Unifying LLL inequalities

Gábor Pataki and Mustafa Tural *

Abstract

The Lenstra, Lenstra, and Lovász (abbreviated as LLL) basis reduction algorithm computes a basis of a lattice consisting of short, and near orthogonal vectors. The quality of an LLL reduced basis is expressed by three fundamental inequalities, and it is natural to ask, whether these have a common generalization.

In this note we find unifying inequalities. Our main result is Theorem 1. Let $b_{1}, \ldots, b_{n} \in \mathbb{R}^{m}$ be an LLL-reduced basis of the lattice $L, 1 \leq k \leq j \leq n$, and d_{1}, \ldots, d_{j} arbitrary linearly independent vectors in L. Then $$
\begin{align*} \operatorname{det} L\left(b_{1}, \ldots, b_{k}\right) & \leq 2^{k(n-j) / 2+k(j-k) / 4}\left(\operatorname{det} L\left(d_{1}, \ldots, d_{j}\right)\right)^{k / j} \tag{1}\\ \left\|b_{1}\right\| \cdots\left\|b_{k}\right\| & \leq 2^{k(n-j) / 2+k(j-1) / 4}\left(\operatorname{det} L\left(d_{1}, \ldots, d_{j}\right)\right)^{k / j} \tag{2} \end{align*}
$$

By setting k and j to either 1 or n, from (1) we can recover the first two LLL inequalities, and from (2) we can recover all three. Even with one degree of freedom left, i.e. with k or j fixed to 1 or n, or $k=j$, we obtain generalizations that seem to be new.
Our main lemma also generalizes a result of Lenstra, Lenstra and Lovász, and we believe that it is of independent interest:

Lemma 1. Let d_{1}, \ldots, d_{k} be linearly independent vectors from the lattice L, and $b_{1}^{*}, \ldots, b_{n}^{*}$ the Gram Schmidt orthogonalization of an arbitrary basis. Then

$$
\begin{equation*}
\operatorname{det} L\left(d_{1}, \ldots, d_{k}\right) \geq \min _{1 \leq i_{1}<\cdots<i_{k} \leq n}\left\{\left\|b_{i_{1}}^{*}\right\| \ldots\left\|b_{i_{k}}^{*}\right\|\right\} \tag{3}
\end{equation*}
$$

Mathematics subject classification codes: 11H06, 52C07
Key words: LLL basis reduction.

[^0]
1 LLL reducedness, and unifying inequalities

A lattice is a set of the form

$$
\begin{equation*}
L=L\left(b_{1}, \ldots, b_{n}\right)=\left\{\sum_{i=1}^{n} \lambda_{i} b_{i} \mid \lambda_{i} \in \mathbb{Z},(i=1, \ldots, n)\right\} \tag{4}
\end{equation*}
$$

where b_{1}, \ldots, b_{n} are linearly independent vectors, and are called a basis of L. A lattice has infinitely many bases when $n \geq 2$. Computing one consisting of short, and nearly orthogonal vectors is a a fundamental algorithmic problem with uses in cryptography, optimization, and number theory.

Several concepts of reducedness of a lattice basis are known. The most widely used one is LLL reducedness, developed in the seminal paper [9] of Lenstra, Lenstra, and Lovász. For a collection of articles on the history of lattice theory, complexity aspects, and the LLL algorithm we refer to the proceedings of the LLL +25 conference [2]. Surveys and textbook treatments of lattice basis reduction can be found in [4], [5], [16], and [10].

An LLL reduced basis b_{1}, \ldots, b_{n} is computable in polynomial time in the case of rational lattices, and the quality of the basis is expressed by three fundamental inequalities:

$$
\begin{align*}
\left\|b_{1}\right\| & \leq 2^{(n-1) / 4}(\operatorname{det} L)^{1 / n} \tag{LLL1}\\
\left\|b_{1}\right\| & \leq 2^{(n-1) / 2}\|d\| \text { for } \quad \text { any } d \in L \backslash\{0\} \tag{LLL2}\\
\left\|b_{1}\right\| \cdots\left\|b_{n}\right\| & \leq 2^{n(n-1) / 4} \operatorname{det} L . \tag{LLL3}
\end{align*}
$$

Here $\operatorname{det} L$ is the determinant of the lattice, i.e. letting $B=\left[b_{1}, \ldots, b_{n}\right]$, it is defined as

$$
\begin{equation*}
\operatorname{det} L=\sqrt{\operatorname{det} B^{\mathrm{T}} B} \tag{5}
\end{equation*}
$$

with $\operatorname{det} L$ actually independent of the choice of the basis. Improvements of the running time of the LLL algorithm were given by Schnorr [14] and Nguyen and Stehlé in [11].

