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• Exactly one of the following two systems is feasible:
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• (2) is a short certificate of infeasibility of (1).

• Easy direction: One line. Hard direction: One page.
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Here

•Ai are symmetric matrices.

•A •B = trace(AB).

•X � 0 means that X is symmetric positive semidefinite (psd).
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Farkas’ Lemma for SDP

• (1) implies (2):

(1)
∑m

i=1 yiAi � 0,
∑m

i=1 yibi = −1 (Palt) is feasible.

(2) Ai •X = bi ∀i, X � 0 (P ) is infeasible.

• Proof: One line.

•However: (2) does not imply (1): (Palt) is not an exact cer-
tificate of infeasibility.



Literature: exact certificates of infeasibility

•Ramana 1995

•Ramana, Tuncel, Wolkowicz, 1997

•Klep, Schweighofer 2013

•Waki, Muramatsu 2013: variant of facial reduction of

• Borwein, Wolkowicz 1981
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•Ramana’s dual, and certificate of infeasibility: needs O(n)
copies of the system, extra variables, and constraints like
Ui+1 �WiW

T
i

•Goal: Find an exact certificate of infeasibility that is “al-
most” as simple as Farkas’ Lemma.
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1 0 0

0 0 0

0 0 0

 •X = 0


0 0 1

0 1 0

1 0 0

 •X = −1

X � 0

• Suppose X feasible ⇒ X11 = 0
⇒ X12 = X13 = 0
⇒ X22 = −1

•Main idea: We will find such a structure in every infeasible
semidefinite system.
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lowing:
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Reformulation

Ai •X = bi (i = 1, . . . ,m)

X � 0
(P)

•We obtain a reformulation of (P) by a sequence of the fol-
lowing:

(1) (Aj, bj)← (
∑m

i=1 yiAi,
∑m

i=1 yibi), where y ∈ Rm, yj 6= 0.

(2) Exchange two equations.

(3) Ai← V TAiV (i = 1, , . . . ,m), where V is invertible.

• First two operations are inherited from Gaussian elimina-
tion.

• Fact: Reformulations preserve (in)feasibility.
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Proof of “⇐ ” : Suppose that X feasible in (Pref)
⇒ first r1 rows of X are 0

· · ·
⇒ first r1 + . . . + rk rows of X are 0
⇒ A′k+1 •X ≥ 0
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Back to the Example

• Back to the example:

A′1︷ ︸︸ ︷
1 0 0

0 0 0

0 0 0

 •X =

b′1︷︸︸︷
0


0 0 1

0 1 0

1 0 0


︸ ︷︷ ︸

A′2

•X = −1︸︷︷︸
b′2

X � 0



Theorem 1: (P) infeasible⇔ it has a reformulation

A′i •X = 0 (i = 1, . . . , k)

A′k+1 •X = −1 (Pref)

A′i •X = b′i (i = k + 2, . . . ,m)

X � 0

where k ≥ 0, and for i = 1, . . . , k + 1 the A′i look like
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• It resembles the traditional Farkas’ Lemma:

– The if direction is easy.

– When k = 0, we recover the “usual” Farkas’ Lemma.
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•Using this result, we can generate all infeasible SDP prob-
lems, as:

(1) Generate a system like (Pref).

(2) Reformulate it.



How about feasible systems?
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•Using this result, we can generate all feasible SDPs with
max rank soln of rank p, as:

(1) Generate a system like (Pref ,feas).

(2) Reformulate it.
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Proof: Trivial: some X has rank p, and the system proves
that no solution can have larger rank.
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in (Pref,feas):

A′i •X = 0 (i = 1, . . . , k)

A′i •X = b′i (i = k + 1, . . . ,m) (Pref,feas,red)

X ∈ 0⊕ Sp
+

Then, for all C ∈ Sn the SDP

sup{C •X |X feasible in (Pref ,feas,red)}
has strong duality with its Lagrange dual

inf{
∑m

i=1 yibi |C −
∑m

i=1 yiA
′
i ∈ (0⊕ Sp

+)∗}.
(i.e., values agree, and the latter is attained.)

Proof: The system (Pref ,feas,red) is (trivially) strictly feasible.
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Well behaved systems

•We say that (Pref ,feas,red) is well-behaved, if

sup{C •X |X feasible in (Pref ,feas,red)}

has strong duality with Lagrange dual for all C.

• If we have Sn+ in place of 0⊕ Sp+ then the system may not
be well behaved.

•Characterization of when a system is well behaved (over Sn+):
Pataki, 2011.

• Latter paper: also an algorithm to generate all well behaved
systems.

• In particular, to generate all linear maps, under which the
image of Sn+ is closed.
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Proof outline

• Based on simplified facial reduction algorithm: construct
the A′i one by one.

• “Difficult” direction is about 1.5 pages.

•Alternative: adapt a traditional facial reduction algorithm,
the closest one is by Waki and Muramatsu.



Context of spectrahedra, and possible other uses

• In different language: we have a standard form of spectrahedra,
to easily check emptiness, or a tight upper bound on the
rank of feasible solutions.

•Research on spectrahedra:

– Nie-Sturmfels;

– Netzer-Plaumann-Schweighofer;

– Vinzant;

– Blekherman et al;

– Helton-Nie;

– Sinn-Sturmfels; . . .

•Will these results be useful in studying spectrahedra?
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Conclusion

• Exact, simple certificate of infeasibility of a semidefinite sys-
tem based on elementary reformulation.

•Operations mostly from Gaussian elimination.

•Reformulations ≈ row echelon form of a system of linear
equations.

• (Pref) being infeasible is almost a tautology.

•Algorithm to systematically generate all infeasible SDPs.

•Reformulation of feasible semidefinite system: trivial strong
duality with Lagrange dual, for all objective functions.

•Algorithm to systematically generate all feasible SDPs with
a fixed rank maximum rank solution.



Conclusion

• For weakly infeasible SDPs, see the talk of Takashi Tsuchiya.

• Paper to appear in SIOPT.

• For a generalization of our work to general conic LPs; to
generate a library of infeasible and weakly infeasible SDPs:
followup paper on arxiv, and talk at ISMP.
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Thank you!


