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Abstract

The classical branch-and-bound algorithm for the integer
feasibility problem

Find ze€ @QNZ", with

o= {1 (i) = (7)== ()]

has exponential worst case complexity.

We prove that it is surprisingly efficient on reformula-
tions of (0.1), in which the columns of the constraint matrix
are short and near orthogonal, i.e., a reduced basis of the
generated lattice: when the entries of A are from {1,..., M}
for a large enough M, branch-and-bound solves almost all
reformulated instances at the root node. For all A matrices
we prove an upper bound on the width of the reformulations
along the last unit vector.

Our results generalize the results of Furst and Kannan
on the solvability of subset sum problems; also, we prove
them via branch-and-bound, an algorithm traditionally con-
sidered inefficient from the theoretical point of view.

We use two main tools: first, we find a bound on the
size of the branch-and-bound tree based on the norms of
the Gram-Schmidt vectors of the constraint matrix. Second,
building on the ideas of Furst and Kannan, we bound the
number of integral matrices for which the shortest nonzero
vectors of certain lattices are long.

We explore practical aspects of these results. We
compute numerical values of M which guarantee that 90 and
99 percent of the reformulated problems solve at the root:
these turn out to be surprisingly small when the problem
size is moderate. We also confirm with a computational
study that random integer programs become easier, as the
coefficients grow.

(0.1)

1 Introduction and Main Results.

The Integer Programming (IP) feasibility problem asks
whether a polyhedron ) contains an integral point.
Branch-and-bound, which we abbreviate as B&B is a
classical solution method, first proposed by Land and
Doig in [20]. It starts with @ as the sole subproblem
(node). In a general step, one chooses a subproblem @',
a variable z;, and creates nodes Q' N {x|z; = v}, where
~ ranges over all possible integer values of z;. We repeat
this until all subproblems are shown to be empty, or we
find an integral point in one of them.
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B&B (and its version used to solve optimization prob-
lems) enhanced by cutting planes is a dependable algo-
rithm implemented in most commercial software pack-
ages. However, instances in [14, 8, 13, 17, 3, 4] show
that it is theoretically inefficient: it may take an expo-
nential number of subproblems to prove the infeasibility
of simple knapsack problems. While B&B is inefficient
in the worst case, Cornuéjols et al. in [10] developed
useful computational tools to give an early estimate on
the size of the B&B tree in practice.

Since IP feasibility is NP-complete, one can ask for
polynomiality of a solution method only in fixed dimen-
sion. All algorithms that achieve such complexity rely
on advanced techniques. The algorithms of Lenstra [22]
and Kannan [15] first round the polyhedron (i.e., apply
a transformation to make it have a spherical appear-
ance), then use basis reduction to reduce the problem
to a provably small number of smaller dimensional sub-
problems. On the subproblems the algorithms are ap-
plied recursively, e.g., rounding is done again. General-
ized basis reduction, proposed by Lovasz and Scarf in
[23] avoids rounding, but needs to solve a sequence of
linear programs to create the subproblems.

There is a simpler way to use basis reduction in
integer programming: preprocessing (0.1) to create an
instance with short and near orthogonal columns in
the constraint matrix, then simply feeding it to an
IP solver. The first such reformulation method, that
we call the nullspace reformulation, was proposed by
Aardal, Hurkens and Lenstra for equality constrained
integer programs in [2], and further studied in [1].
The rangespace reformulation of Krishnamoorthy and
Pataki [17] applies to general integer programs. We
describe these below, assuming that A is an integral
matrix with m rows and n columns, and the w; and ¢;
are integral vectors.

The rangespace reformulation of (0.1) is

Find ye€ QrNZ", with

M aa {u () = (D= ()

where U is a unimodular matrix computed to make the
columns of the constraint matrix a reduced basis of the
generated lattice.
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Figure 1: The polyhedron of Example

The nullspace reformulation is applicable when
wi; = f1. Assuming that the rows of A are linearly
independent, it is

Find §€ QyNZ"™, with

(1.3)

Qn = {ylla—z0 < By < wa — 0},
where xy € Z™ satisfies Azg = £1, and the columns of
B are a reduced basis of the lattice {x € Z" | Az =0}.

We analyze the use of Lenstra-Lenstra-Lovéasz
(LLL) (see [21]), and reciprocal Korkhine-Zolotarev
(RKZ) reduced bases (see [18]) in the reformulations,
and use Korkhine-Zolotarev (KZ) reduced bases [15, 16]
in our computational study. We will review the relevant
properties of these bases in Section 2.