Korkhine-Zolotarev (KZ) bases were described in [7] by Korkhine, and Zolotarev, and by Kannan in [6]. These bases have stronger reducedness properties. For instance, the first vector in a KZ basis is the shortest vector of the lattice, as opposed to the weaker guarantee given by (LLL1). However, KZ bases are computable in polynomial time only when n is fixed. Schnorr in [13] proposed several hierarchies of bases between LLL and KZ reduced ones: the semi block $2 k$ bases among them are polynomial time computable when k is fixed, and both the quality of the basis, and the complexity of the reduction algorithm increases with k.

It is natural to ask, whether the three beautiful inequalities (LLL1)-(LLL3) can be unified, and generalized: for instance, whether the product of the norms of the first few basis vectors can be bounded in terms of $\operatorname{det} L$, or if the norm of the first basis vector can be bounded by other parameters of L. Our Theorem 1 finds such generalizations. We think that Lemma 1 is also of
interest. For $k=1$ we can recover from it Lemma (5.3.11) in [4] (proven as part of Proposition (1.11) in [9]).

Somewhat surprisingly, even with one degree of freedom, i.e. when one of k and j fixed to 1 or n, or $k=j$ in Theorem 1 we obtain inequalities that appear to be new. We list these intermediate inequalities in

Corollary 1. Let b_{1}, \ldots, b_{n} be an LLL-reduced basis of the lattice L, and d_{1}, \ldots, d_{k} arbitrary linearly independent vectors in L. Then

$$
\begin{align*}
\left\|b_{1}\right\| & \leq 2^{(n-k) / 2+(k-1) / 4}\left(\operatorname{det} L\left(d_{1}, \ldots, d_{k}\right)\right)^{1 / k}, \tag{6}\\
\operatorname{det} L\left(b_{1}, \ldots, b_{k}\right) & \leq 2^{k(n-k) / 2} \operatorname{det} L\left(d_{1}, \ldots, d_{k}\right), \tag{7}\\
\operatorname{det} L\left(b_{1}, \ldots, b_{k}\right) & \leq 2^{k(n-k) / 4}(\operatorname{det} L)^{k / n} \tag{8}\\
\left\|b_{1}\right\| \cdots\left\|b_{k}\right\| & \leq 2^{k(n-k) / 2+k(k-1) / 4} \operatorname{det} L\left(d_{1}, \ldots, d_{k}\right), \tag{9}\\
\left\|b_{1}\right\| \cdots\left\|b_{k}\right\| & \leq 2^{k(n-1) / 4}(\operatorname{det} L)^{k / n} . \tag{10}
\end{align*}
$$

In the rest of this section we collect necessary definitions, and results. In Section 2 we prove Lemma 1, and in Section 3 we prove Theorem 1. In Section 4 we point out how our results imply that the first few vectors of an LLL reduced basis give an approximation of Rankin's constant introduced by Rankin in [12] and more recently studied by Gama et. al. in [3]. Here we also discuss how our results relate to the successive minima results in [9] and Babai's result in [1] on the shape of LLL reduced parallelepipeds.

If b_{1}, \ldots, b_{n} is a basis of L, then the corresponding Gram-Schmidt vectors $b_{1}^{*}, \ldots, b_{n}^{*}$, are defined as

$$
\begin{equation*}
b_{1}^{*}=b_{1} \text { and } b_{i}^{*}=b_{i}-\sum_{j=1}^{i-1} \mu_{i j} b_{j} \text { for } i=1, \ldots, n-1, \tag{11}
\end{equation*}
$$

with $\mu_{i j}=\left\langle b_{i}, b_{j}^{*}\right\rangle /\left\langle b_{j}^{*}, b_{j}^{*}\right\rangle$, where $\langle.,$.$\rangle is the usual inner product on \mathbb{R}^{m}$.
We call b_{1}, \ldots, b_{n} an LLL-reduced basis of L, if

$$
\begin{align*}
\left|\mu_{j i}\right| & \leq 1 / 2 \quad(j=2, \ldots, n ; i=1, \ldots, j-1), \text { and } \tag{12}\\
\left\|b_{j}^{*}+\mu_{j, j-1} b_{j-1}^{*}\right\|^{2} & \geq 3 / 4\left\|b_{j-1}^{*}\right\|^{2} \quad(1<j \leq n) . \tag{13}
\end{align*}
$$

