instances!

e Problem library by Liu-P 2016: infeasible and weakly infea-
sible SDPs

e As to solving them: Douglas-Rachford splitting of
Liv—Ryu—Yin 2017;

e Homotopy method of Hauenstein,Liddell, Zhang 2018



Application 3: recognizing infeasibility in practice

® Sometimes we do not even have to reformulate an SDP to
find the trivial structure that proves infeasibilty ...or to

reduce the SDP.

e Zhu—P—Tran-Dinh Sieve-SDP preprocessor



Application 3: recognizing infeasibility in practice

® Sometimes we do not even have to reformulate an SDP to

find the trivial structure that proves infeasibilty ...or to
reduce the SDP.

e Zhu—P—-Tran-Dinh Sieve-SDP preprocessor
e Before and after picture of an SDP

ananan

L
ananan

Figure 1: Instance “ex4.2_order20”: size and sparsity before and after preprocessing



Conclusion
e Pathologies in duality: well- and badly behaved semidefi-
nite (feasible) systems.
e Combinatorial type characterizations.

e Reformulations to easily recognize good and bad behavior
— NP M co— NP certificates.



Conclusion

e Pathologies in duality: well- and badly behaved semidefi-
nite (feasible) systems.

e Combinatorial type characterizations.

e Reformulations to easily recognize good and bad behavior
— NP M co— NP certificates.

e Eixact, simple certificate of infeasibility of a semidefinite sys-
tem based on elementary reformulation.

e Algorithm to systematically generate all infeasible SDPs.

e Other application: preprocessing by Sieve-SDP.
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Thank youl!



