Exact duality in semidefinite programming based on elementary reformulations

Gábor Pataki
Department of Statistics and Operations Research UNC Chapel Hill

Joint work with Minghui Liu
Talk at Tamás fest, 2015

Farkas' Lemma for Linear Programs (LP)

- Exactly one of the following two systems is feasible:
(1) $A x=b, x \geq 0$
(2) $y^{T} A \geq 0, y^{T} b=-1$

Farkas' Lemma for Linear Programs (LP)

- Exactly one of the following two systems is feasible:
(1) $A x=b, x \geq 0$
(2) $y^{T} A \geq 0, y^{T} b=-1$
- (2) is a short certificate of infeasibility of (1).

Farkas' Lemma for Linear Programs (LP)

- Exactly one of the following two systems is feasible:
(1) $A x=b, x \geq 0$
(2) $y^{T} A \geq 0, y^{T} b=-1$
- (2) is a short certificate of infeasibility of (1).
- Easy direction: One line. Hard direction: One page.

Semidefinite System (spectrahedron)

$$
\begin{align*}
& A_{i} \bullet X \tag{P}\\
&=b_{i}(i=1, \ldots, m) \\
& X \succeq 0
\end{align*}
$$

Semidefinite System (spectrahedron)

$$
\begin{aligned}
A_{i} \bullet X & =b_{i}(i=1, \ldots, m) \\
X & \succeq 0
\end{aligned}
$$

Here

- A_{i} are symmetric matrices.
- $A \bullet B=\operatorname{trace}(A B)$.
- $X \succeq 0$ means that X is symmetric positive semidefinite (psd).

Farkas' Lemma for SDP

- (1) implies (2):
(1) $\sum_{i=1}^{m} y_{i} A_{i} \succeq 0, \sum_{i=1}^{m} y_{i} b_{i}=-1\left(P_{\text {alt }}\right)$ is feasible.
(2) $A_{i} \bullet X=b_{i} \forall i, X \succeq 0(P)$ is infeasible.

Farkas' Lemma for SDP

- (1) implies (2):
(1) $\sum_{i=1}^{m} y_{i} A_{i} \succeq 0, \sum_{i=1}^{m} y_{i} b_{i}=-1\left(P_{\text {alt }}\right)$ is feasible.
(2) $A_{i} \bullet X=b_{i} \forall i, X \succeq 0(P)$ is infeasible.
- Proof: One line.

Farkas' Lemma for SDP

- (1) implies (2):
(1) $\sum_{i=1}^{m} y_{i} A_{i} \succeq 0, \sum_{i=1}^{m} y_{i} b_{i}=-1\left(P_{\text {alt }}\right)$ is feasible.
(2) $A_{i} \bullet X=b_{i} \forall i, X \succeq 0(P)$ is infeasible.
- Proof: One line.
- However: (2) does not imply (1): ($P_{\text {alt }}$) is not an exact certificate of infeasibility.

Literature: exact certificates of infeasibility

- Ramana 1995
- Ramana, Tuncel, Wolkowicz, 1997
- Klep, Schweighofer 2013
- Waki, Muramatsu 2013: variant of facial reduction of
- Borwein, Wolkowicz 1981

Literature: exact certificates of infeasibility

- Ramana's dual, and certificate of infeasibility: needs $O(n)$ copies of the system, extra variables, and constraints like $U_{i+1} \succeq W_{i} W_{i}^{T}$

Literature: exact certificates of infeasibility

- Ramana's dual, and certificate of infeasibility: needs $O(n)$ copies of the system, extra variables, and constraints like $U_{i+1} \succeq W_{i} \boldsymbol{W}_{i}^{T}$
- Goal: Find an exact certificate of infeasibility that is "almost" as simple as Farkas' Lemma.