From (12) and (13)

$$
\begin{equation*}
\left\|b_{i}^{*}\right\|^{2} \leq 2^{j-i}\left\|b_{j}^{*}\right\|^{2} \quad(1 \leq i \leq j \leq n) \tag{14}
\end{equation*}
$$

follows, and this is the only property of LLL reduced bases that we shall use.
If b_{1}, \ldots, b_{n} are linearly independent vectors, then

$$
\begin{equation*}
\operatorname{det} L\left(b_{1}, \ldots, b_{n}\right)=\operatorname{det} L\left(b_{1}, \ldots, b_{n-1}\right)\left\|b^{\prime}\right\| \tag{15}
\end{equation*}
$$

where b^{\prime} is the projection of b_{n} on the orthogonal complement of the linear span of b_{1}, \ldots, b_{n-1}.
An integral square matrix U with ± 1 determinant is called unimodular. An elementary column operation performed on a matrix A is either 1) exchanging two columns, 2) multiplying a column by -1 , or 3) adding an integral multiple of a column to another. Multiplying a matrix from the right by a unimodular U is equivalent to performing a sequence of elementary column operations on it.

2 Proof of Lemma 1

We first need a claim.
Claim There are elementary column operations performed on d_{1}, \ldots, d_{k} that yield $\bar{d}_{1}, \ldots, \bar{d}_{k}$ with

$$
\begin{equation*}
\bar{d}_{i}=\sum_{j=1}^{t_{i}} \lambda_{i j} b_{j} \text { for } i=1, \ldots, k \tag{16}
\end{equation*}
$$

where $\lambda_{i j} \in \mathbb{Z}, \lambda_{i, t_{i}} \neq 0$, and

$$
\begin{equation*}
t_{k}>t_{k-1}>\cdots>t_{1} \tag{17}
\end{equation*}
$$

Proof of Claim Let $B=\left[b_{1}, \ldots, b_{n}\right]$, and write

$$
\begin{equation*}
B V=\left[d_{1}, \ldots, d_{k}\right] \tag{18}
\end{equation*}
$$

with V an integral matrix. Analogously to how the Hermite Normal Form of an integral matrix is computed, suitable elementary column operations on V yield \bar{V} with

$$
\begin{equation*}
t_{k}:=\max \left\{i \mid \bar{v}_{i k} \neq 0\right\}>t_{k-1}:=\max \left\{i \mid \bar{v}_{i, k-1} \neq 0\right\}>\ldots>t_{1}:=\max \left\{i \mid \bar{v}_{i 1} \neq 0\right\} \tag{19}
\end{equation*}
$$

The same elementary column operations on d_{1}, \ldots, d_{k} yield $\bar{d}_{1}, \ldots, \bar{d}_{k}$ which satisfy

$$
\begin{equation*}
B \bar{V}=\left[\bar{d}_{1}, \ldots, \bar{d}_{k}\right] \tag{20}
\end{equation*}
$$

so they satisfy (16).

End of proof of Claim

Obviously

$$
\begin{equation*}
\operatorname{det} L\left(\bar{d}_{1}, \ldots, \bar{d}_{k}\right)=\operatorname{det} L\left(d_{1}, \ldots, d_{k}\right) \tag{21}
\end{equation*}
$$

Substituting from (11) for b_{i} we rewrite (16) as

$$
\begin{equation*}
\bar{d}_{i}=\sum_{j=1}^{t_{i}} \lambda_{i j}^{*} b_{j}^{*} \text { for } i=1, \ldots, k, \tag{22}
\end{equation*}
$$

where the $\lambda_{i j}^{*}$ are now reals, but $\lambda_{i, t_{i}}^{*}=\lambda_{i, t_{i}}$ nonzero integers.
For all i we have

$$
\begin{equation*}
\operatorname{lin}\left\{\bar{d}_{1}, \ldots, \bar{d}_{i-1}\right\} \subseteq \operatorname{lin}\left\{b_{1}^{*}, \ldots, b_{t_{i-1}}^{*}\right\} \tag{23}
\end{equation*}
$$

