Exact duality in semidefinite programming based on elementary reformulations

Gábor Pataki

Department of Statistics and Operations Research UNC Chapel Hill

Joint work with Minghui Liu

Talk at Tamás fest, 2015

Farkas' Lemma for Linear Programs (LP)

• Exactly one of the following two systems is feasible:

(1)
$$Ax = b, \ x \ge 0$$

 $(2) \ y^TA \geq 0, \ y^Tb = -1$

Farkas' Lemma for Linear Programs (LP)

- Exactly one of the following two systems is feasible:
- (1) $Ax = b, x \ge 0$
- $(2) \ y^T A \geq 0, \ y^T b = -1$
- (2) is a short certificate of infeasibility of (1).

Farkas' Lemma for Linear Programs (LP)

- Exactly one of the following two systems is feasible:
- (1) $Ax = b, x \ge 0$
- $(2) \ y^T A \geq 0, \ y^T b = -1$
- (2) is a short certificate of infeasibility of (1).
- Easy direction: One line. Hard direction: One page.

Semidefinite System (spectrahedron)

$$egin{aligned} A_i ullet X &= b_i \, (i=1,\ldots,m) \ X \succeq 0 \end{aligned}$$

Semidefinite System (spectrahedron)

$$egin{aligned} A_i ullet X &= b_i \, (i=1,\ldots,m) \ & X \succeq 0 \end{aligned}$$

Here

- A_i are symmetric matrices.
- $A \bullet B = \text{trace}(AB)$.
- $X \succeq 0$ means that X is symmetric positive semidefinite (psd).

Farkas' Lemma for SDP

• (1) implies (2):

 $(1)\sum_{i=1}^m y_iA_i \succeq 0, \ \sum_{i=1}^m y_ib_i = -1 \ (P_{\mathrm{alt}}) \ \mathrm{is \ feasible}.$

(2) $A_i \bullet X = b_i \forall i, X \succeq 0 \ (P)$ is infeasible.

Farkas' Lemma for SDP

- (1) implies (2):
- (1) $\sum_{i=1}^{m} y_i A_i \succeq 0$, $\sum_{i=1}^{m} y_i b_i = -1$ (P_{alt}) is feasible.
- (2) $A_i \bullet X = b_i \forall i, X \succeq 0 \ (P)$ is infeasible.
- **Proof:** One line.

Farkas' Lemma for SDP

- (1) implies (2):
- (1) $\sum_{i=1}^{m} y_i A_i \succeq 0$, $\sum_{i=1}^{m} y_i b_i = -1$ (P_{alt}) is feasible.

(2) $A_i \bullet X = b_i \forall i, X \succeq 0 \ (P)$ is infeasible.

- **Proof:** One line.
- However: (2) does not imply (1): (P_{alt}) is not an exact certificate of infeasibility.

Literature: exact certificates of infeasibility

- Ramana 1995
- Ramana, Tuncel, Wolkowicz, 1997
- Klep, Schweighofer 2013
- Waki, Muramatsu 2013: variant of facial reduction of
- Borwein, Wolkowicz 1981

Literature: exact certificates of infeasibility

• Ramana's dual, and certificate of infeasibility: needs O(n) copies of the system, extra variables, and constraints like $U_{i+1} \succeq W_i W_i^T$

Literature: exact certificates of infeasibility

- Ramana's dual, and certificate of infeasibility: needs O(n) copies of the system, extra variables, and constraints like $U_{i+1} \succeq W_i W_i^T$
- Goal: Find an exact certificate of infeasibility that is "almost" as simple as Farkas' Lemma.

Infeasible example, and proof of infeasibility

Infeasible example, and proof of infeasibility

• Suppose X feasible
$$\Rightarrow X_{11} = 0$$

 $\Rightarrow X_{12} = X_{13} = 0$
 $\Rightarrow X_{22} = -1$

Infeasible example, and proof of infeasibility

• Suppose X feasible
$$\Rightarrow X_{11} = 0$$

 $\Rightarrow X_{12} = X_{13} = 0$
 $\Rightarrow X_{22} = -1$

• Main idea: We will find such a structure in every infeasible semidefinite system.

$$egin{array}{lll} A_i ullet X &= b_i \ (i=1,\ldots,m) \ X \succeq 0 \end{array}$$

$$egin{array}{lll} A_i ullet X &= b_i \ (i=1,\ldots,m) \ X \succeq 0 \end{array}$$

