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Abstract

The Lenstra, Lenstra, and Lovász (abbreviated as LLL) basis reduction algorithm computes
a basis of a lattice consisting of short, and near orthogonal vectors. The quality of an LLL
reduced basis is expressed by three fundamental inequalities, and it is natural to ask, whether
these have a common generalization.

In this note we find unifying inequalities. Our main result is

Theorem 1. Let b1, . . . , bn ∈ R
m be an LLL-reduced basis of the lattice L, 1 ≤ k ≤ j ≤ n, and

d1, . . . , dj arbitrary linearly independent vectors in L. Then

detL(b1, . . . , bk) ≤ 2k(n−j)/2+k(j−k)/4(detL(d1, . . . , dj))
k/j , (1)

‖b1 ‖ · · · ‖bk ‖ ≤ 2k(n−j)/2+k(j−1)/4(detL(d1, . . . , dj))
k/j . (2)

By setting k and j to either 1 or n, from (1) we can recover the first two LLL inequalities,
and from (2) we can recover all three. Even with one degree of freedom left, i.e. with k or j
fixed to 1 or n, or k = j, we obtain generalizations that seem to be new.
Our main lemma also generalizes a result of Lenstra, Lenstra and Lovász, and we believe that
it is of independent interest:

Lemma 1. Let d1, . . . , dk be linearly independent vectors from the lattice L, and b∗1, . . . , b
∗
n the

Gram Schmidt orthogonalization of an arbitrary basis. Then

detL(d1, . . . , dk) ≥ min
1≤i1<···<ik≤n

{

‖b∗i1 ‖ . . . ‖b∗ik
‖
}

. (3)

Mathematics subject classification codes: 11H06, 52C07

Key words: LLL basis reduction.

∗Department of Statistics and Operations Research, UNC Chapel Hill, gabor@unc.edu, tural@email.unc.edu

i



1 LLL reducedness, and unifying inequalities

A lattice is a set of the form

L = L(b1, . . . , bn) =

{

n
∑

i=1

λibi |λi ∈ Z, (i = 1, . . . , n)

}

, (4)

where b1, . . . , bn are linearly independent vectors, and are called a basis of L. A lattice has infinitely
many bases when n ≥ 2. Computing one consisting of short, and nearly orthogonal vectors is a a
fundamental algorithmic problem with uses in cryptography, optimization, and number theory.

Several concepts of reducedness of a lattice basis are known. The most widely used one is LLL
reducedness, developed in the seminal paper [9] of Lenstra, Lenstra, and Lovász. For a collection
of articles on the history of lattice theory, complexity aspects, and the LLL algorithm we refer to
the proceedings of the LLL+25 conference [2]. Surveys and textbook treatments of lattice basis
reduction can be found in [4], [5], [16], and [10].

An LLL reduced basis b1, . . . , bn is computable in polynomial time in the case of rational lattices,
and the quality of the basis is expressed by three fundamental inequalities:

‖b1 ‖ ≤ 2(n−1)/4(detL)1/n, (LLL1)

‖b1 ‖ ≤ 2(n−1)/2 ‖d‖ for any d ∈ L \ {0}, (LLL2)

‖b1 ‖ · · · ‖bn ‖ ≤ 2n(n−1)/4 det L. (LLL3)

Here det L is the determinant of the lattice, i.e. letting B = [b1, . . . , bn], it is defined as

detL =
√

det BTB, (5)

with detL actually independent of the choice of the basis. Improvements of the running time of
the LLL algorithm were given by Schnorr [14] and Nguyen and Stehlé in [11].

Korkhine-Zolotarev (KZ) bases were described in [7] by Korkhine, and Zolotarev, and by Kan-
nan in [6]. These bases have stronger reducedness properties. For instance, the first vector in a
KZ basis is the shortest vector of the lattice, as opposed to the weaker guarantee given by (LLL1).
However, KZ bases are computable in polynomial time only when n is fixed. Schnorr in [13] pro-
posed several hierarchies of bases between LLL and KZ reduced ones: the semi block 2k bases
among them are polynomial time computable when k is fixed, and both the quality of the basis,
and the complexity of the reduction algorithm increases with k.

It is natural to ask, whether the three beautiful inequalities (LLL1)-(LLL3) can be unified,
and generalized: for instance, whether the product of the norms of the first few basis vectors can
be bounded in terms of det L, or if the norm of the first basis vector can be bounded by other
parameters of L. Our Theorem 1 finds such generalizations. We think that Lemma 1 is also of
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interest. For k = 1 we can recover from it Lemma (5.3.11) in [4] (proven as part of Proposition
(1.11) in [9]).