Therefore

$$
\begin{equation*}
\left\|\operatorname{Proj}\left\{\bar{d}_{i} \mid\left\{\bar{d}_{1}, \ldots, \bar{d}_{i-1}\right\}^{\perp}\right\}\right\| \geq\left\|\operatorname{Proj}\left\{\bar{d}_{i} \mid\left\{b_{1}^{*}, \ldots, b_{t_{i-1}}^{*}\right\}^{\perp}\right\}\right\| \geq\left\|\lambda_{i, t_{i}} b_{t_{i}}^{*}\right\| \geq\left\|b_{t_{i}}^{*}\right\| \tag{24}
\end{equation*}
$$

holds, with the second inequality coming from (17). So applying (15) repeatedly we get

$$
\begin{align*}
\operatorname{det} L\left(\bar{d}_{1}, \ldots, \bar{d}_{k}\right) & \geq \operatorname{det} L\left(\bar{d}_{1}, \ldots, \bar{d}_{k-1}\right)\left\|b_{t_{k}}^{*}\right\| \\
& \ldots \tag{25}\\
& \geq\left\|b_{t_{1}}^{*}\right\|\left\|b_{t_{2}}^{*}\right\| \ldots\left\|b_{t_{k}}^{*}\right\|
\end{align*}
$$

which together with (21) completes the proof.

3 Proof of Theorem 1

Theorem 1 will follow from the special cases of Corollary 1, so we first prove (7) and (8) in the latter, then complete the proof of Theorem 1.

Proof of (7) Lemma 1 implies

$$
\begin{equation*}
\operatorname{det} L\left(d_{1}, \ldots, d_{k}\right) \geq\left\|b_{t_{1}}^{*}\right\|\left\|b_{t_{2}}^{*}\right\| \ldots\left\|b_{t_{k}}^{*}\right\| \tag{26}
\end{equation*}
$$

for some $t_{1}, \ldots, t_{k} \in\{1, \ldots, n\}$ distinct indices. Clearly

$$
\begin{equation*}
t_{1}+\cdots+t_{k} \leq k n-k(k-1) / 2 \tag{27}
\end{equation*}
$$

holds. Applying first (14), then (27) yields

$$
\begin{align*}
\left(\operatorname{det} L\left(d_{1}, \ldots, d_{k}\right)\right)^{2} & \geq\left\|b_{1}^{*}\right\|^{2} 2^{\left(1-t_{1}\right)}\left\|b_{2}^{*}\right\|^{2} 2^{\left(2-t_{2}\right)} \ldots\left\|b_{k}^{*}\right\|^{2} 2^{\left(k-t_{k}\right)} \\
& =\left\|b_{1}^{*}\right\|^{2} \ldots\left\|b_{k}^{*}\right\|^{2} 2^{(1+\cdots+k)-\left(t_{1}+\cdots+t_{k}\right)} \tag{28}\\
& \geq\left\|b_{1}^{*}\right\|^{2} \ldots\left\|b_{k}^{*}\right\|^{2} 2^{k(k-n)},
\end{align*}
$$

which is equivalent to (7).

Proof of (8) We use induction. Let us write $D_{k}=\left(\operatorname{det} L\left(b_{1}, \ldots, b_{k}\right)\right)^{2}$. For $k=n-1$, multiplying the inequalities

$$
\begin{equation*}
\left\|b_{i}^{*}\right\|^{2} \leq 2^{n-i}\left\|b_{n}^{*}\right\|^{2}(i=1, \ldots, n-1) \tag{29}
\end{equation*}
$$

gives

$$
\begin{align*}
D_{n-1} & \leq 2^{n(n-1) / 2}\left(\left\|b_{n}^{*}\right\|^{2}\right)^{n-1} \tag{30}\\
& =2^{n(n-1) / 2}\left(\frac{D_{n}}{D_{n-1}}\right)^{n-1} \tag{31}
\end{align*}
$$

and after simplifying, we get

$$
\begin{equation*}
D_{n-1} \leq 2^{(n-1) / 2}\left(D_{n}\right)^{1-1 / n} \tag{32}
\end{equation*}
$$