Infeasible example, and proof of infeasibility

$$
\begin{gathered}
\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \bullet X=0 \\
\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right) \bullet X=-1 \\
X \succeq 0
\end{gathered}
$$

Infeasible example, and proof of infeasibility

$$
\begin{gathered}
\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \bullet X=0 \\
\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right) \bullet X=-1 \\
X \succeq 0
\end{gathered}
$$

- Suppose X feasible $\Rightarrow X_{11}=0$

$$
\begin{aligned}
& \Rightarrow X_{12}=X_{13}=0 \\
& \Rightarrow X_{22}=-1
\end{aligned}
$$

Infeasible example, and proof of infeasibility

$$
\begin{gathered}
\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \bullet X=0 \\
\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right) \cdot X=-1 \\
X \succeq 0
\end{gathered}
$$

- Suppose X feasible $\Rightarrow X_{11}=0$

$$
\begin{aligned}
& \Rightarrow \boldsymbol{X}_{12}=\boldsymbol{X}_{13}=0 \\
& \Rightarrow \boldsymbol{X}_{22}=-1
\end{aligned}
$$

- Main idea: We will find such a structure in every infeasible semidefinite system.

Reformulation

$$
\begin{align*}
A_{i} \bullet X & =b_{i}(i=1, \ldots, m) \tag{P}\\
X & \succeq 0
\end{align*}
$$

Reformulation

$$
\begin{align*}
A_{i} \bullet X & =b_{i}(i=1, \ldots, m) \tag{P}\\
X & \succeq 0
\end{align*}
$$

- We obtain a reformulation of (P) by a sequence of the following:
(1) $\left(A_{j}, b_{j}\right) \leftarrow\left(\sum_{i=1}^{m} y_{i} A_{i}, \sum_{i=1}^{m} y_{i} b_{i}\right)$, where $y \in \mathbb{R}^{m}, y_{j} \neq 0$.
(2) Exchange two equations.
(3) $A_{i} \leftarrow V^{T} A_{i} V(i=1,, \ldots, m)$, where V is invertible.

Reformulation

$$
\begin{align*}
A_{i} \bullet X & =b_{i}(i=1, \ldots, m) \tag{P}\\
X & \succeq 0
\end{align*}
$$

- We obtain a reformulation of (P) by a sequence of the following:
(1) $\left(A_{j}, b_{j}\right) \leftarrow\left(\sum_{i=1}^{m} y_{i} A_{i}, \sum_{i=1}^{m} y_{i} b_{i}\right)$, where $y \in \mathbb{R}^{m}, y_{j} \neq 0$.
(2) Exchange two equations.
(3) $A_{i} \leftarrow V^{T} A_{i} V(i=1,, \ldots, m)$, where V is invertible.
- First two operations are inherited from Gaussian elimination.

Reformulation

$$
\begin{align*}
A_{i} \bullet X & =b_{i}(i=1, \ldots, m) \tag{P}\\
X & \succeq 0
\end{align*}
$$

- We obtain a reformulation of (P) by a sequence of the following:
(1) $\left(A_{j}, b_{j}\right) \leftarrow\left(\sum_{i=1}^{m} y_{i} A_{i}, \sum_{i=1}^{m} y_{i} b_{i}\right)$, where $y \in \mathbb{R}^{m}, y_{j} \neq 0$.
(2) Exchange two equations.
(3) $A_{i} \leftarrow V^{T} A_{i} V(i=1,, \ldots, m)$, where V is invertible.
- First two operations are inherited from Gaussian elimination.
- Fact: Reformulations preserve (in)feasibility.

