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A Semidefinite Program (SDP)

supx c
Tx

s.t.
∑m

i=1 xiAi � B.
(SDP )

Here

•Ai, B are symmetric matrices, c, x ∈ Rm.
•A � B means thatB −A is symmetric positive semidefinite

(psd).

• An n× n matrix Y is positive semidefinite, if all principal
subdeterminants are nonnegative.

• Equivalently, if vTY v ≥ 0∀v ∈ Rn.



Some nice pictures of SDP feasible sets, 1

Picture of 2× 2 psd cone:{
(x, y, z) :

x z

z y

 � 0

}



Some nice pictures of SDP feasible sets, 2

{
(x, y, z) : zI �

x+ 1 −y

−y −x+ 1

}



Why is SDP important:
LP ⊆ SDP ⊆ Convex Optimization

LP (Linear Program) as SDP:

• If Ai and B are diagonal⇒ so is B −
∑m

i=1 xiAi.

• So it is psd iff diagonal elements are nonnegative.

• So LP can be modeled as SDP.



Why is SDP important:
LP ⊆ SDP ⊆ Convex Optimization

LP (Linear Program) as SDP:

• If Ai and B are diagonal⇒ so is B −
∑m

i=1 xiAi.

• So it is psd iff diagonal elements are nonnegative.

• So LP can be modeled as SDP.

SDP is a convex problem:

• Feasible set is convex, since set of psd matrices is.



Why is SDP important: applications in

• 0–1 Integer programming.

•Approx algorithms

•Chemical engineering

•Chemistry

•Coding theory

•Control theory

•Combinatorial opt

•Discrete geometry

• Eigenvalue optimization

• Facility planning

• Finance

•Geometric optimization

•Global optimization

•Graph visualization

• Inventory theory

•Machine learning

•Matrix analysis

• PDEs

• Probability theory

•Robust optimization

• Signal processing

• Statistics

• Structural optimization



Why is SDP important: beautiful theory in

•Duality

• Interior point methods

•Geometry



. . . and many interesting glitches

• Interior point methods do not work as well as in LP.

•Nor does duality theory.



SDP in a different shape

infY B • Y

s.t. Y � 0

Ai • Y = ci (i = 1, . . . ,m).

Here

•Ai, B are symmetric matrices, c ∈ Rm.
•A •B =

∑
i,j aijbij

• Example: {Y � 0 | yii = 1} the set of correlation matrices.



3 by 3 correlation matrices

The set { (x, y, z) |


1 x y

x 1 z

y z 1

 � 0 }



SDP duality

The primal-dual pair of SDPs:

supx c
Tx infY B • Y

s.t.
∑m

i=1 xiAi � B Y � 0

Ai • Y = ci (i = 1, . . . ,m).

Easy: If x, Y are feasible⇒ cTx ≤ B • Y.

Ideally: ∃x∗, Y ∗ such that cTx∗ = B • Y ∗.



SDP duality

The primal-dual pair of SDPs:

supx c
Tx infY B • Y

s.t.
∑m

i=1 xiAi � B Y � 0

Ai • Y = ci (i = 1, . . . ,m).

Easy: If x, Y are feasible⇒ cTx ≤ B • Y.

Ideally: ∃x∗, Y ∗ such that cTx∗ = B • Y ∗.

But: SDPs, unlike LPs can be pathological: nonattainment,
positive gaps.

Pathological SDPs often defeat SDP solvers.

Ben-Tal, Nemirovsky: “Is there something wrong with SDP
duality?”



Pathology # 1: nonattainment in dual

Primal:

sup 2x1 ⇔ sup 2x1

s.t. x1

0 1

1 0

 �
1 0

0 0

 s.t.

 1 −x1

−x1 0

 � 0
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Pathology # 1: nonattainment in dual

Primal:

sup 2x1 ⇔ sup 2x1

s.t. x1

0 1

1 0

 �
1 0

0 0

 s.t.

 1 −x1

−x1 0

 � 0

Only feasible x1 is x1 = 0.

Dual: Dual variable is Y � 0.

inf y11

s.t.

y11 1

1 y22

 � 0

Unattained inf = 0 : y11 > 0 is feasible, but y11 = 0 is not.



Same story in pictures

Primal: Dual:

sup 2x1 inf y11

s.t. −x2
1 ≥ 0 s.t. y11y22 ≥ 1

y11 ≥ 0, y22 ≥ 0.