Suppose that (8) is true for $k \leq n-1$; we will prove it for $k-1$. Since b_{1}, \ldots, b_{k} forms an LLL-reduced basis of $L\left(b_{1}, \ldots, b_{k}\right)$ we can replace n by k in (32) to get

$$
\begin{equation*}
D_{k-1} \leq 2^{(k-1) / 2}\left(D_{k}\right)^{(k-1) / k} \tag{33}
\end{equation*}
$$

By the induction hypothesis,

$$
\begin{equation*}
D_{k} \leq 2^{k(n-k) / 2}\left(D_{n}\right)^{k / n} \tag{34}
\end{equation*}
$$

from which we obtain

$$
\begin{equation*}
\left(D_{k}\right)^{(k-1) / k} \leq 2^{(k-1)(n-k) / 2}\left(D_{n}\right)^{(k-1) / n} \tag{35}
\end{equation*}
$$

Using the upper bound on $\left(D_{k}\right)^{(k-1) / k}$ from (35) in (33) yields

$$
\begin{align*}
D_{k-1} & \leq 2^{(k-1) / 2} 2^{(k-1)(n-k) / 2}\left(D_{n}\right)^{(k-1) / k} \tag{36}\\
& =2^{(k-1)(n-(k-1)) / 2}\left(D_{n}\right)^{(k-1) / n} \tag{37}
\end{align*}
$$

as required.

Proof of Theorem 1 From (8) and (7) we obtain

$$
\begin{align*}
\operatorname{det} L\left(b_{1}, \ldots, b_{k}\right) & \leq 2^{k(j-k) / 4}\left(\operatorname{det} L\left(b_{1}, \ldots, b_{j}\right)\right)^{k / j} \tag{38}\\
\operatorname{det} L\left(b_{1}, \ldots, b_{j}\right) & \leq 2^{j(n-j) / 2} \operatorname{det} L\left(d_{1}, \ldots, d_{j}\right) \tag{39}
\end{align*}
$$

Raising (39) to the power of k / j gives

$$
\begin{equation*}
\left(\operatorname{det} L\left(b_{1}, \ldots, b_{j}\right)\right)^{k / j} \leq 2^{k(n-j) / 2} \operatorname{det}\left(L\left(d_{1}, \ldots, d_{j}\right)\right)^{k / j} \tag{40}
\end{equation*}
$$

and plugging (40) into (38) proves (1).
It is shown in [9] that

$$
\begin{equation*}
\left\|b_{i}\right\|^{2} \leq 2^{i-1}\left\|b_{i}^{*}\right\|^{2} \text { for } i=1, \ldots, n \tag{41}
\end{equation*}
$$

Multiplying these inequalities for $i=1, \ldots, k$ yields

$$
\begin{equation*}
\left\|b_{1}\right\| \cdots\left\|b_{k}\right\| \leq 2^{k(n-1) / 4} \operatorname{det} L\left(b_{1}, \ldots, b_{k}\right) \tag{42}
\end{equation*}
$$

and combining (42) with (1) yields (2).

4 Discussion

Rankin's invariant $\gamma_{n, k}(L)$ for an n-dimensional lattice L is defined as

$$
\begin{equation*}
\gamma_{n, k}(L)=\min _{S \text { is a sublattice of } L, \operatorname{dim} S=k}\left(\frac{\operatorname{det} S}{(\operatorname{det} L)^{k / n}}\right)^{2}, \tag{43}
\end{equation*}
$$

and Rankin's constant $\gamma_{n, k}$ is the maximum of the $\gamma_{n, k}(L)$ over all n-dimensional lattices. In Gama et al [3] upper and lower bounds were proven for $\gamma_{2 k, k}$. Our inequality (8) implies that for an n-dimensional lattice L

$$
\begin{equation*}
\gamma_{n, k}(L) \leq 2^{k(n-k) / 2} \tag{44}
\end{equation*}
$$

holds, and this inequality is achieved by the sublattice generated by first k vectors of an LLL reduced basis of L.