Theorem 1: (P) infeasible \Leftrightarrow it has a reformulation

$$
\begin{aligned}
A_{i}^{\prime} \bullet X & =0(i=1, \ldots, k) \\
A_{k+1}^{\prime} \bullet X & =-1 \\
A_{i}^{\prime} \bullet X & =b_{i}^{\prime}(i=k+2, \ldots, m) \\
X & \succeq 0
\end{aligned}
$$

where $k \geq 0$, and for $i=1, \ldots, k+1$ the A_{i}^{\prime} look like

$$
A_{1}^{\prime}=\left(\begin{array}{cc}
\overbrace{I}^{r_{1}} & \overbrace{0}^{n-r_{1}} \\
0 & 0
\end{array}\right), A_{i}^{\prime}=\left(\begin{array}{cc}
\overbrace{1}+\ldots+r_{i-1} \\
\times & \overbrace{\times}^{r_{i}} \\
\times & \overbrace{1}^{n-r_{1}-\ldots-r_{i}} \\
\times & 0
\end{array}\right)
$$

with $r_{1}, \ldots, r_{k}>0, r_{k+1} \geq 0$.

Theorem 1: (P) infeasible \Leftrightarrow it has a reformulation

$$
\begin{aligned}
A_{i}^{\prime} \bullet X & =0(i=1, \ldots, k) \\
A_{k+1}^{\prime} \bullet X & =-1 \\
A_{i}^{\prime} \bullet X & =b_{i}^{\prime}(i=k+2, \ldots, m) \\
X & \succeq 0
\end{aligned}
$$

where $k \geq 0$, and for $i=1, \ldots, k+1$ the A_{i}^{\prime} look like

with $r_{1}, \ldots, r_{k}>0, r_{k+1} \geq 0$.
Proof of " $\Leftarrow "$:

Theorem 1: (P) infeasible \Leftrightarrow it has a reformulation

$$
\begin{aligned}
A_{i}^{\prime} \bullet X & =0(i=1, \ldots, k) \\
A_{k+1}^{\prime} \bullet X & =-1 \\
A_{i}^{\prime} \bullet X & =b_{i}^{\prime}(i=k+2, \ldots, m) \\
X & \succeq 0
\end{aligned}
$$

where $k \geq 0$, and for $i=1, \ldots, k+1$ the A_{i}^{\prime} look like

$$
A_{1}^{\prime}=\left(\begin{array}{cc}
\overbrace{I}^{I} & \overbrace{0}^{r_{1}} \\
0 & 0
\end{array}\right), A_{i}^{\prime}=\left(\begin{array}{cc}
\overbrace{1}+\ldots+r_{i-1} \\
\times & \overbrace{\times}^{r_{i}} \\
\times & \overbrace{\times} \\
\times & 0
\end{array}\right)
$$

with $r_{1}, \ldots, r_{k}>0, r_{k+1} \geq 0$.
Proof of $" \Leftarrow "$: Suppose that X feasible in $\left(\mathrm{P}_{\mathrm{ref}}\right)$

Theorem 1: (P) infeasible \Leftrightarrow it has a reformulation

$$
\begin{aligned}
A_{i}^{\prime} \bullet X & =0(i=1, \ldots, k) \\
A_{k+1}^{\prime} \bullet X & =-1 \\
A_{i}^{\prime} \bullet X & =b_{i}^{\prime}(i=k+2, \ldots, m) \\
X & \succeq 0
\end{aligned}
$$

where $k \geq 0$, and for $i=1, \ldots, k+1$ the A_{i}^{\prime} look like

$$
A_{1}^{\prime}=\left(\begin{array}{cc}
\overbrace{\boldsymbol{I}}^{r_{1}} & \overbrace{0}^{n-r_{1}} \\
0 & \overbrace{0}^{r_{1}+\ldots+r_{i-1}}
\end{array}\right), A_{i}^{\prime}=\left(\begin{array}{cc}
\times \\
\times & \overbrace{\times}^{r_{i}} \\
\times & \begin{array}{c}
\text { I } \\
\times
\end{array} \\
0 & 0 \\
\times-r_{1}-\ldots-r_{i} \\
0
\end{array}\right)
$$

with $r_{1}, \ldots, r_{k}>0, r_{k+1} \geq 0$.
Proof of $" \Leftarrow "$: Suppose that X feasible in $\left(\mathrm{P}_{\text {ref }}\right)$
\Rightarrow first r_{1} rows of X are 0