Highest point on degenerate parabola vs. leftmost point on
hyperbola



Pathology # 2: positive duality gap

Primal:

sup x2

s.t. x1


1 0 0

0 0 0

0 0 0

+ x2


0 0 1

0 1 0

1 0 0

 �


1 0 0

0 1 0

0 0 0


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Pathology # 2: positive duality gap

Primal:

sup x2

s.t. x1


1 0 0

0 0 0

0 0 0

+ x2


0 0 1

0 1 0

1 0 0

 �


1 0 0

0 1 0

0 0 0


Only feasible x2 is x2 = 0.

Dual value is 1, and it is attained.
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Bad behavior defined

We are curious about the semidefinite system

(PSD)
∑m

i=1 xiAi � B

•We say that it is badly behaved if ∃c such that

sup{ cTx |x ∈ (PSD) } < +∞

but the dual program has no solution with same value

(i.e. dual does not attain, or positive gap).

•Well behaved, otherwise.

•A slack is Z = B −
∑

i xiAi � 0.



Motivation

The systems

x1

0 1

1 0

 �
1 0

0 0


and

x1
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0 0 0
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0 0 0
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Motivation

The systems

x1

0 1

1 0

 �
1 0

0 0


and

x1


1 0 0

0 0 0

0 0 0

+ x2


0 0 1

0 1 0

1 0 0

 �


1 0 0

0 1 0

0 0 0


are both badly behaved.

Curious similarity – of these, and about 20 others in the
literature



Why all bad SDPs look the same

• Semidefinite system:

(PSD)
∑m

i=1 xiAi � B

•W.l.o.g. the max (rank) slack is

Z =

Ir 0

0 0

 .
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Why all bad SDPs look the same

• Semidefinite system:

(PSD)
∑m

i=1 xiAi � B

•W.l.o.g. the max (rank) slack is

Z =

Ir 0

0 0

 .
Then (PSD) badly behaved⇔ ∃V a lin. combination of the
Ai as

V =


r︷︸︸︷
V11 V12

V T
12 V22

 , where V22 � 0, R(V T
12) 6⊆ R(V22).

• Ex: x1

V︷ ︸︸ ︷0 1

1 0

 �
Z︷ ︸︸ ︷1 0

0 0


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•Matrices Z, V prove that (PSD) is badly behaved.

• But: they do not provide a “bad” c objective function

•Nor a poly time, or easy to verify proof of bad behavior
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What is missing?

•Matrices Z, V prove that (PSD) is badly behaved.

• But: they do not provide a “bad” c objective function

•Nor a poly time, or easy to verify proof of bad behavior

•Aside: how do we prove that Ax = b is infeasible? → row
echelon form.

•We will borrow ideas from the row echelon form.



Reformulations of

(PSD)
∑m

i=1 xiAi � B

are obtained by a sequence of:

•Apply a rotation V T ()V to all matrices, where V is invert-
ible.

•B ← B +
∑m

i=1 µiAi

•Ai←
∑m

j=1 λjAj where λi 6= 0

• Exchange Ai and Aj.



Reformulations of

(PSD)
∑m

i=1 xiAi � B

are obtained by a sequence of:

•Apply a rotation V T ()V to all matrices, where V is invert-
ible.

•B ← B +
∑m

i=1 µiAi

•Ai←
∑m

j=1 λjAj where λi 6= 0

• Exchange Ai and Aj.

Mostly: just elementary row operations done on (D). E.g.
exchange constraints

Ai • Y = ci and Aj • Y = cj



Theorem: (PSD) is badly behaved ⇔ it has a
reformulation:

(PSD,bad)
∑k

i=1 xi

Fi 0

0 0

+
∑m

i=k+1 xi

 Fi Gi

GT
i Hi

 �
Ir 0

0 0

 = Z,

where

1) Z is max slack; 2)

Gi

Hi

 lin. indep. 3) Hm � 0



Theorem: (PSD) is badly behaved ⇔ it has a
reformulation:

(PSD,bad)
∑k

i=1 xi

Fi 0

0 0

+
∑m

i=k+1 xi

 Fi Gi

GT
i Hi

 �
Ir 0

0 0

 = Z,

where

1) Z is max slack; 2)

Gi

Hi

 lin. indep. 3) Hm � 0

How to get there? Block Gaussian elimination!


vecA1

...

vecAm

 →
( Fi︷ ︸︸ ︷ (Gi,Hi)︷ ︸︸ ︷
× 0
× ×

)



Theorem: (PSD) is badly behaved ⇔ it has a
reformulation:

(PSD,bad)
∑k

i=1 xi

Fi 0

0 0

+
∑m

i=k+1 xi

 Fi Gi

GT
i Hi

 �
Ir 0

0 0

 = Z,

where

1) Z is max slack; 2)

Gi

Hi

 lin. indep. 3) Hm � 0

Proof that (PSD,bad) is badly behaved:

x feasible ⇒ xk+1 = · · · = xm = 0

⇒ sup−xm = 0

But: no dual soln with value 0



Example: before and after

x1

 6 10

10 16

 �
19 32

32 52


is badly behaved, but how do we tell?



