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A pair of Semidefinite Programs (SDP)

supx c
Tx infY B • Y

s.t.
∑m

i=1 xiAi � B Y � 0

Ai • Y = ci (i = 1, . . . ,m).

Here

•Ai, B are symmetric matrices, c, x ∈ Rm.
•A � B means thatB −A is symmetric positive semidefinite

(psd).

•A •B =
∑

i,j aijbij.



Conic LPs and SDPs

•Common framework for LP and SDP: bothRn+ and psd matrices
are closed convex cones.

• A set C is a cone, if x ∈ C, λ ≥ 0⇒ λx ∈ C.

• Linear objective, conic constraint both in LP and SDP, and
many other interesting problems, notably SOCPs.



Why is SDP important: applications in

• 0–1 Integer programming.

•Approx algorithms

•Chemical engineering

•Chemistry

•Coding theory

•Control theory

•Combinatorial opt

•Discrete geometry

• Eigenvalue optimization

• Facility planning

• Finance

•Geometric optimization

•Global optimization

•Graph visualization

• Inventory theory

•Machine learning

•Matrix analysis

• PDEs

• Probability theory

•Robust optimization

• Signal processing

• Statistics

• Structural optimization



SDP theory and applications

• Nice duality theory: see later

• Applications: see textbooks by

• Boyd-Vandenberghe
• Ben-Tal-Nemirovskii

• Algebraic geometry:

• Nie-Sturmfels 2010
• von Bothmer-Ranestad 2009
• Gouveia, Parrilo, Thomas, 2010
• Book by Blekherman, et al, 2013

• Polynomial optimization:
• Lasserre 2000 –
• Parrilo 2000 –
• Nie 2000 –
• Helton-Vinnikov 2003
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The primal-dual pair of SDPs:

supx c
Tx infY B • Y
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SDP duality

The primal-dual pair of SDPs:

supx c
Tx infY B • Y

s.t.
∑m

i=1 xiAi � B Y � 0

Ai • Y = ci (i = 1, . . . ,m).

Easy: If x and Y are feasible, then cTx ≤ B • Y.

Ideal situation: ∃x̄, ∃Ȳ : cT x̄ = B • Ȳ .

But: in SDP, unlike in LP pathological phenomena occur:
nonattainment, positive gaps.

This is bad, since we would like a certificate of optimality.
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Pathology # 1: nonattainment in dual

Primal:

sup 2x1 ⇔ sup 2x1

s.t. x1

0 1

1 0

 �
1 0

0 0

 s.t.

 1 −x1

−x1 0

 � 0

Only feasible x1 is x1 = 0.

Dual: Dual variable is Y � 0.

inf y11

s.t.

y11 1

1 y22

 � 0

Here inf = 0, but not attained: Any y11 > 0, y22 = 1/y11 is
feasible, but y11 = 0 is not.
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Pathology # 2: positive duality gap

Primal:

sup x2

s.t. x1


1 0 0

0 0 0

0 0 0

 + x2


0 0 1

0 1 0

1 0 0

 �


1 0 0

0 1 0

0 0 0


Only feasible x2 is x2 = 0.

Dual value is 1, and it is attained.



Terminology

Definition:

• The system PSD = {x |
∑m

i=1 xiAi � B } is well-behaved, if
for all c such that

sup{ cTx |x ∈ PSD } is finite,

the dual program has the same value, and it attains.

• Badly behaved, otherwise.

• We would like to understand well/badly behaved systems.



Some literature

• Conic LPs may be badly behaved whenK is not polyhedral.

• Borwein-Wolkowicz 1981 Facial reduction: theoretical con-
struction of well behaved system

• Ramana 1995 Extended dual for SDP

• Ramana, Tunçel, Wolkowicz, 1997 Facial reduction implies
correctness of extended dual

• Klep, Schweighofer, 2013 Related duals based on algebraic
geometry.

• Waki, Muramatsu, 2013; Pataki 2013: Simpler facial reduc-
tion algorithms.

• P 2007 Closedness of linear image of a closed, convex cone



Motivation

The systems
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Motivation

The systems

x1

0 1

1 0

 �
1 0

0 0


and

x1


1 0 0

0 0 0

0 0 0

 + x2


0 0 1

0 1 0

1 0 0

 �


1 0 0

0 1 0

0 0 0


are both badly behaved.

Curious similarity:

• “Hanging off” diagonals;

• if we delete 2nd row and 2nd column in all matrices in the
second system, and delete the first matrix, we get back the
first system.
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Why all bad SDPs look the same

• Semidefinite system:

(PSD)
∑m

i=1 xiAi � B

• W.l.o.g. the max (rank) slack is

Z =

Ir 0

0 0

 .
Then (PSD) badly behaved⇔ ∃V a lin. combination of the
Ai and B as

V =


r︷︸︸︷
V11 V12

V T
12 V22

 , where V22 � 0, R(V T
12) 6⊆ R(V22).

• Ex: x1

V︷ ︸︸ ︷0 1

1 0

 �
Z︷ ︸︸ ︷1 0

0 0





What is missing?

• Matrices Z, V prove that (PSD) is badly behaved.

• But: this is not yet a poly time, or easy to verify proof of
bad behavior



Reformulations of

(PSD)
∑m

i=1 xiAi � B

are obtained by a sequence of:

• Rotate all matrices by T =

Ir 0

0 M

 , M orthogonal.