- We obtain a reformulation of (P) by a sequence of the following:
- (1) $(A_j, b_j) \leftarrow (\sum_{i=1}^m y_i A_i, \sum_{i=1}^m y_i b_i)$, where $y \in \mathbb{R}^m, y_j \neq 0$.
- (2) Exchange two equations.
- (3) $A_i \leftarrow V^T A_i V \ (i = 1, \dots, m)$, where V is invertible.

$$egin{array}{lll} A_i ullet X &= b_i \ (i=1,\ldots,m) \ X \succeq 0 \end{array}$$

- We obtain a reformulation of (P) by a sequence of the following:
- (1) $(A_j, b_j) \leftarrow (\sum_{i=1}^m y_i A_i, \sum_{i=1}^m y_i b_i)$, where $y \in \mathbb{R}^m, y_j \neq 0$.
- (2) Exchange two equations.
- (3) $A_i \leftarrow V^T A_i V \ (i = 1, \dots, m)$, where V is invertible.
- First two operations are inherited from Gaussian elimination.

$$egin{array}{lll} A_i ullet X &= b_i \ (i=1,\ldots,m) \ X \succeq 0 \end{array}$$

- We obtain a reformulation of (P) by a sequence of the following:
- (1) $(A_j, b_j) \leftarrow (\sum_{i=1}^m y_i A_i, \sum_{i=1}^m y_i b_i)$, where $y \in \mathbb{R}^m, y_j \neq 0$.
- (2) Exchange two equations.
- (3) $A_i \leftarrow V^T A_i V \ (i = 1, \dots, m)$, where V is invertible.
- First two operations are inherited from Gaussian elimination.
- Fact: Reformulations preserve (in)feasibility.

where $k \geq 0$, and for $i = 1, \ldots, k + 1$ the A'_i look like

$$A_{1}' = egin{pmatrix} r_{1} & n-r_{1} \ I & 0 \ 0 & 0 \ \end{pmatrix}, \ A_{i}' = egin{pmatrix} r_{1}+...+r_{i-1} & r_{i} & n-r_{1}-...-r_{i} \ imes & imes$$

with $r_1, \ldots, r_k > 0, r_{k+1} \ge 0$.

where $k \geq 0$, and for $i = 1, \ldots, k + 1$ the A'_i look like

with $r_1, \ldots, r_k > 0, r_{k+1} \ge 0$.

Proof of " \Leftarrow " :

where $k \geq 0$, and for $i = 1, \ldots, k + 1$ the A'_i look like

$$A_{1}' = egin{pmatrix} r_{1} & n-r_{1} \ I & 0 \ 0 & 0 \ \end{pmatrix}, \ A_{i}' = egin{pmatrix} r_{1}+...+r_{i-1} & r_{i} & n-r_{1}-...-r_{i} \ imes & imes$$

with $r_1, \ldots, r_k > 0, r_{k+1} \ge 0$.

Proof of " \Leftarrow ": Suppose that X feasible in (P_{ref})

$$egin{aligned} &A'_i ullet X \ &= \ 0 \ (i = 1, \dots, k) \ &A'_{k+1} ullet X \ &= -1 \ & (ext{P}_{ ext{ref}}) \ &A'_i ullet X \ &= \ b'_i \ (i = k+2, \dots, m) \ & X \ &\succeq \ 0 \end{aligned}$$

where $k \geq 0$, and for $i = 1, \ldots, k + 1$ the A'_i look like

$$A_1' = egin{pmatrix} r_1 & n-r_1 \ \hline I & 0 \ 0 & 0 \ \end{pmatrix}, \ A_i' = egin{pmatrix} r_1+...+r_{i-1} & r_i & n-r_1-...-r_i \ \hline imes & imes & imes \ imes \ imes & imes \ imes \ imes & imes \ imes \$$

with $r_1, \ldots, r_k > 0, r_{k+1} \ge 0$.