When @ g is computed using LLL reduction, we call
it the LLL-rangespace reformulation of (), and abusing
notation we also call (1.2) the LLL-rangespace reformu-
lation of (0.1). Similarly we talk about LLL-nullspace,
RKZ-rangespace, and RKZ-nullspace reformulations.

Ezxample. The polyhedron
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is shown on the first picture of Figure 1. It is long and
thin, and defines an infeasible and relatively difficult
integer feasibility problem for B&B, as branching on ei-
ther x1 or x5 yields 6 subproblems. Lenstra’s and Kan-
nan’s algorithms would first transform this polyhedron
to make it more spherical; generalized basis reduction
would solve a sequence of linear programs to find the
direction z1 4+ x2 along which the polyhedron is thin.

1 before and after the reformulation

The LLL-rangespace reformulation is

207 < —3x1 +8xy < 217
(1.5) 0< —x1—10z5 < 10
0< z1+11lzs <10

shown on the second picture of Figure 1: now branching
on yy proves integer infeasibility. (A similar example
was given in [17]).

The reformulation methods are easier to describe,
than, say Lenstra’s algorithm, and are also successful in
practice in solving several classes of hard integer pro-
grams: see [2, 1, 17]. For instance, the original formu-
lations of the marketshare problems of Cornuéjols and
Dawande in [9] are notoriously difficult for commercial
solvers, while the nullspace reformulations are much eas-
ier to solve as shown by Aardal et al. in [1].

However, they seem difficult to analyze in general.
For an overview of previous results, we need the follow-
ing concepts: if @ is a polyhedron and z is an integral
vector, then the width, and integer width of @) along z
are

width(z, @) = max {{z,2)} — min {{z, z)}, and

iwidth(z, Q)

{I;leag{(z,@}J - [ggﬂz,@ﬂ +1.

The quantity iwidth(z, @) is the number of subproblems
generated, when branching on the hyperplane (z,z) in
seeking to find an integral point in . In particular,
iwidth(z, Q) = 0 implies that @ has no integral point.
Krishnamoorthy and Pataki in [17] studied knap-
sack problems with a constraint vector a having a given
decomposition a = Ap+r, with p and r integral vectors,



and A an integer, large compared to ||p|| and || 7||. They
proved

(1.6)
(1.7)

width(e,, Qr) < width(p, Q),
iwidth(en, Qr) < iwidth(p, Q),

and analogous results for the nullspace reformulation.

These inequalities partially explain why the refor-
mulation techniques are effective: considering (1.6),
note that width(p, @) is small, due to A being large,
i.e., p being near parallel to the constraint vector. Also,
for a wide variety of problems iwidth(p, @) = 0, but
branching on the individual variables would need an ex-
ponential number of B&B nodes: as (1.7) shows, for
these problems branching on the last variable in Qg
proves infeasibility at the root node. In other words,
the effect of branching on (p,z) in @ is mimicked by
branching on a single variable in Qg.

In a general analysis, one could hope for proving
polynomiality of B&B on the reformulations of (0.1)
when the dimension is fixed. This seems difficult.
However, we give a different and perhaps even more
surprising complexity analysis. It is in the spirit of Furst
and Kannan’s work in [12] on subset sum problems and
builds on a generalization of their Lemma 1 to bound
the fraction of integral matrices for which the shortest
nonzero vectors of certain corresponding lattices are
short. We also use an upper bound on the size of the
B&B tree, which depends on the norms of the Gram-
Schmidt vectors of the constraint matrix. We introduce
necessary notation and state our results, then give a
comparison with [12].

When a statement is true for all, but at most a
fraction of 1/2™ of the elements of a set S, we say that
it is true for almost all elements. The value of n will be
clear from the context. Reverse B&B is B&B branching
on the variables in reverse order starting with the one
of highest index. We assume wy > ¢5 and for simplicity
of stating the results we also assume n > 5. For positive
integers m, n, and M we denote by Gy, (M) the set of
matrices with m rows and n columns, and the entries
drawn from {1,...,M}. We denote by G, (M) the
subset of G, (M) consisting of matrices with linearly
independent rows, and let

G (M))
G (MD)]

It is shown by Martin and Wong in [24], and by
Bourgain et al. in [6] that X, m (M) (and therefore also
Xmn (M) for m < n) are of the order 1 — o(1). In this
paper we will use X, n(M) > 1/2 for simplicity. In the
proof of Proposition 1.2, however, we will use a stronger
statement, Lemma 1.1, whose proof is given in the full

paper.