Theorem 1: (P) infeasible \Leftrightarrow it has a reformulation

$$
\begin{aligned}
A_{i}^{\prime} \bullet X & =0(i=1, \ldots, k) \\
A_{k+1}^{\prime} \bullet X & =-1 \\
A_{i}^{\prime} \bullet X & =b_{i}^{\prime}(i=k+2, \ldots, m) \\
X & \succeq 0
\end{aligned}
$$

where $k \geq 0$, and for $i=1, \ldots, k+1$ the A_{i}^{\prime} look like

$$
A_{1}^{\prime}=\left(\begin{array}{cc}
\overbrace{I}^{I} & \overbrace{0}^{r_{1}} \\
0 & \overbrace{0}
\end{array}\right), A_{i}^{\prime}=(\begin{array}{cc}
\overbrace{1}+\ldots+r_{i-1}
\end{array} \overbrace{\times}^{r_{i}} \overbrace{\times}^{n-r_{1}-\ldots-r_{i}} \begin{array}{c}
\times \\
\times \\
\times
\end{array} \begin{array}{cc}
\mathbf{I} \\
0 & 0
\end{array})
$$

with $r_{1}, \ldots, r_{k}>0, r_{k+1} \geq 0$.
Proof of " $\Leftarrow "$: Suppose that X feasible in $\left(\mathrm{P}_{\text {ref }}\right)$
\Rightarrow first r_{1} rows of X are 0
\Rightarrow first $r_{1}+\ldots+r_{k}$ rows of X are 0

Theorem 1: (P) infeasible \Leftrightarrow it has a reformulation

$$
\begin{aligned}
A_{i}^{\prime} \bullet X & =0(i=1, \ldots, k) \\
A_{k+1}^{\prime} \bullet X & =-1 \\
A_{i}^{\prime} \bullet X & =b_{i}^{\prime}(i=k+2, \ldots, m) \\
X & \succeq 0
\end{aligned}
$$

where $k \geq 0$, and for $i=1, \ldots, k+1$ the A_{i}^{\prime} look like

$$
A_{1}^{\prime}=\left(\begin{array}{cc}
\overbrace{\boldsymbol{I}}^{r_{1}} & \overbrace{0}^{n-r_{1}} \\
0 & \overbrace{0}^{r_{1}+\ldots+r_{i-1}}
\end{array}\right), A_{i}^{\prime}=\left(\begin{array}{cc}
\times \\
\times & \overbrace{\times}^{r_{i}} \\
\times & \begin{array}{c}
\text { I } \\
\times
\end{array} \\
0 & 0 \\
\times-r_{1}-\ldots-r_{i} \\
0
\end{array}\right)
$$

with $r_{1}, \ldots, r_{k}>0, r_{k+1} \geq 0$.
Proof of " $\Leftarrow "$: Suppose that X feasible in $\left(\mathrm{P}_{\text {ref }}\right)$
\Rightarrow first r_{1} rows of X are 0

$$
\begin{aligned}
& \Rightarrow \text { first } r_{1}+\ldots+r_{k} \text { rows of } X \text { are } 0 \\
& \Rightarrow A_{k+1}^{\prime} \bullet X \geq 0
\end{aligned}
$$

Back to the Example

- Back to the example:

$$
\begin{aligned}
& \left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \bullet X=0 \\
& \left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right) \bullet X=-1 \\
& X \succeq 0
\end{aligned}
$$

Back to the Example

- Back to the example:

Theorem 1: (P) infeasible \Leftrightarrow it has a reformulation

$$
\begin{aligned}
A_{i}^{\prime} \bullet X & =0(i=1, \ldots, k) \\
A_{k+1}^{\prime} \bullet X & =-1 \\
A_{i}^{\prime} \bullet X & =b_{i}^{\prime}(i=k+2, \ldots, m) \\
X & \succeq 0
\end{aligned}
$$

where $k \geq 0$, and for $i=1, \ldots, k+1$ the A_{i}^{\prime} look like
with $r_{1}, \ldots, r_{k}>0, r_{k+1} \geq 0$.