Proof of " \Leftarrow " : Suppose that X feasible in (P_{ref}) \Rightarrow first r_1 rows of X are 0

$$egin{aligned} A'_i ullet X &= 0 \; (i = 1, \dots, k) \ A'_{k+1} ullet X &= -1 & (extsf{P}_{ extsf{ref}}) \ A'_i ullet X &= b'_i \; (i = k+2, \dots, m) \ X \succeq 0 \end{aligned}$$

where $k \geq 0$, and for $i = 1, \ldots, k + 1$ the A'_i look like

$$A_1' = egin{pmatrix} r_1 & n-r_1 \ \hline I & 0 \ 0 & 0 \ \end{pmatrix}, \ A_i' = egin{pmatrix} r_1+...+r_{i-1} & r_i & n-r_1-...-r_i \ \hline imes & imes & imes \ imes \ imes & imes \ imes \ imes & imes \ imes \$$

with $r_1, \ldots, r_k > 0, r_{k+1} \ge 0$.

 $\begin{array}{l} \textbf{Proof of `` \Leftarrow ": Suppose that X feasible in (P_{ref})$} \\ \Rightarrow \textit{first r_1 rows of X are 0} \\ \cdots \\ \Rightarrow \textit{first $r_1 + \ldots + r_k$ rows of X are 0} \end{array}$

$$egin{aligned} A'_i ullet X &= 0 \; (i = 1, \dots, k) \ A'_{k+1} ullet X &= -1 & (ext{P}_{ ext{ref}}) \ A'_i ullet X &= b'_i \; (i = k+2, \dots, m) \ X \succeq 0 \end{aligned}$$

where $k \geq 0$, and for $i = 1, \ldots, k + 1$ the A'_i look like

$$A_1' = egin{pmatrix} r_1 & n-r_1 \ \hline I & 0 \ 0 & 0 \ \end{pmatrix}, \ A_i' = egin{pmatrix} r_1+...+r_{i-1} & r_i & n-r_1-...-r_i \ \hline imes & imes & imes \ imes \ imes & imes \ imes \ imes & imes \ imes \$$

with $r_1, \ldots, r_k > 0, r_{k+1} \ge 0$.

Proof of " \Leftarrow " : Suppose that X feasible in (P_{ref}) \Rightarrow first r_1 rows of X are 0

. . .

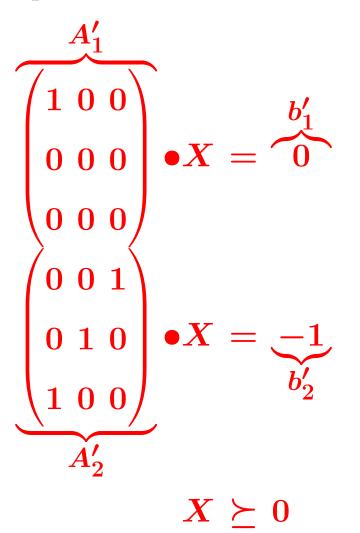
 $\Rightarrow ext{ first } r_1 + \ldots + r_k ext{ rows of } X ext{ are } 0 \ \Rightarrow A'_{k+1} ullet X \geq 0$

Back to the Example

• Back to the example:

Back to the Example

• Back to the example:



$$egin{aligned} A'_i ullet X &= 0 \ (i = 1, \dots, k) \ A'_{k+1} ullet X &= -1 \ A'_i ullet X &= b'_i \ (i = k+2, \dots, m) \ X &\succeq 0 \end{aligned}$$
 (Pref)

where $k \geq 0$, and for $i = 1, \ldots, k + 1$ the A'_i look like

$$A_1' = egin{pmatrix} r_1 & n-r_1 \ I & 0 \ 0 & 0 \ \end{pmatrix}, \ A_i' = egin{pmatrix} r_1+...+r_{i-1} & r_i & n-r_1-...-r_i \ imes & imes & imes \ imes & imes \ imes & imes & imes \ imes \ imes & imes \ imes$$

with $r_1, \ldots, r_k > 0, r_{k+1} \ge 0$.

• It resembles the traditional Farkas' Lemma:

- The if direction is easy.
- -When k = 0, we recover the "usual" Farkas' Lemma.

$$egin{aligned} A'_i ullet X &= 0 \; (i = 1, \dots, k) \ A'_{k+1} ullet X &= -1 & (extsf{P}_{ extsf{ref}}) \ A'_i ullet X &= b'_i \; (i = k+2, \dots, m) \ X \succeq 0 \end{aligned}$$

where $k \geq 0$, and for $i = 1, \ldots, k + 1$ the A'_i look like

$$A_1' = egin{pmatrix} r_1 & n-r_1 \ \hline I & 0 \ 0 & 0 \ \end{pmatrix}, \ A_i' = egin{pmatrix} r_1+...+r_{i-1} & r_i & n-r_1-...-r_i \ \hline imes & imes & imes \ imes \ imes & imes \ imes \ imes & imes \ imes \$$

with $r_1, \ldots, r_k > 0, r_{k+1} \ge 0$.