(1'8) Xm,n(M>

LEMMA 1.1. For positive integers m, n, and M with
m < n,

1

(49 7=

Xm,n(M) 2 1 -
]

For matrices (and vectors) A and B, we write

(A; B) for For an m by n integral matrix A

A
(5)
with independent rows we write gcd(A) for the greatest
common divisor of the m by m subdeterminants of A.
If B&B generates at most one node at each level of the
tree, we say that it solves an integer feasibility problem
at the root node.

The main results of the paper follow.

THEOREM 1.1. The following hold.

(1) If M > (2n || (wi;ws) — (€1;42) )™/ ™+, then for
almost all A € Gy (M) reverse BE&B solves the
RKZ-rangespace reformulation of (0.1) at the root
node.

(2) If M > (12(n — m) ||wa — Lo ||)™/™, then for almost
all A € Gy, (M) reverse B&B solves the RKZ-
nullspace reformulation of (0.1) at the root node.

O

The proofs also show that when M obeys the above
bounds, then @ NZ"™ has at most one element for almost
all A € Gpn(M) (or almost all A € G7,,,(M)). Note
that when n/m is fixed and the problems are binary,
the magnitude of M required is a polynomial in n.

THEOREM 1.2. The conclusions of Theorem 1.1 hold
for the LLL-reformulations, if the bounds on M are

D2 | (w5 wa) — (01562) )™,

and
(Z(n—m+4)/2 ||w2 _ fz H)n/m7

respectively. (]

Furst and Kannan in [12] based on Lagarias’ and
Odlyzko’s [19] and Frieze’s [11] work show that the
subset sum problem is solvable in polynomial time using
a simple iterative method for almost all weight vectors in
G1 (M) and all right hand sides, when M is sufficiently
large and a reduced basis of the orthogonal lattice of the
weight vector is available. Their bound on M is

(1.10) M > 2(3/2)nlogntisn



when the basis is RKZ reduced, and

(1.11) M > 2712/2+2nn3n/2’
when it is LLL reduced.

Our bounds obtained by letting m = 1 in Theorems
1.1 and 1.2 are comparable, as far as the size of M, i.e.,
[log(M + 1)] is concerned. With RKZ reduction, both
the bounds in Theorem 1.1 and the one in (1.10) require
the size of M to be O(nlogn). With LLL reduction, our
bounds in Theorem 1.2 and the one in (1.11) require
the size of M to be O(n?). Hence, our results generalize
the solvability results of [12] from subset sum problems
to bounded integer programs; also, we prove them via
branch-and-bound, an algorithm considered inefficient
from the theoretical point of view.

Proposition 1.1 gives another indication why the
reformulations are relatively easy. One can observe that
det(AAT) can be quite large even for moderate values
of M, it A e Gy, (M) is a random matrix with m < n,
although we could not find any theoretical studies on
the subject. For instance, for a random A € G4 30(100)
we found det(AAT) to be of the order 101&.

While we cannot give a tight upper bound on the
size of the B&B tree in terms of this determinant, we
are able to bound the width of the reformulations along
the last unit vector for any A (i.e., not just almost all).

ProrosITION 1.1. If Qr is computed using RKZ re-
duction, then

V|| (w1 wa) — (415 4o) ||'

1.12
(1-12) det(AAT + 1)

width(en, Qr) <

Also, if A has independent rows, and Qn is computed
using RKZ reduction, then

. ged(A)vn —m ||wy — Lo |
(118) width(en—m, Qv) < == Ay ee—m
The same results hold for the LLL-reformulations, if \/n
and v/n —m are replaced by 2("=D/4 qnd 2(n—m=1)/4
respectively.

O

REMARK 1.1. As described in Section 5 of [17], and in
[26] for the nullspace reformulation, directions achieving
the same widths exist in @Q, and they can be quickly

computed. For instance, if p is the last row of U™,
then width(e,,, Qr) = width(p, Q).

A practitioner of integer programming may ask for
the value of Theorems 1.1 and 1.2. Proposition 1.2 and

a computational study put these results into a more
practical perspective. Proposition 1.2 shows that when
m and n are not too large, already fairly small values
of M guarantee that the RKZ-nullspace reformulation
(which has the smallest bound on M) of the majority
of binary integer programs get solved at the root node.