Somewhat surprisingly, even with one degree of freedom, i.e. when one of k and j fixed to 1 or
n, or k = j in Theorem 1 we obtain inequalities that appear to be new. We list these intermediate
inequalities in

Corollary 1. Let b1, . . . , bn be an LLL-reduced basis of the lattice L, and d1, . . . , dk arbitrary

linearly independent vectors in L. Then

‖b1 ‖ ≤ 2(n−k)/2+(k−1)/4(det L(d1, . . . , dk))1/k, (6)

det L(b1, . . . , bk) ≤ 2k(n−k)/2 det L(d1, . . . , dk), (7)

det L(b1, . . . , bk) ≤ 2k(n−k)/4(det L)k/n, (8)

‖b1 ‖ · · · ‖bk ‖ ≤ 2k(n−k)/2+k(k−1)/4 detL(d1, . . . , dk), (9)

‖b1 ‖ · · · ‖bk ‖ ≤ 2k(n−1)/4(det L)k/n. (10)

In the rest of this section we collect necessary definitions, and results. In Section 2 we prove
Lemma 1, and in Section 3 we prove Theorem 1. In Section 4 we point out how our results imply
that the first few vectors of an LLL reduced basis give an approximation of Rankin’s constant
introduced by Rankin in [12] and more recently studied by Gama et. al. in [3]. Here we also
discuss how our results relate to the successive minima results in [9] and Babai’s result in [1] on
the shape of LLL reduced parallelepipeds.

If b1, . . . , bn is a basis of L, then the corresponding Gram-Schmidt vectors b∗1, . . . , b
∗
n, are defined

as

b∗1 = b1 and b∗i = bi −
i−1
∑

j=1

µijbj for i = 1, . . . , n − 1, (11)

with µij = 〈bi, b
∗

j 〉/〈b∗j , b∗j 〉, where 〈., .〉 is the usual inner product on R
m .

We call b1, . . . , bn an LLL-reduced basis of L, if

|µji| ≤ 1/2 (j = 2, . . . , n; i = 1, . . . , j − 1), and (12)

‖b∗j + µj,j−1b
∗

j−1 ‖2 ≥ 3/4 ‖b∗j−1 ‖2 (1 < j ≤ n). (13)

From (12) and (13)
‖b∗i ‖2 ≤ 2j−i ‖b∗j ‖2 (1 ≤ i ≤ j ≤ n) (14)

follows, and this is the only property of LLL reduced bases that we shall use.

If b1, . . . , bn are linearly independent vectors, then

detL(b1, . . . , bn) = detL(b1, . . . , bn−1) ‖b′ ‖, (15)
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where b′ is the projection of bn on the orthogonal complement of the linear span of b1, . . . , bn−1.

An integral square matrix U with ±1 determinant is called unimodular. An elementary column
operation performed on a matrix A is either 1) exchanging two columns, 2) multiplying a column
by −1, or 3) adding an integral multiple of a column to another. Multiplying a matrix from the
right by a unimodular U is equivalent to performing a sequence of elementary column operations
on it.

2 Proof of Lemma 1

We first need a claim.

Claim There are elementary column operations performed on d1, . . . , dk that yield d̄1, . . . , d̄k with

d̄i =

ti
∑

j=1

λijbj for i = 1, . . . , k, (16)

where λij ∈ Z, λi,ti 6= 0, and
tk > tk−1 > · · · > t1. (17)

Proof of Claim Let B = [b1, . . . , bn], and write

BV = [d1, . . . , dk], (18)

with V an integral matrix. Analogously to how the Hermite Normal Form of an integral matrix is
computed, suitable elementary column operations on V yield V̄ with

tk := max { i | v̄ik 6= 0 } > tk−1 := max { i | v̄i,k−1 6= 0 } > . . . > t1 := max { i | v̄i1 6= 0 }. (19)

The same elementary column operations on d1, . . . , dk yield d̄1, . . . , d̄k which satisfy

BV̄ = [d̄1, . . . , d̄k], (20)

so they satisfy (16).

End of proof of Claim

Obviously
det L(d̄1, . . . , d̄k) = det L(d1, . . . , dk). (21)

Substituting from (11) for bi we rewrite (16) as

d̄i =

ti
∑

j=1

λ∗

ijb
∗

j for i = 1, . . . , k, (22)
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where the λ∗

ij are now reals, but λ∗

i,ti
= λi,ti nonzero integers.

For all i we have
lin { d̄1, . . . , d̄i−1 } ⊆ lin{ b∗1, . . . , b

∗

ti−1
}. (23)

Therefore

‖Proj { d̄i | { d̄1, . . . , d̄i−1 }⊥ }‖≥‖Proj { d̄i | { b∗1, . . . , b
∗

ti−1
}⊥ }‖≥‖λi,tib

∗

ti ‖≥‖b∗ti ‖ (24)

holds, with the second inequality coming from (17). So applying (15) repeatedly we get

det L(d̄1, . . . , d̄k) ≥ detL(d̄1, . . . , d̄k−1) ‖b∗tk ‖
. . .

≥ ‖b∗t1 ‖‖b∗t2 ‖ . . . ‖b∗tk ‖,
(25)

which together with (21) completes the proof.

3 Proof of Theorem 1

Theorem 1 will follow from the special cases of Corollary 1, so we first prove (7) and (8) in the
latter, then complete the proof of Theorem 1.