- Using this result, we can generate all infeasible SDP problems, as:
- (1) Generate a system like (P_{ref}) .
- (2) Reformulate it.

How about feasible systems?

Theorem 2, Part 1: (P) feasible with maximum rank solution of rank $p \ge 0 \Leftrightarrow$ it has a reformulation:

$$egin{aligned} A_i' ullet X &= 0 \ (i=1,\ldots,k) \ A_i' ullet X &= b_i' \ (i=k+1,\ldots,m) \ (ext{P}_{ ext{ref,feas}}) \ X &\succeq 0 \end{aligned}$$

where $k \geq 0$, and for $i = 1, \ldots, k$ the A'_i look like

$$A_1' = egin{pmatrix} r_1 & n-r_1 \ \hline I & 0 \ 0 & 0 \ \end{pmatrix}, \ A_i' = egin{pmatrix} r_1+...+r_{i-1} & r_i & n-r_1-...-r_i \ \hline imes & imes & imes \ imes \ imes & imes \ imes \ imes & imes \ imes \$$

with $r_1, \ldots, r_k > 0$, $r_1 + \cdots + r_k = n - p$ and a feasible solution with rank p.

Theorem 2, Part 1: (P) feasible with maximum rank solution of rank $p \ge 0 \Leftrightarrow$ it has a reformulation:

$$egin{aligned} A_i' ullet X &= 0 \ (i=1,\ldots,k) \ A_i' ullet X &= b_i' \ (i=k+1,\ldots,m) \ (ext{P}_{ ext{ref,feas}}) \ X &\succeq 0 \end{aligned}$$

where $k \geq 0$, and for $i = 1, \ldots, k$ the A'_i look like

$$A_1' = egin{pmatrix} r_1 & n-r_1 \ \hline I & 0 \ 0 & 0 \ \end{pmatrix}, \ A_i' = egin{pmatrix} r_1+...+r_{i-1} & r_i & n-r_1-...-r_i \ \hline imes & imes & imes \ imes \ imes & imes \ imes \ imes & imes \ imes \$$

with $r_1, \ldots, r_k > 0$, $r_1 + \cdots + r_k = n - p$ and a feasible solution with rank p.

Proof of " \Leftarrow ": Like in the infeasible case.

Theorem 2, Part 1: (P) feasible with maximum rank solution of rank $p \ge 0 \Leftrightarrow$ it has a reformulation:

$$egin{aligned} A_i' ullet X &= 0 \ (i=1,\ldots,k) \ A_i' ullet X &= b_i' \ (i=k+1,\ldots,m) \ (ext{P}_{ ext{ref,feas}}) \ X &\succeq 0 \end{aligned}$$

where $k \geq 0$, and for $i = 1, \ldots, k$ the A'_i look like

$$A_1' = egin{pmatrix} r_1 & n-r_1 \ \hline I & 0 \ 0 & 0 \ \end{pmatrix}, \ A_i' = egin{pmatrix} r_1+...+r_{i-1} & r_i & n-r_1-...-r_i \ \hline imes & imes & imes \ imes \ imes & imes \ imes \ imes & imes \ imes \$$

with $r_1, \ldots, r_k > 0$, $r_1 + \cdots + r_k = n - p$ and a feasible solution with rank p.

- Using this result, we can generate all feasible SDPs with max rank soln of rank p, as:
- (1) Generate a system like $(P_{ref, feas})$.
- (2) Reformulate it.