PROPOSITION 1.2. Suppose that m and n are chosen
according to Table 1, and M is as shown in the third

column. — Then for at least 90% of A € G}, ,,(M) and
’n‘m‘MforQO%‘MforQQ%‘
20 | 10 99 124
30 | 20 31 35
40 | 30 21 23
50 | 40 18 19
30 | 10 3478 4378
40 | 20 229 256
50 | 30 93 100
40 | 10 169000 212758
50 | 20 1844 2069
60 | 30 410 442
70 | 40 193 205
Table 1: Values of M to make sure that the RKZ-

nullspace reformulation of 90 or 99 % of the instances
of type (1.14) solve at the root node

all b right hand sides, reverse B&B solves the RKZ-
nullspace reformulation of

Ax = b

(1.14) z € {0,1)"

The same is true for 99% of A €
(M), if M is as shown in the fourth column.

at the root node.
G/

m,n

O

Note that 2"~ is the best upper bound one can
give on the number of nodes when B&B is run on the
original formulation (1.14); also, randomly generated
IPs with n —m = 30 are nontrivial even for commercial
solvers.

According to Theorems 1.1 and 1.2, random inte-
ger programs with coefficients drawn from {1,...,M }
should get easier, as M grows. Our computational study
confirms this somewhat counterintuitive hypothesis on
the family of marketshare problems of Cornuéjols and
Dawande in [9)].



We generated twelve 5 by 40 and twelve 10 by
40 matrices with entries drawn from {1,..., M} with
M =100,1000, and 10000 (this is 72 matrices overall),
set b = |Ae/2], where e is the vector of all ones, and
constructed the instances of type (1.14), and

b—e < Ax < b
(1.15) z € {01}

The latter of these are a relaxed version, which
correspond to trying to find an almost-equal market
split.

Table 2 shows the average number of nodes
(rounded to the nearest integer) that the commercial
IP solver CPLEX 9.0 took to solve the rangespace re-
formulation of the inequality- and the nullspace refor-
mulation of the equality-constrained 5 by 40 problems.
Analogous results are listed in Table 3 for the 10 by 40
instances.

M EQUALITY | INEQUALITY
100 17532 38885
1000 1254 22900
10000 201 1976

Table 2: Average number of B&B nodes to solve
the inequality- and equality-constrained marketshare
problems. Here m =5, and n = 40.

M EQUALITY | INEQUALITY
100 20 1350
1000 5 72
10000 0 9

Table 3: Average number of B&B nodes to solve
the inequality- and equality-constrained marketshare
problems. Here m = 10, and n = 40.

Since RKZ reformulation is not implemented in
any software that we know of, we used the Korkhine-
Zolotarev (KZ) reduction routine from the NTL library
[27]. For brevity we only report the number of B&B
nodes and not the actual computing times.

With m = 5, and n = 40, all equality-constrained
instances turned out to be infeasible, except two, cor-
responding to M = 100. Among the inequality con-
strained problems there were fifteen feasible ones: all
twelve with M = 100 and three with M = 1000. Since
infeasible problems tend to be harder, this explains the
more moderate decrease in difficulty as we go from

M = 100 to M = 1000. With m = 10, and n = 40,
all instances were infeasible.

Two remarks are in order. First, in the original
marketshare problems in [9] n is always equal to 10(m —
1): we generated problems with more constraints for
more variety. Second, CPLEX reports that a problem
solves with 0 B&B nodes, if it gets solved by cutting
planes, and preprocessing only, and this is what happens
for most of the equality constrained problems, when
m = 10 and n = 40.

Overall, Tables 2 and 3 confirm the theoretical
findings of the paper: the reformulations of random
integer programs become easier as the size of the
coefficients grow.

In Section 2 we introduce further notation and give
the proof of Theorems 1.1 and 1.2.

2 Further Notation and Proofs

A lattice is a set of the form

(2.16) L =L(B)={Bz|lzecZ},

where B is a real matrix with r independent columns,
called a basis of L and r is called the rank of L.

The Euclidean norm of a shortest nonzero vector in
L is denoted by A1(L), and Hermite’s constant is

A (L)? . . )
(2.17) Cj =sup @t )27 | Lis a lattice of rank j ¢ .
We define
(2.18) vi =max{Cy,...,C; }.

