
Sieve-SDP: A Simple Algorithm to Preprocess
Semidefinite Programs[1]

Yuzixuan Zhu, Gábor Pataki and Quoc Tran-Dinh

University of North Carolina at Chapel Hill

Introduction

I Semidefinite Program (SDP)

inf. C ·X
s.t. Ai ·X = bi (i = 1, ...,m)

X � 0

where
. C,Ai, X ∈ Sn, bi ∈ R, i = 1, ...,m
. A ·X := trace(AX) =

∑n
i,j=1 aijxij

. X � 0: X ∈ Sn+, i.e. X is symmetric positive semidefinite

I Motivation: Solvers (SeDuMi, SDPT3, Mosek, etc.) are often
. slow for large SDPs
. erroneous for SDPs that are not strictly feasible

I Want an SDP preprocessor to
. reduce problem size
. detect lack of strict feasibility
. improve solution accuracy

data preprocessor clean data solver

Basic Sieve-SDP Steps

Step 1. Find a constraint of the form(
Di 0
0 0

)
·X = bi,

where bi ≤ 0 and Di � 0 (checked by Cholesky factorization).
Step 2. If bi < 0, stop. The SDP is infeasible.
Step 3. If bi = 0, delete rows and columns corresponding to Di; remove this
constraint.

Machine Precision

Sieve-SDP achieves machine precision due to the accuracy of Cholesky
factorization.

Example

Before Preprocessing
1 1 0 0
1 2 0 0
0 0 0 0
0 0 0 0

 ·X = 0


0 0 0 0
0 0 0 1
0 0 0 0
0 1 0 1

 ·X = 0


0 0 0 0
0 0 2 0
0 2 1 0
0 0 0 0

 ·X = 1

X ∈ S4
+

(
1 1
1 2

)
� 0

in constraint 1

=⇒

1st Reduction
1 1 0 0
1 2 0 0
0 0 0 0
0 0 0 0

 ·X = 0, removed


0 0 0 0
0 0 0 1
0 0 0 0
0 1 0 1

 ·X = 0


0 0 0 0
0 0 2 0
0 2 1 0
0 0 0 0

 ·X = 1

X ∈ S4
+

1 � 0 in constraint 2 ⇓

After Preprocessing

1 ·X = 1

X ≥ 0

⇐=

2nd Reduction(
0 0
0 1

)
·X = 0, removed(

1 0
0 0

)
·X = 1

X ∈ S2
+

The Sieve Structure

Matrix structure after several Sieve-SDP steps:

Large Example

(a) An SDP with
∑

n2
i = 71775 and m = 3002

(b) Reduced SDP with∑
n2
i = 40743 and m = 1286

Computational Experiments: Setup

I 12 datasets from Permenter-Parrilo[2], 1 dataset from Henrion-Toh, and 8
datasets from Mittelmann[3]: 197 problems in total.

I Each problem is preprocessed by Sieve-SDP and each of the four

Permenter-Parrilo preprocessing methods (pd1, pd2, dd1 and dd2)[2].

I Each problem is solved by Mosek 8.0 before and after each preprocessing
method, then their solution qualities are compared.a

aMatlab R2015a on MacBook Pro with 2.7 GHz Intel Core and 8GB RAM

Computational Experiments: Summary

Problem Size Reduction and Preprocessing Time

method n redn m redm timeprep (s) timeprep/timesol
a

w/o prep. 219671 0.00% 522603 0.00% 0.00 0.00%
pd1 216227 1.57% 486554 6.90% 695.60 0.62%
pd2 215823 1.75% 481126 7.94% 8607.75 7.69%
dd1 195471 11.02% 522603 0.00% 488.03 0.44%
dd2 195330 11.08% 522603 0.00% 12069.64 10.78%

Sieve 212002 3.49% 451350 13.63% 869.03 0.80%

Solution Quality Improvement

method # reduced # infeas. detected # err. improved # obj. corrected
pd1 54 12 8 11, 11
pd2 75 12 11 11, 11
dd1 14 0 3 1, 5
dd2 21 0 6 1, 5

Sieve 61 14 8 11, 11
asolving time before preprocessing is timesol = 31.09 hrs

Computational Experiments: Case Study on “Example”[4]

Primal and Dual Objective Values Improvements after Preprocessing

problem correct w/o prep. after pd1/pd2 after dd1/dd2 after Sieve
1 0, 0 0, 0 0, 0 0, 0 0, 0
2 1, 0 0.33, 0.33 1, 1 0.00, 0.00 1, 1
3 0, 0 0.33, 0.33 0.00, 0.00 0.00, 0.00 0.00, 0.00
4 infeas, 0 0, 0.00a 0, 1 0, 0 infeas, -
6 1, 1 1, 1 1, 1 1, 1 1, 1
7 0, 0 0, 0 0, 0 0, 0 0, 0
9a infeas, 0 0, 0.34 0, 1 0, 0 infeas, -
9b infeas, 0 0, 0.34 0, 1 0, 0 infeas, -

correct% 100%, 100% 38%, 38% 63%, 50% 50%, 100% 100%, 50%
aThis solution has too large a DIMACS error to be regarded as correct.

Conclusions: Advantages of Sieve-SDP

I Reduces size of SDPs and detects infeasibility efficiently

I Reduces solving effort and improve solution accuracy

I Simple to understand and easy to implement (60 lines of Matlab code)

I Within machine precision

I Does not depend on any optimization solver

[1] Yuzixuan Zhu, Gábor Pataki, and Quoc Tran-Dinh. “Sieve-SDP: a simple facial reduction algorithm to preprocess
SDPs”. arXiv preprint arXiv:1710.08954 (2017). url: https://github.com/unc-optimization/SieveSDP

[2] Permenter, Frank, and Pablo Parrilo. “Partial facial reduction: simplified, equivalent SDPs via approximations of
the PSD cone.” Mathematical Programming (2014): 1-54. www.mit.edu/∼fperment
[3] http://plato.asu.edu/ftp/sdp/
[4] Cheung, Yuen-Lam, Simon Schurr, and Henry Wolkowicz. “Preprocessing and regularization for degenerate semidef-
inite programs” Computational and analytical mathematics. Springer, New York, NY, 2013. 251-303.

https://github.com/unc-optimization/SieveSDP zyzx@live.unc.edu