Theorem 2, Part 2: Replace $X \succeq 0$ by $X \in 0 \oplus S^p_+$ in $(P_{\text{ref,feas}})$:

$$egin{aligned} A'_i ullet X &= 0 \,\,(i = 1, \dots, k) \ A'_i ullet X &= b'_i \,\,(i = k + 1, \dots, m) \,\,\,(ext{Pref,feas,red}) \ X &\in 0 \oplus S^p_+ \end{aligned}$$

Theorem 2, Part 2: Replace $X \succeq 0$ by $X \in 0 \oplus S^p_+$ in $(P_{\text{ref,feas}})$:

$$egin{aligned} A_i' ullet X &= 0 \ (i=1,\ldots,k) \ A_i' ullet X &= b_i' \ (i=k+1,\ldots,m) \ (extsf{P}_{ extsf{ref,feas,red}}) \ X &\in 0 \oplus S^p_+ \end{aligned}$$

Then, this system is strictly feasible, i.e., \exists feasible $X \in ri(0 \oplus S^p_+)$

Theorem 2, Part 2: Replace $X \succeq 0$ by $X \in 0 \oplus S^p_+$ in $(P_{\text{ref,feas}})$:

$$egin{aligned} A'_i ullet X &= 0 \,\,(i = 1, \dots, k) \ A'_i ullet X &= b'_i \,\,(i = k + 1, \dots, m) \,\,\,(ext{P}_{ ext{ref,feas,red}}) \ X &\in 0 \oplus S^p_+ \end{aligned}$$

Then, this system is strictly feasible, i.e., \exists feasible $X \in ri(0 \oplus S^p_+)$

Proof: Trivial: some X has rank p, and the system proves that no solution can have larger rank.

Theorem 2, Part 3: Replace $X \succeq 0$ by $X \in 0 \oplus S^p_+$ in $(P_{ref,feas})$:

$$egin{aligned} A'_i ullet X &= 0 \,\,(i = 1, \dots, k) \ A'_i ullet X &= b'_i \,\,(i = k + 1, \dots, m) \,\,\,(ext{Pref,feas,red}) \ X &\in 0 \oplus S^p_+ \end{aligned}$$

Theorem 2, Part 3: Replace $X \succeq 0$ by $X \in 0 \oplus S^p_+$ in $(P_{\text{ref,feas}})$:

$$egin{aligned} A_i' ullet X &= 0 \ (i=1,\ldots,k) \ A_i' ullet X &= b_i' \ (i=k+1,\ldots,m) \ (extsf{P}_{ extsf{ref,feas,red}}) \ X &\in 0 \oplus S^p_+ \end{aligned}$$

Then, for all $C \in S^n$ the SDP

 $\sup\{C \bullet X \mid X \text{ feasible in } (P_{ref, feas, red})\}$

has strong duality with its Lagrange dual

 $\inf \{ \sum_{i=1}^m y_i b_i \, | \, C - \sum_{i=1}^m y_i A'_i \in (0 \oplus S^p_+)^* \}.$

(i.e., values agree, and the latter is attained.)

Theorem 2, Part 3: Replace $X \succeq 0$ by $X \in 0 \oplus S^p_+$ in $(P_{\text{ref,feas}})$:

$$egin{aligned} A_i' ullet X &= 0 \ (i=1,\ldots,k) \ A_i' ullet X &= b_i' \ (i=k+1,\ldots,m) \ (extsf{P}_{ extsf{ref,feas,red}}) \ X &\in 0 \oplus S^p_+ \end{aligned}$$

Then, for all $C \in S^n$ the SDP

 $\sup\{C \bullet X \mid X \text{ feasible in } (P_{ref, feas, red})\}$

has strong duality with its Lagrange dual

 $\inf \{ \sum_{i=1}^m y_i b_i \, | \, C - \sum_{i=1}^m y_i A_i' \in (0 \oplus S^p_+)^* \}.$

(i.e., values agree, and the latter is attained.)

Proof: The system $(P_{ref,feas,red})$ is (trivially) strictly feasible.

• We say that $(P_{ref, feas, red})$ is well-behaved, if

 $\sup\{ C \bullet X \mid X \text{ feasible in } (P_{ref, feas, red}) \}$

• We say that $(P_{ref, feas, red})$ is well-behaved, if

 $\sup\{C \bullet X \mid X \text{ feasible in } (P_{ref, feas, red})\}$

has strong duality with Lagrange dual for all C.

• If we have \mathbb{S}^n_+ in place of $0 \oplus \mathbb{S}^p_+$ then the system may not be well behaved.

• We say that $(P_{ref, feas, red})$ is well-behaved, if

 $\sup\{C \bullet X \mid X \text{ feasible in } (P_{ref, feas, red})\}$

- If we have \mathbb{S}^n_+ in place of $0 \oplus \mathbb{S}^p_+$ then the system may not be well behaved.
- Characterization of when a system is well behaved (over \mathbb{S}_{+}^{n}): Pataki, 2011.