Example: before and after

x1

 6 10

10 16

 �
19 32

32 52


is badly behaved, but how do we tell?

After reformulation:

x1

0 1

1 0

 �
1 0

0 0

 ,
which is trivially badly behaved.



Large example: before reformulation

x1


54 46 50 4

46 −38 87 −106

50 87 −60 296

4 −106 296 −368

+x2


110 91 105 −6

91 −72 171 −210

105 171 −72 528

−6 −210 528 −672

+x3


42 35 40 0

35 −28 67 −82

40 67 −36 216

0 −82 216 −272



+x4


36 30 35 −2

30 −24 57 −70

35 57 −24 176

−2 −70 176 −224

 �


389 323 370 −12

323 −257 610 −748

370 610 −288 1920

−12 −748 1920 −2432


Hard to tell if well or badly behaved



Large example: after reformulation

x1


0 1 0 0

1 −2 0 0

0 0 0 0

0 0 0 0

+x2


2 1 0 0

1 0 0 0

0 0 0 0

0 0 0 0

+x3


0 0 2 1

0 0 3 −1

2 3 0 2

1 −1 2 0



+x4


0 0 3 −1

0 0 2 −1

3 2 4 0

−1 −1 0 0

 �


1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0


As before: x3 = x4 = 0⇒ sup−x4 = 0

But: no dual solution with value 0
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Corollaries:

• Similar reformulation for well-behaved systems.

• The question:

Is (PSD) well behaved?

is in NP ∩ coNP in real number model of computing.

•Certificate: reformulation, and proof that Z is max rank
slack.



How about proving infeasibility?

This part is joint with Minghui Liu.
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Semidefinite System (spectrahedron)

Ai •X = bi (i = 1, . . . ,m) (P )

X � 0

Here

•Ai are symmetric matrices.

•A •B =
∑

i,j aijbij.

• Thorny issue: How to prove infeasibility?



Preferable way: by a separating hyperplane
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Such a hyperplane may not exist!

On one hand0 1

1 ×

 ∩ psd cone = ∅ → infeasible SDP

On the other handε 1

1 1/ε

 � 0∀ ε > 0 → no separating hyperplane

That hyperbola again . . .



Literature: exact certificates of infeasibility

•Ramana 1995

•Ramana, Tuncel, Wolkowicz, 1997

•Klep, Schweighofer 2013

•Waki, Muramatsu 2013: variant of facial reduction of

• Borwein, Wolkowicz 1981

• These are more involved than a separating hyperplane
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•Goal: Find an exact certificate of infeasibility that is “al-
most” as simple as a a separating hyperplane.
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Ideas from Gaussian elimination

•Goal: Find an exact certificate of infeasibility that is “al-
most” as simple as a a separating hyperplane.

•How do we prove that Ax = b is infeasible? → row echelon
form.

•We will borrow ideas from the row echelon form.
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Infeasible example, and proof of infeasibility


1 0 0

0 0 0

0 0 0

 •X = 0


0 0 1

0 1 0

1 0 0

 •X = −1

X � 0

• Suppose X feasible ⇒ X11 = 0
⇒ X12 = X13 = 0
⇒ X22 = −1

•Main idea: We will find such a structure in every infeasible
semidefinite system.



Reformulation

Ai •X = bi (i = 1, . . . ,m)

X � 0
(P)

•We obtain a reformulation of (P) by a sequence of the fol-
lowing:

(1) Elementery row operations on the equations.

(2)Ai← V TAiV (i = 1, , . . . ,m), where V is invertible.

• (1) is inherited from Gaussian elimination.



Reformulation

Ai •X = bi (i = 1, . . . ,m)

X � 0
(P)

•We obtain a reformulation of (P) by a sequence of the fol-
lowing:

(1) Elementery row operations on the equations.

(2)Ai← V TAiV (i = 1, , . . . ,m), where V is invertible.

• (1) is inherited from Gaussian elimination.

• Fact: Reformulations preserve (in)feasibility.
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0 0

 •X = 0, X � 0 ⇒ ?