- It resembles the traditional Farkas' Lemma:
- The if direction is easy.
- When $k=0$, we recover the "usual" Farkas' Lemma.

Theorem 1: (P) infeasible \Leftrightarrow it has a reformulation

$$
\begin{aligned}
A_{i}^{\prime} \bullet X & =0(i=1, \ldots, k) \\
A_{k+1}^{\prime} \bullet X & =-1 \\
A_{i}^{\prime} \bullet X & =b_{i}^{\prime}(i=k+2, \ldots, m) \\
X & \succeq 0
\end{aligned}
$$

where $k \geq 0$, and for $i=1, \ldots, k+1$ the A_{i}^{\prime} look like

$$
A_{1}^{\prime}=\left(\begin{array}{cc}
\overbrace{\boldsymbol{I}}^{r_{1}} & \overbrace{0}^{n-r_{1}} \\
0 & \overbrace{0}^{r_{1}+\ldots+r_{i-1}}
\end{array}\right), A_{i}^{\prime}=\left(\begin{array}{cc}
\times & \overbrace{1}^{r_{i}} \\
\times & \begin{array}{c}
n \\
\times \\
\times
\end{array} \\
0 & 0
\end{array}\right)
$$

with $r_{1}, \ldots, r_{k}>0, r_{k+1} \geq 0$.

- Using this result, we can generate all infeasible SDP problems, as:
(1) Generate a system like ($\mathrm{P}_{\mathrm{ref}}$).
(2) Reformulate it.

How about feasible systems?

Theorem 2, Part 1: (P) feasible with maximum rank solution of rank $p \geq 0 \Leftrightarrow$ it has a reformulation:

$$
\begin{aligned}
A_{i}^{\prime} \bullet X & =0(i=1, \ldots, k) \\
A_{i}^{\prime} \bullet X & =b_{i}^{\prime}(i=k+1, \ldots, m) \quad\left(\mathrm{P}_{\text {ref,feas }}\right) \\
X & \succeq 0
\end{aligned}
$$

where $k \geq 0$, and for $i=1, \ldots, k$ the A_{i}^{\prime} look like
with $r_{1}, \ldots, r_{k}>0, r_{1}+\cdots+r_{k}=n-p$ and a feasible solution with rank p.

Theorem 2, Part 1: (P) feasible with maximum rank solution of rank $p \geq 0 \Leftrightarrow$ it has a reformulation:

$$
\begin{aligned}
A_{i}^{\prime} \bullet X & =0(i=1, \ldots, k) \\
A_{i}^{\prime} \bullet X & =b_{i}^{\prime}(i=k+1, \ldots, m)\left(\mathrm{P}_{\text {ref,feas }}\right) \\
X & \succeq 0
\end{aligned}
$$

where $k \geq 0$, and for $i=1, \ldots, k$ the A_{i}^{\prime} look like
with $r_{1}, \ldots, r_{k}>0, r_{1}+\cdots+r_{k}=n-p$ and a feasible solution with rank p.

Proof of " $\Leftarrow "$: Like in the infeasible case.

Theorem 2, Part 1: (P) feasible with maximum rank solution of rank $p \geq 0 \Leftrightarrow$ it has a reformulation:

$$
\begin{aligned}
A_{i}^{\prime} \bullet X & =0(i=1, \ldots, k) \\
A_{i}^{\prime} \bullet X & =b_{i}^{\prime}(i=k+1, \ldots, m)\left(\mathrm{P}_{\text {ref,feas }}\right) \\
X & \succeq 0
\end{aligned}
$$

where $k \geq 0$, and for $i=1, \ldots, k$ the A_{i}^{\prime} look like
with $r_{1}, \ldots, r_{k}>0, r_{1}+\cdots+r_{k}=n-p$ and a feasible solution with rank p.