Proof of (7) Lemma 1 implies

det L(d1, . . . , dk) ≥ ‖b∗t1 ‖‖b∗t2 ‖ . . . ‖b∗tk ‖ (26)

for some t1, . . . , tk ∈ {1, . . . , n} distinct indices. Clearly

t1 + · · · + tk ≤ kn − k(k − 1)/2 (27)

holds. Applying first (14), then (27) yields

(det L(d1, . . . , dk))2 ≥ ‖b∗1 ‖2 2(1−t1) ‖b∗2 ‖2 2(2−t2) . . . ‖b∗k ‖2 2(k−tk)

= ‖b∗1 ‖2 . . . ‖b∗k ‖2 2(1+···+k)−(t1+···+tk)

≥ ‖b∗1 ‖2 . . . ‖b∗k ‖2 2k(k−n),

(28)

which is equivalent to (7).

Proof of (8) We use induction. Let us write Dk = (detL(b1, . . . , bk))
2. For k = n−1, multiplying

the inequalities
‖b∗i ‖2 ≤ 2n−i ‖b∗n ‖2 ( i = 1, . . . , n − 1) (29)
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gives

Dn−1 ≤ 2n(n−1)/2(‖b∗n ‖2)n−1 (30)

= 2n(n−1)/2

(

Dn

Dn−1

)n−1

, (31)

and after simplifying, we get

Dn−1 ≤ 2(n−1)/2(Dn)1−1/n. (32)

Suppose that (8) is true for k ≤ n − 1; we will prove it for k − 1. Since b1, . . . , bk forms an
LLL-reduced basis of L(b1, . . . , bk) we can replace n by k in (32) to get

Dk−1 ≤ 2(k−1)/2(Dk)
(k−1)/k. (33)

By the induction hypothesis,

Dk ≤ 2k(n−k)/2(Dn)k/n, (34)

from which we obtain

(Dk)
(k−1)/k ≤ 2(k−1)(n−k)/2(Dn)(k−1)/n. (35)

Using the upper bound on (Dk)
(k−1)/k from (35) in (33) yields

Dk−1 ≤ 2(k−1)/22(k−1)(n−k)/2(Dn)(k−1)/k (36)

= 2(k−1)(n−(k−1))/2(Dn)(k−1)/n, (37)

as required.

Proof of Theorem 1 From (8) and (7) we obtain

det L(b1, . . . , bk) ≤ 2k(j−k)/4(det L(b1, . . . , bj))
k/j , (38)

det L(b1, . . . , bj) ≤ 2j(n−j)/2 detL(d1, . . . , dj). (39)

Raising (39) to the power of k/j gives

(det L(b1, . . . , bj))
k/j ≤ 2k(n−j)/2 det(L(d1, . . . , dj))

k/j , (40)

and plugging (40) into (38) proves (1).

It is shown in [9] that

‖bi ‖2 ≤ 2i−1 ‖b∗i ‖2 for i = 1, . . . , n. (41)

Multiplying these inequalities for i = 1, . . . , k yields

‖b1 ‖ · · · ‖bk ‖ ≤ 2k(n−1)/4 detL(b1, . . . , bk), (42)

and combining (42) with (1) yields (2).
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4 Discussion

Rankin’s invariant γn,k(L) for an n-dimensional lattice L is defined as

γn,k(L) = min
S is a sublattice of L, dim S = k

(

det S

(det L)k/n

)2

, (43)

and Rankin’s constant γn,k is the maximum of the γn,k(L) over all n-dimensional lattices. In Gama
et al [3] upper and lower bounds were proven for γ2k,k. Our inequality (8) implies that for an
n-dimensional lattice L

γn,k(L) ≤ 2k(n−k)/2 (44)

holds, and this inequality is achieved by the sublattice generated by first k vectors of an LLL
reduced basis of L.

The kth successive minimum of L is the smallest real number t, such that there are k linearly
independent vectors in L with length bounded by t. It is denoted by λk(L). With the same setup
as for (LLL1)-(LLL3) it is shown in [9] that

‖bi ‖ ≤ 2n−1λi(L) for i = 1, . . . , n. (45)

For KZ, and block KZ bases similar results were shown in [8], and [15], resp.

The successive minimum results (45) give a more global view of the lattice, and the reduced
basis, than (LLL1) through (LLL3). Our Theorem 1 is similar in this respect, but it seems to be
independent of (45). Of course, multiplying the latter for i = 1, . . . , k gives an upper bound on
‖b1 ‖ · · · ‖bk ‖, but in different terms.

The quantites detL(b1, . . . , bk) and ‖b1 ‖ . . . ‖bk ‖ are also connected by

det L(b1, . . . , bk) = ‖b1 ‖ . . . ‖bk ‖ sin θ2 . . . sin θk, (46)

where θi is the angle of bi with the subspace spanned by b1, . . . , bi−1. In [1] Babai showed that
the sine of the angle of any basis vector with the subspace spanned by the other basis vectors in a
d-dimensional lattice is at least (

√
2/3)d. One could combine the lower bounds on sin θi with the

upper bounds on det L(b1, . . . , bk) to find an upper bound on ‖b1 ‖ . . . ‖bk ‖ . However, the result
would be weaker than (9) and (10).
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