•B ← B +
∑m

i=1 µiAi

•Ai←
∑m

j=1 λjAj where λi 6= 0

Reformulations preserve well/badly behaved status; preserve
max slack; provide an equivalence relation
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(PSD,bad)
∑k

i=1 xi

Fi 0

0 0

 +
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 Fi Gi

GT
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 �
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0 0

 = Z,

where

1) Z is max slack; 2)

Gi

Hi

 lin. indep. 3) Hm � 0

Proof that (PSD,bad) is badly behaved:

x feas. with slack S ⇒ supp(S) ⊆ supp(Z)

⇒ xk+1 = · · · = xm = 0 ⇒ sup−xm = 0



Theorem: (PSD) is badly behaved ⇔ it has a
reformulation:

(PSD,bad)
∑k

i=1 xi

Fi 0

0 0

 +
∑m

i=k+1 xi

 Fi Gi

GT
i Hi

 �
Ir 0

0 0

 = Z,

where

1) Z is max slack; 2)

Gi

Hi

 lin. indep. 3) Hm � 0

Proof that (PSD,bad) is badly behaved:

Y � 0, Y • Z = 0 ⇒ Y =

0 0

0 Y22


⇒ Y •

Fm Gm

GT
m Hm

 ≥ 0

⇒ no dual soln with value 0



Example: before reformulation

x1


54 46 50 4

46 −38 87 −106

50 87 −60 296

4 −106 296 −368

+x2


110 91 105 −6

91 −72 171 −210

105 171 −72 528

−6 −210 528 −672

+x3


42 35 40 0

35 −28 67 −82

40 67 −36 216

0 −82 216 −272



+x4


36 30 35 −2

30 −24 57 −70

35 57 −24 176

−2 −70 176 −224

 �


389 323 370 −12

323 −257 610 −748

370 610 −288 1920

−12 −748 1920 −2432


Hard to tell if well or badly behaved



Example: after reformulation

x1


0 1 0 0

1 −2 0 0

0 0 0 0

0 0 0 0

+x2


2 1 0 0

1 0 0 0

0 0 0 0

0 0 0 0

+x3


0 0 2 1

0 0 3 −1

2 3 0 2

1 −1 2 0



+x4


0 0 3 −1

0 0 2 −1

3 2 4 0

−1 −1 0 0

 �


1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0


As before: x3 = x4 = 0⇒ sup−x4 = 0

But: no dual solution with value 0
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Corollaries:

• The question:

Is (PSD) well behaved?

is in NP ∩ coNP in real number model of computing.

• Certificate: reformulation, and proof that Z is max rank
slack.

• (PSD) well behaved ⇒ for all c with a finite obj. value ∃
optimal

Y =


r︷︸︸︷
Y11 0

0 Y22
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Theorem cont’d: (PSD) is well behaved ⇔ it has a
reformulation:

(PSD,good)
∑k

i=1 xi

Fi 0

0 0

 +
∑m

i=k+1 xi

 Fi Gi

GT
i Hi

 �
Ir 0

0 0

 = Z,

where

1) Z is max slack; 2) Hi lin. indep. 3) Hi • I = 0 ∀i
• Corollary: we can generate all well behaved semidefinite sys-

tems: choose in sequenceHi, Gi, Fi. Then do reformulation.

• Corollary: we can generate all linear maps under which the
image of the psd cone is closed.

• Proof: {(Ai • Y )mi=1 |Y � 0 } is closed ⇔
∑m

i=1 xiAi � 0 is
well behaved.
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Well- and badly behaved conic LPs

• Conic linear system, with K closed, convex cone:

(P ) Ax ≤K b (⇔ b−Ax ∈ K)

• Conic LP:

(Pc) sup{ 〈c, x〉 |x feasible in (P ) }

• Ex: LP, SDP, SOCP, . . .

• (P ) is well-behaved, if

sup(Pc) = min(Dc)∀c
where (Dc) is dual program. Badly behaved if not well be-
haved.

• Known:

K polyhedral⇒ (P ) is well-behaved.

(P ) Slater, i.e., ∃x : b−Ax ∈ riK⇒ (P ) is well-behaved.



Given K closed, convex cone
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Given K closed, convex cone

• dual cone: K∗ = { y | 〈x, y〉 ≥ 0∀x ∈ K }

•K is nice if K∗ + F⊥ is closed for all F faces of K.

• polyhedral, semidefinite, second order cones are nice.

• set of feasible directions at z ∈ K – maybe not closed:

dir(z,K) = { y | ∃ε > 0 s.t. z + εy ∈ K }
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A geometric result

• Conic system:
(P ) Ax ≤K b

• Let z ∈ ri((R(A) + b) ∩K) (maximum slack)

• Assume K is nice.

• Then: (P ) well behaved⇔

•R(A, b) ∩ (cl dir(z,K) \ dir(z,K)) = ∅.

•⇒ is true, even if K is not nice

•K polyhedral, or (P ) Slater (z ∈ riK)⇒ dir(z,K) closed.
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The difference set

• So, the set
cl dir(z,K) \ dir(z,K)

helps us understand conic duality.

• Example:

Z =

Ir 0

0 0

 .
Then

V ∈ cl dir(Z, PSD) \ dir(Z, PSD)

iff

V =


r︷︸︸︷
V11 V12

V T
12 V22

 , where V22 � 0, R(V T
12) 6⊆ R(V22).

• We recover characterization of badly behaved semidefinite
systems.
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Conclusion

• Pathologies in duality: well- and badly behaved semidefi-
nite systems.

• Combinatorial type characterizations.

• Reformulations to easily recognize good and bad behavior.

• Corollaries:

– Block-diagonality of all dual multipliers

– Generating all well behaved systems

– Generating all linear maps under which the image of the
psd cone is closed.

• More generally: conditions for well and badly behaved na-
ture of a conic linear system

• Exact characterization when K is nice.

• Latest version of paper is on Optimization Online.



Thank you!