- Using this result, we can generate all feasible SDPs with max rank soln of rank p, as:
(1) Generate a system like ($\mathrm{P}_{\text {ref,feas }}$).
(2) Reformulate it.

Theorem 2, Part 2: Replace $X \succeq 0$ by $X \in 0 \oplus S_{+}^{p}$ in ($\mathrm{P}_{\text {ref,feas }}$):

$$
\begin{aligned}
A_{i}^{\prime} \bullet X & =0(i=1, \ldots, k) \\
A_{i}^{\prime} \bullet X & =b_{i}^{\prime}(i=k+1, \ldots, m)\left(\mathrm{P}_{\mathrm{ref}, \mathrm{feas}, \mathrm{red}}\right) \\
X & \in 0 \oplus S_{+}^{p}
\end{aligned}
$$

Theorem 2, Part 2: Replace $X \succeq 0$ by $X \in 0 \oplus S_{+}^{p}$ in ($\mathrm{P}_{\text {ref,feas }}$):

$$
\begin{aligned}
A_{i}^{\prime} \bullet X & =0(i=1, \ldots, k) \\
A_{i}^{\prime} \bullet X & =b_{i}^{\prime}(i=k+1, \ldots, m)\left(\mathrm{P}_{\mathrm{ref}, \mathrm{feas}, \mathrm{red}}\right) \\
X & \in 0 \oplus S_{+}^{p}
\end{aligned}
$$

Then, this system is strictly feasible, i.e., \exists feasible $X \in r i\left(0 \oplus S_{+}^{p}\right)$

Theorem 2, Part 2: Replace $X \succeq 0$ by $X \in 0 \oplus S_{+}^{p}$ in ($\mathrm{P}_{\text {ref,feas }}$):

$$
\begin{aligned}
A_{i}^{\prime} \bullet X & =0(i=1, \ldots, k) \\
A_{i}^{\prime} \bullet X & =b_{i}^{\prime}(i=k+1, \ldots, m)\left(\mathrm{P}_{\text {ref,feas,red }}\right) \\
X & \in 0 \oplus S_{+}^{p}
\end{aligned}
$$

Then, this system is strictly feasible, i.e., \exists feasible $X \in r i\left(0 \oplus S_{+}^{p}\right)$
Proof: Trivial: some X has rank p, and the system proves that no solution can have larger rank.

Theorem 2, Part 3: Replace $X \succeq 0$ by $X \in 0 \oplus S_{+}^{p}$ in ($\mathrm{P}_{\text {ref,feas }}$):

$$
\begin{aligned}
A_{i}^{\prime} \bullet X & =0(i=1, \ldots, k) \\
A_{i}^{\prime} \bullet X & =b_{i}^{\prime}(i=k+1, \ldots, m)\left(\mathrm{P}_{\mathrm{ref}, \mathrm{feas}, \mathrm{red}}\right) \\
X & \in 0 \oplus S_{+}^{p}
\end{aligned}
$$

Theorem 2, Part 3: Replace $X \succeq 0$ by $X \in 0 \oplus S_{+}^{p}$ in ($\mathrm{P}_{\text {ref,feas }}$):

$$
\begin{aligned}
A_{i}^{\prime} \bullet X & =0(i=1, \ldots, k) \\
A_{i}^{\prime} \bullet X & =b_{i}^{\prime}(i=k+1, \ldots, m) \quad\left(\mathrm{P}_{\mathrm{ref}, \mathrm{feas}, \mathrm{red}}\right) \\
X & \in 0 \oplus S_{+}^{p}
\end{aligned}
$$

Then, for all $C \in S^{n}$ the SDP

$$
\sup \left\{C \bullet \boldsymbol{X} \mid \boldsymbol{X} \text { feasible in }\left(\mathrm{P}_{\text {ref,feas, red }}\right)\right\}
$$

has strong duality with its Lagrange dual

$$
\inf \left\{\sum_{i=1}^{m} y_{i} b_{i} \mid C-\sum_{i=1}^{m} y_{i} A_{i}^{\prime} \in\left(0 \oplus S_{+}^{p}\right)^{*}\right\}
$$

(i.e., values agree, and the latter is attained.)