The k th successive minimum of L is the smallest real number t, such that there are k linearly independent vectors in L with length bounded by t. It is denoted by $\lambda_{k}(L)$. With the same setup as for (LLL1)-(LLL3) it is shown in [9] that

$$
\begin{equation*}
\left\|b_{i}\right\| \leq 2^{n-1} \lambda_{i}(L) \text { for } i=1, \ldots, n \tag{45}
\end{equation*}
$$

For KZ, and block KZ bases similar results were shown in [8], and [15], resp.
The successive minimum results (45) give a more global view of the lattice, and the reduced basis, than (LLL1) through (LLL3). Our Theorem 1 is similar in this respect, but it seems to be independent of (45). Of course, multiplying the latter for $i=1, \ldots, k$ gives an upper bound on $\left\|b_{1}\right\| \cdots\left\|b_{k}\right\|$, but in different terms.

The quantites $\operatorname{det} L\left(b_{1}, \ldots, b_{k}\right)$ and $\left\|b_{1}\right\| \ldots\left\|b_{k}\right\|$ are also connected by

$$
\begin{equation*}
\operatorname{det} L\left(b_{1}, \ldots, b_{k}\right)=\left\|b_{1}\right\| \ldots\left\|b_{k}\right\| \sin \theta_{2} \ldots \sin \theta_{k} \tag{46}
\end{equation*}
$$

where θ_{i} is the angle of b_{i} with the subspace spanned by b_{1}, \ldots, b_{i-1}. In [1] Babai showed that the sine of the angle of any basis vector with the subspace spanned by the other basis vectors in a d-dimensional lattice is at least $(\sqrt{2} / 3)^{d}$. One could combine the lower bounds on $\sin \theta_{i}$ with the upper bounds on $\operatorname{det} L\left(b_{1}, \ldots, b_{k}\right)$ to find an upper bound on $\left\|b_{1}\right\| \ldots\left\|b_{k}\right\|$. However, the result would be weaker than (9) and (10).

References

[1] László Babai. On lovász lattice reduction, and the nearest lattice point problem. Combinatorica, 6:1-13, 1986.
[2] P. Nguyen et al, editor. Proceedings of the $L L L+25$ conference. University of Caen, France, 2007.
[3] Nicolas Gama, Nick Howgrave-Graham, Henrik Koy, and Phong Q. Nguyen. Rankin's constant and blockwise lattice reduction. In CRYPTO, pages 112-130, 2006.
[4] Martin Grötschel, Lászlo Lovász, and Alexander Schrijver. Geometric Algorithms and Combinatorial Optimization, volume 2 of Algorithms and Combinatorics. Springer, second corrected edition edition, 1993.
[5] Ravi Kannan. Algorithmic geometry of numbers. Annual Review of Computer Science, 2:231267, 1987.
[6] Ravi Kannan. Minkowski's convex body theorem and integer programming. Mathematics of Operations Research, 12(3):415-440, 1987.
[7] A. Korkine and G. Zolotarev. Sur les formes quadratiques. Mathematische Annalen, 6:366-389, 1873.
[8] Jeffrey C. Lagarias, Hendrik W. Lenstra, and Claus P. Schnorr. Korkine-zolotarev bases and successive minina of a lattice and its reciprocal lattice. Combinatorica, 10(4):333-348, 1990.
[9] Arjen K. Lenstra, Hendrik W. Lenstra, Jr., and László Lovász. Factoring polynomials with rational coefficients. Mathematische Annalen, 261:515-534, 1982.
[10] D. Micciancio. Complexity of lattice problems: a cryptographic perspective. Kluwer Academic Publishers, 2002.
[11] Phong Q. Nguyen and Damien Stehlé. An lll algorithm with quadratic complexity. SIAM J. on Computing, to appear, 2009.
[12] R. A. Rankin. On positive definite quadratic forms. J. London Math Soc, 28:309-314, 1953.
[13] Claus P. Schnorr. A hierarchy of polynomial time lattice basis reduction algorithms. Theoretical Computer Science, 53:201-225, 1987.
[14] Claus P. Schnorr. A more efficient algorithm for lattice basis reduction. J. of Algorithms, 9(1):47-62, 1988.
[15] Claus P. Schnorr. Block reduced lattice bases and successive minima. Combinatorics, Probability, and Computing, 3:507-533, 1994.
[16] Alexander Schrijver. Theory of Linear and Integer Programming. Wiley, Chichester, United Kingdom, 1986.

[^0]: *Department of Statistics and Operations Research, UNC Chapel Hill, gabor@unc.edu, tural@email.unc.edu