A matrix A defines two lattices that we are inter-
ested in:

(2.19) Lg(A) =L(A;I), Ly(A) = {z € Z"|Az = 0},

where we recall that (A;I) is the matrix obtained by
stacking A on top of I.

Given independent vectors bq,...,b,., the vectors
by, ..., b form the Gram-Schmidt orthogonalization of
bi,...,by, if b7 = by, and b} is the projection of b; onto
the orthogonal complement of the subspace spanned by

b1,...,b;_1 for ¢+ > 2. We have
i—1
(2.20) b = b + Y pish},
j=1
with
(221) oy = GBI (<j<i<n).

We do not define LLL and RKZ reducedness formally,
only collect their properties that we will use below:



LEMMA 2.1. Suppose that by, ..
tice L with Gram-Schmidt orthogonalization by, . ..
Then

., by is a basis of the lat-
,br.

(1) if by, ..., b, is RKZ reduced, then
(2.22) 18 12 M(L)/C,
and
(2.23) 17 11> (det L)'/ /\/r.
(2) if by, ..., by is LLL reduced, then
(2.21) 18 11> Aa(E)/26- 072,
and
(2.25) 65> (det L)Y/ /2(r=1)/4,

Proof. Statements (2.22) and (2.23) are proven in [18§],
and (2.24) is shown in [21]. We now consider the
inequalities

(2.26) Ir < 2092 oy (i=1,...,r),

which hold when the basis is LLL reduced. Multiplying
them, and using || b7 || ... ||b}||= det L gives (2.25). O

LEMMA 2.1. Let P be a polyhedron

(2.27) P={yeR|(< By<u},

and by,...,b5 the Gram-Schmidt orthogonalization of

the columns of B. When reverse B&B is applied to P,
the number of nodes on the level of y; is at most

(5] (58 )

Proof. First we show

(2.29) width(e,, P) < [lw — €| / | b5 -

Let y,.1 and y, 2 denote the maximum and the minimum
of y, over P. Writing B for the matrix composed of the
first » — 1 columns of B and b, for the last column, it
holds that there is 41, y2 € R"™! such that By, + bryr1
and By, + byyr2 arein P. So

|w— 2] > || (By1 + bryr1) — (Byz + bryr2) |
=1 B(yr — y2) + b (Yr1 — yr2) |l
= Hb: H |yr,1 - yr,2|
=||b} || width(e,, P)

holds, and so does (2.29).

After branching on y,, ..., y;+1, each subproblem is
defined by a matrix formed of the first ¢ columns of B,
and bound vectors, which are translates of ¢ and w by
the same vector. Hence the above proof implies that the
width along e; in each of these subproblems is at most
(2.30) fw =] /1167 1],

and this completes the proof. O

Our Lemma 2.2 builds on Furst and Kannan’s
Lemma 1 in [12], with part (2) also being a direct
generalization.

LEMMA 2.2. Letr > 0. Then

(1) the fraction of A € Gy pn(M) with A\1(Lg(A)) <7

15 at most
(2[r] + 1)rtm
Mm™ ’
(2) the fraction of A € G}, (M) with \(Ly(A)) <r
18 at most
@]+
Mme,n(M) '

Proof. We first prove (2). For v, a fixed nonzero vector
in Z™, consider the equation

(2.31) Av =0.
There are at most M™"~ 1) matrices in G (M) that
satisfy (2.31): if the components of n — 1 columns
of A are fixed, then the components of the column
corresponding to a nonzero entry of v are determined
from (2.31).

The number of vectors in Z"™ with norm at most
r is at most (2[r| + 1)" : if v € Z™ satisfies ||v|< r,
then |v;| < r for all 4, hence |v;| < |r] for all 4. Also,
the number of matrices in G, ,, (M) is M™" X (M).
Therefore the sought ratio is bounded by

@+ Mo 2]+ e
M (M) M7 X0 (M)

For (1), note that (vi;ve) € Z™*™ is a nonzero vector
in Lr(A), iff vy # 0 and
(232) A’UQ = 1.
An argument like the one in the proof of (2) shows that
for fixed (v1;v2) € Z™T™ with vg # 0, there are at most
M™"=1) matrices in Gy, (M) that satisfy (2.32).