Theorem 2, Part 3: Replace $X \succeq 0$ by $X \in 0 \oplus S_{+}^{p}$ in ($\mathrm{P}_{\text {ref,feas }}$):

$$
\begin{aligned}
A_{i}^{\prime} \bullet X & =0(i=1, \ldots, k) \\
A_{i}^{\prime} \bullet X & =b_{i}^{\prime}(i=k+1, \ldots, m)\left(\mathrm{P}_{\mathrm{ref}, \mathrm{feas}, \mathrm{red}}\right) \\
X & \in 0 \oplus S_{+}^{p}
\end{aligned}
$$

Then, for all $C \in S^{n}$ the SDP

$$
\sup \left\{C \bullet X \mid X \text { feasible in }\left(\mathrm{P}_{\text {ref,feas,red }}\right)\right\}
$$

has strong duality with its Lagrange dual

$$
\inf \left\{\sum_{i=1}^{m} y_{i} b_{i} \mid C-\sum_{i=1}^{m} y_{i} A_{i}^{\prime} \in\left(0 \oplus S_{+}^{p}\right)^{*}\right\}
$$

(i.e., values agree, and the latter is attained.)

Proof: The system ($\mathrm{P}_{\text {ref,feas,red }}$) is (trivially) strictly feasible.

Well behaved systems

- We say that $\left(\mathrm{P}_{\text {ref,feas, red }}\right)$ is well-behaved, if

$$
\sup \left\{C \bullet \boldsymbol{X} \mid \boldsymbol{X} \text { feasible in }\left(\mathrm{P}_{\text {ref,feas,red }}\right)\right\}
$$

has strong duality with Lagrange dual for all C.

Well behaved systems

- We say that $\left(\mathrm{P}_{\text {ref,feas,red }}\right)$ is well-behaved, if

$$
\sup \left\{C \bullet \boldsymbol{X} \mid \boldsymbol{X} \text { feasible in }\left(\mathrm{P}_{\text {ref,feas,red }}\right)\right\}
$$

has strong duality with Lagrange dual for all C.

- If we have \mathbb{S}_{+}^{n} in place of $0 \oplus \mathbb{S}_{+}^{p}$ then the system may not be well behaved.

Well behaved systems

- We say that $\left(\mathrm{P}_{\text {ref,feas,red }}\right)$ is well-behaved, if

$$
\sup \left\{C \bullet X \mid X \text { feasible in }\left(\mathrm{P}_{\text {ref,feas,red }}\right)\right\}
$$

has strong duality with Lagrange dual for all C.

- If we have \mathbb{S}_{+}^{n} in place of $0 \oplus \mathbb{S}_{+}^{p}$ then the system may not be well behaved.
- Characterization of when a system is well behaved (over \mathbb{S}_{+}^{n}): Pataki, 2011.

Well behaved systems

- We say that $\left(\mathrm{P}_{\text {ref,feas, red }}\right)$ is well-behaved, if

$$
\sup \left\{C \bullet X \mid X \text { feasible in }\left(\mathrm{P}_{\text {ref,feas,red }}\right)\right\}
$$

has strong duality with Lagrange dual for all C.

- If we have \mathbb{S}_{+}^{n} in place of $0 \oplus \mathbb{S}_{+}^{p}$ then the system may not be well behaved.
- Characterization of when a system is well behaved (over \mathbb{S}_{+}^{n}): Pataki, 2011.
- Latter paper: also an algorithm to generate all well behaved systems.

Well behaved systems

- We say that $\left(\mathrm{P}_{\text {ref,feas, red }}\right)$ is well-behaved, if

$$
\sup \left\{C \bullet X \mid X \text { feasible in }\left(\mathrm{P}_{\text {ref,feas,red }}\right)\right\}
$$

has strong duality with Lagrange dual for all C.