Some linear algebra

Ir 0

0 0

 •X = 0, X � 0 ⇒ X =

0r 0

0 X22

 , X22 � 0.
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A′k+1 •X = −1 (Pref)

...
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× 0 0


with r1, . . . , rk+1 ≥ 0.
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Theorem: (P) infeasible ⇔ it has a reformulation

A′i •X = 0 (i = 1, . . . , k)

A′k+1 •X = −1 (Pref)

...

X � 0

where k ≥ 0, and for i = 1, . . . , k + 1 the A′i look like
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Proof of “⇐ ” : Suppose that X feasible in (Pref)
⇒ first r1 rows of X are 0

· · ·
⇒ first r1 + . . .+ rk rows of X are 0
⇒ A′k+1 •X ≥ 0



Back to the Example

• Back to the example:
1 0 0

0 0 0

0 0 0

 •X = 0


0 0 1

0 1 0

1 0 0

 •X = −1

X � 0



Back to the Example

• Back to the example:

A′1︷ ︸︸ ︷
1 0 0

0 0 0

0 0 0

 •X = 0


0 0 1

0 1 0

1 0 0


︸ ︷︷ ︸

A′2

•X = −1

X � 0



Proof outline

• Based on simplified facial reduction algorithm: construct
the A′i one by one.

• “Difficult” direction is about 1.5 pages.

•Alternative: adapt a traditional facial reduction algorithm,
the closest one is by Waki and Muramatsu.



Is this just theory?

•We cannot construct the reformulations in poly time :(

• To do so, we would need to solve SDPs exactly.

•However...



Application 1: simple proof that SDP feasibility is
in NP ∩ coNP in real number model

• Proof of NP: show feasible X.



Application 1: simple proof that SDP feasibility is
in NP ∩ coNP in real number model

• Proof of NP: show feasible X.

• Proof of co-NP: reformulation and how we got it:

– V ∈ Rn×n to encode all similarity transformations.

– T ∈ Rm×m to encode elementary row ops.
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Application 2: generating infeasible SDPs
(P) infeasible ⇔ it has a reformulation

A′i •X = 0 (i = 1, . . . , k)

A′k+1 •X = −1 (Pref)

...

X � 0

where k ≥ 0, and for i = 1, . . . , k + 1 the A′i look like

A′1 =

( r1︷︸︸︷ n−r1︷︸︸︷
I 0
0 0

)
, A′i =


r1+...+ri−1︷ ︸︸ ︷ ri︷︸︸︷ n−r1−...−ri︷ ︸︸ ︷
× × ×
× I 0
× 0 0


with r1, . . . , rk+1 ≥ 0.

•Using this result, we can generate all infeasible SDP prob-
lems, as:

(1) Generate a system like (Pref).

(2) Reformulate it.
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• Problem library by Liu-P 2016: infeasible and weakly infea-
sible SDPs



Application 2: generating infeasible SDPs

•We can generate challenging instances!

• Problem library by Liu-P 2016: infeasible and weakly infea-
sible SDPs

•As to solving them: Douglas-Rachford splitting of

Liu–Ryu–Yin 2017;

•Homotopy method of Hauenstein,Liddell, Zhang 2018



Application 3: recognizing infeasibility in practice

• Sometimes we do not even have to reformulate an SDP to
find the trivial structure that proves infeasibilty . . . or to
reduce the SDP.

• Zhu–P–Tran-Dinh Sieve-SDP preprocessor



Application 3: recognizing infeasibility in practice

• Sometimes we do not even have to reformulate an SDP to
find the trivial structure that proves infeasibilty . . . or to
reduce the SDP.

• Zhu–P–Tran-Dinh Sieve-SDP preprocessor

• Before and after picture of an SDP

Figure 1: Instance “ex4.2 order20”: size and sparsity before and after preprocessing
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• Pathologies in duality: well- and badly behaved semidefi-
nite (feasible) systems.

•Combinatorial type characterizations.

•Reformulations to easily recognize good and bad behavior
→ NP ∩ co−NP certificates.



Conclusion

• Pathologies in duality: well- and badly behaved semidefi-
nite (feasible) systems.

•Combinatorial type characterizations.

•Reformulations to easily recognize good and bad behavior
→ NP ∩ co−NP certificates.

• Exact, simple certificate of infeasibility of a semidefinite sys-
tem based on elementary reformulation.

•Algorithm to systematically generate all infeasible SDPs.

•Other application: preprocessing by Sieve-SDP.
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Thank you!