The number of vectors in Z"*™ with norm at most
r is at most (2]r] +1)"™™, and the number of matrices



in Gy (M) is M™". Hence the ratio we are interested
in is bounded by

(2|.TJ + 1)n+mMm(n—1)

_ @lrf sy
Mmn - :

Mm

O

Proof of Theorems 1.1 and 1.2. For part (1) in Theorem
1.1, let b7,...,b;, be the Gram-Schmidt orthogonaliza-
tion of the columns of (A4; I)U. Lemma 2.1 implies that
reverse B&B solves (1.2) at the root, if

(2.33) 167 (1>l (w5 w) — (€15 o) |

fori =1,...,n. Let us now recall the definition of C;
from (2.17), and of 7; from (2.18). Since the columns
of (A; U form an RKZ reduced basis of Lr(A), (2.22)
implies
(2.34) 167 1= A1(Lr(A))/Ci.

So (2.33) holds, when

(2.35) M(Lr(A)) > Ci [[(wi;wz) — ({15 42) ||
does for ¢ =1,...,n, which is in turn implied by
(2.36) AM(LRr(A)) >y ([ (w13 wz) = (Lr562) ]| -

Let € be a real number between 0 and 1. By Lemma 2.2,
the fraction of A € Gy, (M) matrices for which (2.36)
does not hold is at most ¢, when

(2L [[(wisws) = (s ) ] + D™
Mm -7

i.e., when

(2.37) M >

el/m

Using the known estimate 7, < 14+n/4 (see for instance
[25]) , setting € = 1/2™, and doing some algebra with
(2.37) yields the required result.

The proof of part (2) of Theorem 1.1 is along
the same lines: now b7,...,b}_,, is the Gram-Schmidt
orthogonalization of the columns of B, which is an
RKZ reduced basis of Ly(A). Lemma 2.1 and the
reducedness of B implies that reverse B&B solves (1.3)

at the root, if
(2.38) M(Ln(A) > Yn-m w2 = L2]] -

Again, letting € be a real number between 0 and 1,
Lemma 2.2 implies that the fraction of matrices in
G',.n(M) which do not satisfy (2.38) is at most e, if

(2| Vn—m [Jwa = Laf|] +1)" .
M X (M) -

(2l || (wiwz) — (413 o) ] + D)t/

that is, when

([29n-m |wz — Lo|l} + D)™™

(2.39) I (o (1)) T

M >

Then simple algebra and using X, (M) > 1/2 com-
pletes the proof.

The proof of Theorem 1.2 is an almost verbatim
copy, now using the estimate (2.24) to lower bound
167 11- O

Proof of Proposition 1.1. Let bj,...,b), be the Gram-
Schmidt orthogonalization of the columns of (A;I)U.
Using (2.29) in the proof of Lemma 2.1 gives

wy;wz) — (L1;62) ||
[0, I

(2.40) width(e,, Qr) < It

Next, from (2.23) we obtain

(det Lg(A))"/"
vn '

Also, the the definition of Lr(A) implies

det Lr(A) = det(AAT +1)1/2,

(2.41) =

(2.42)

and combining these three inequalities proves (1.12).
The proof of (1.13) is analogous, but now we need
to use

(2.43) det Ly (A) = det(AAT)/2/ gcd(A),

whose proof can be found in [7] for instance. To prove
the claims about the LLL-reformulations, we need to
use (2.25) (in place of (2.23)) to lower bound || b% || or
167 [I- 0

Proof of Proposition 1.2. Let N (n,r) denote the number
of integral points in the n-dimensional ball of radius 7.
In the previous proofs we used (2|r]| + 1)™ as an upper
bound for N(n,r). The proof of Part (2) of Theorem
1.1 actually implies that when

(N(n, Yn—m w2 — L2 |)/™

(2.44) T oD

M >

then for all, but at most a fraction of € of A € G7,, ,,(M)
reverse B&B solves the RKZ-nullspace reformulation of
(1.14) at the root node.

With || we — £2 ||= v/n we would like to compute
the smallest M that satisfies (2.44) for small values of
n and m. First, we use Blichfeldt’s upper bound [5]

2 [i+4\¥"
. 'L<* )
(2.45) C_FF< . )




to conclude

(2.46)

n—m-+4 2/(n—m)
S

2
Yn—m < =T (
™

Plugging (2.46) and (1.9) into (2.44) gives a valid lower
bound for M. We use the values ¢ = 0.1 and ¢ = 0.01
and dynamic programming to exactly find the values of
N(n,r), to obtain Table 1.

We note that in general N (n,r) is hard to compute,
or find good upper bounds for; however for small values
of n and r a simple dynamic programming algorithm
finds the exact value quickly. O
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