- If we have \mathbb{S}_{+}^{n} in place of $0 \oplus \mathbb{S}_{+}^{p}$ then the system may not be well behaved.
- Characterization of when a system is well behaved (over \mathbb{S}_{+}^{n}): Pataki, 2011.
- Latter paper: also an algorithm to generate all well behaved systems.
- In particular, to generate all linear maps, under which the image of \mathbb{S}_{+}^{n} is closed.

Proof outline

- Based on simplified facial reduction algorithm: construct the A_{i}^{\prime} one by one.

Proof outline

- Based on simplified facial reduction algorithm: construct the A_{i}^{\prime} one by one.
- "Difficult" direction is about 1.5 pages.

Proof outline

- Based on simplified facial reduction algorithm: construct the A_{i}^{\prime} one by one.
- "Difficult" direction is about 1.5 pages.
- Alternative: adapt a traditional facial reduction algorithm, the closest one is by Waki and Muramatsu.

Context of spectrahedra, and possible other uses

- In different language: we have a standard form of spectrahedra, to easily check emptiness, or a tight upper bound on the rank of feasible solutions.
- Research on spectrahedra:
- Nie-Sturmfels;
- Netzer-Plaumann-Schweighofer;
- Vinzant;
- Blekherman et al;
- Helton-Nie;
- Sinn-Sturmfels; ...
- Will these results be useful in studying spectrahedra?

Conclusion

- Exact, simple certificate of infeasibility of a semidefinite system based on elementary reformulation.

Conclusion

- Exact, simple certificate of infeasibility of a semidefinite system based on elementary reformulation.
- Operations mostly from Gaussian elimination.

Conclusion

- Exact, simple certificate of infeasibility of a semidefinite system based on elementary reformulation.
- Operations mostly from Gaussian elimination.
- Reformulations \approx row echelon form of a system of linear equations.

Conclusion

- Exact, simple certificate of infeasibility of a semidefinite system based on elementary reformulation.
- Operations mostly from Gaussian elimination.
- Reformulations \approx row echelon form of a system of linear equations.
- $\left(\mathrm{P}_{\text {ref }}\right)$ being infeasible is almost a tautology.

Conclusion

- Exact, simple certificate of infeasibility of a semidefinite system based on elementary reformulation.
- Operations mostly from Gaussian elimination.
- Reformulations \approx row echelon form of a system of linear equations.
- $\left(\mathrm{P}_{\text {ref }}\right)$ being infeasible is almost a tautology.
- Algorithm to systematically generate all infeasible SDPs.

Conclusion

- Exact, simple certificate of infeasibility of a semidefinite system based on elementary reformulation.
- Operations mostly from Gaussian elimination.
- Reformulations \approx row echelon form of a system of linear equations.
- ($\mathrm{P}_{\text {ref }}$) being infeasible is almost a tautology.
- Algorithm to systematically generate all infeasible SDPs.
- Reformulation of feasible semidefinite system: trivial strong duality with Lagrange dual, for all objective functions.

Conclusion

- Exact, simple certificate of infeasibility of a semidefinite system based on elementary reformulation.
- Operations mostly from Gaussian elimination.
- Reformulations \approx row echelon form of a system of linear equations.
- ($\mathrm{P}_{\text {ref }}$) being infeasible is almost a tautology.
- Algorithm to systematically generate all infeasible SDPs.
- Reformulation of feasible semidefinite system: trivial strong duality with Lagrange dual, for all objective functions.
- Algorithm to systematically generate all feasible SDPs with a fixed rank maximum rank solution.

Conclusion

- For weakly infeasible SDPs, see the talk of Takashi Tsuchiya.
- Paper to appear in SIOPT.
- For a generalization of our work to general conic LPs; to generate a library of infeasible and weakly infeasible SDPs: followup paper on arxiv, and talk at ISMP.

Boldog születésnapot, Tamas!

Boldog születésnapot, Tamas! Thank you!