• We say that $(P_{ref, feas, red})$ is well-behaved, if

 $\sup\{C \bullet X \mid X \text{ feasible in } (P_{ref, feas, red})\}$

- If we have \mathbb{S}^n_+ in place of $0 \oplus \mathbb{S}^p_+$ then the system may not be well behaved.
- Characterization of when a system is well behaved (over \mathbb{S}_{+}^{n}): Pataki, 2011.
- Latter paper: also an algorithm to generate all well behaved systems.

• We say that $(P_{ref, feas, red})$ is well-behaved, if

 $\sup\{C \bullet X \mid X \text{ feasible in } (P_{ref, feas, red})\}$

- If we have \mathbb{S}^n_+ in place of $0 \oplus \mathbb{S}^p_+$ then the system may not be well behaved.
- Characterization of when a system is well behaved (over \mathbb{S}_{+}^{n}): Pataki, 2011.
- Latter paper: also an algorithm to generate all well behaved systems.
- In particular, to generate all linear maps, under which the image of \mathbb{S}^n_+ is closed.

Proof outline

• Based on simplified facial reduction algorithm: construct the A'_i one by one.

Proof outline

- Based on simplified facial reduction algorithm: construct the A'_i one by one.
- "Difficult" direction is about 1.5 pages.

Proof outline

- Based on simplified facial reduction algorithm: construct the A'_i one by one.
- "Difficult" direction is about 1.5 pages.
- Alternative: adapt a traditional facial reduction algorithm, the closest one is by Waki and Muramatsu.

Context of spectrahedra, and possible other uses

- In different language: we have a standard form of spectrahedra, to easily check emptiness, or a tight upper bound on the rank of feasible solutions.
- Research on spectrahedra:
 - Nie-Sturmfels;
 - Netzer-Plaumann-Schweighofer;
 - -Vinzant;
 - Blekherman et al;
 - -Helton-Nie;
 - Sinn-Sturmfels; ...
- Will these results be useful in studying spectrahedra?

• Exact, simple certificate of infeasibility of a semidefinite system based on elementary reformulation.

- Exact, simple certificate of infeasibility of a semidefinite system based on elementary reformulation.
- Operations mostly from Gaussian elimination.

- Exact, simple certificate of infeasibility of a semidefinite system based on elementary reformulation.
- Operations mostly from Gaussian elimination.
- Reformulations \approx row echelon form of a system of linear equations.

- Exact, simple certificate of infeasibility of a semidefinite system based on elementary reformulation.
- Operations mostly from Gaussian elimination.
- Reformulations \approx row echelon form of a system of linear equations.
- (P_{ref}) being infeasible is almost a tautology.

- Exact, simple certificate of infeasibility of a semidefinite system based on elementary reformulation.
- Operations mostly from Gaussian elimination.
- Reformulations \approx row echelon form of a system of linear equations.
- (P_{ref}) being infeasible is almost a tautology.
- Algorithm to systematically generate all infeasible SDPs.

- Exact, simple certificate of infeasibility of a semidefinite system based on elementary reformulation.
- Operations mostly from Gaussian elimination.
- Reformulations \approx row echelon form of a system of linear equations.
- (P_{ref}) being infeasible is almost a tautology.
- Algorithm to systematically generate all infeasible SDPs.
- Reformulation of feasible semidefinite system: trivial strong duality with Lagrange dual, for all objective functions.

- Exact, simple certificate of infeasibility of a semidefinite system based on elementary reformulation.
- Operations mostly from Gaussian elimination.
- Reformulations \approx row echelon form of a system of linear equations.
- (P_{ref}) being infeasible is almost a tautology.
- Algorithm to systematically generate all infeasible SDPs.
- Reformulation of feasible semidefinite system: trivial strong duality with Lagrange dual, for all objective functions.
- Algorithm to systematically generate all feasible SDPs with a fixed rank maximum rank solution.

- For weakly infeasible SDPs, see the talk of Takashi Tsuchiya.
- Paper to appear in **SIOPT**.
- For a generalization of our work to general conic LPs; to generate a library of infeasible and weakly infeasible SDPs: followup paper on arxiv, and talk at ISMP.

Boldog születésnapot, Tamas!

Boldog születésnapot, Tamas! Thank you!