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Optimization problems are at the heart of much
of operations research and can vary substantially
both in complexity and size.  In many problems,
the sheer size of the instance makes it very
difficult to solve due to time or space
limitations.  In others, the complexity of the
problem (nonlinearities, nonconvexities, or
discreteness) can make it difficult or impossible
to solve to optimality, even for reasonable sized
instances.  This note addresses an instance of the
latter type of problem, arising as a mixed integer
program (MIP) involving discrete variables and
linear functions. 

Hard problems in MIPLIB     

The MIPLIB library of mixed integer programs
was created in 1992 ([4]) and most recently
updated in 1998 ([5]).  Several problems in the
library gained some notoriety, for being among
the toughest. Some of these are:  

•  The danoint and dano3mip problems that
arise from network design; the latter of these
is unsolved to this date. 

•  The markshare problems, that were created
with particular malice to challenge branch-
and-bound, and cutting plane algorithms.

•  The seymour problem: a relatively small
setcovering problem with a fascinating origin,
and of remarkable difficulty.

A group of researchers, consisting of the
authors, of Sebastian Ceria at Columbia
University, and Jeff Linderoth at Argonne
National Laboratory has recently succeeded in
solving the seymour problem. In this article, we
describe why we found this problem so alluring,
what experiments we have done, and eventually,
what techniques led us to its solution.

Background on seymour

The seymour problem is a setcovering problem;
i.e. a problem of the form 

where e denotes a vector of all ones of
appropriate dimension, and A is a matrix of
zeros and ones. The number of rows in A is
4944 and the number of columns is 1372. The
instance was posed by Paul Seymour, as a by-
product of a new proof of the Four Color
Theorem (FCT) by Neil Robertson, Daniel
Sanders, Paul Seymour, and Robin Thomas [12,
13].

An interesting short history of this problem is
given by these authors at [9] which we
reproduce here verbatim.  

The Four Color Problem dates back to 1852
when Francis Guthrie, while trying to color the
map of counties of England noticed that four colors
sufficed. He asked his brother Frederick if it was
true that any map can be colored using four colors
in such a way that adjacent regions (i.e. those
sharing a common boundary segment, not just a
point) receive different colors.  Frederick Guthrie
then communicated the conjecture to DeMorgan.
The first printed reference is due to Cayley in
1878.

A year later the first ‘proof ’ by Kempe appeared;
its incorrectness was pointed out by Heawood 11
years later. Another failed proof is due to Tait in
1880; a gap in the argument was pointed out by
Petersen in 1891. Both failed proofs did have some
value, though. Kempe discovered what became
known as Kempe chains, and Tait found an
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equivalent formulation of the Four Color Theorem
in terms of 3-edge-coloring.

The next major contribution came from
Birkhoff whose work allowed Franklin in 1922 to
prove that the four color conjecture is true for maps
with at most 25 regions. It was also used by other
mathematicians to make various forms of progress
on the four color problem. We should specifically
mention Heesch who developed the two main
ingredients needed for the ultimate proof -
reducibility and discharging. While the concept of
reducibility was studied by other researchers as
well, it appears that the idea of discharging,
crucial for the unavoidability part of the proof, is
due to Heesch, and that it was he who conjectured
that a suitable development of this method would
solve the Four Color Problem. This was confirmed
by Appel and Haken in 1976, when they
published their proof of the Four Color Theorem. 

The web page also gives an outline of the
proof of the theorem, and a longer list of
pertinent references.

The seymour IP formulates the problem of
finding the smallest unavoidable set of
configurations that must be “reduced” in order
to prove the FCT. Here “reduced” is a technical
term meaning that the configuration can be
shown not to exist in a minimal
counterexample.  Seymour has found a solution
of value 423, but until this work, we are aware
of no one who has been able to reproduce such
a solution. The problem actually has many
solutions of value 423. 

The value of its LP relaxation is 403.84.
Therefore, all one must do is raise the lower
bound to say 422.0001 (or to better safeguard
against numerical errors, to say 422.1) to prove
the optimality of Seymour's solution; in fact, for
a long time, we were aiming for 423.0001, as
the best solution we could find was of value
424.

One may question the value of spending
months of research effort trying to solve such
hard  IP's, which have no particular  “realistic”
application. We can argue though, that it is the
small, and hard problems from which one can
learn the most - and the  techniques one
develops through their study are very much
applicable to real-world, difficult problems. 

First attempts: branch-and-bound

The first attempt to solve seymour was done in
1996 by Greg Astfalk running CPLEX 4.0 with
default settings on an HP SPP2000 with 16
processors, each processor having 180 MHz
frequency, and 720 Mflops peak performance,
for the total of approximately 58 hours,
enumerating about 1,275,000 nodes, and using
approximately 1360 Mbytes of memory. In this
run, CPLEX did not even close 9 units of the
gap; remember that we must close a bit more
than 18.16 units.

We can do quite a bit better, just by using
CPLEX, with the variable selection rule of
strong branching. Strong branching (SB) was
developed by Applegate, Bixby, Chvatal and
Cook in their work on the TSP, and it is an
available setting in several commercial MIP
solvers now. At every node of the branch-and-
bound tree, SB tests several variables as a
candidate to branch on (by partially
reoptimizing on both branches with a limited
number of dual simplex pivots), and picks the
most promising one.

Figure 1 shows what lower bound the CPLEX
6.0 branch-and-bound code has achieved after
enumerating a hundred thousand nodes by
using default branching variable selection vs. SB
variable selection (all other settings were
default). On the horizontal axis one mark means
10 thousand branch-and-bound nodes. The run
with SB closed nearly 9 units of the gap, and
took about a week on a 337 MHz speed
machine.

Cutting

Disjunctive cuts were introduced by Balas in the
seventies [1], then rediscovered from a different
viewpoint in the nineties [11, 14, 2, 3]. They
were termed lift-and-project cuts and
computationally tested in the nineties by Balas,
Ceria and Cornuéjols in [2, 3]. For our
experiments, we used the more recent
implementation described in [6].

Here we only give a description of disjunctive
cuts in a nutshell. Given P, the linear
programming relaxation of a 0-1 program, and a
variable xi , the inequality ax
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Figure 1:  Strong branching vs.
default branching on seymour
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disjunctive cut from the disjunction 
xi = 0 ⁄ xi = 1, if it is valid for both of the sets 
P « {x | xi = 0} and P «  {x | xi = 1}.  From
among all such inequalities, following the
method developed in [2], one generates the cut
which is violated by the current LP optimum x–

by the largest possible amount, i.e. b -  ax– is
maximized, with respect to some normalization
constraint. Generating such a cut is done by
solving an LP. Disjunctive cuts (as all cuts in
MIP) are added to the LP formulation in
rounds; i.e. one adds a batch of cuts, reoptimizes
the LP, drops all nonbinding cuts, then repeats
the procedure.

According to our experience, it is easy to tell,
whether it is worth applying disjunctive cuts on
a particular IP, just by looking at the result of
two branch-and-bound runs. Disjunctive cuts
work (i.e. adding them significantly raises the
LP lower bound) if (and one can say, only if )
strong branching works! The informal
explanation is that both techniques attempt to
enhance the effect of the branching operation.
Strong branching does this by selecting the best
variable to branch on. Generating disjunctive
cuts from say 50 variables mimics the effect that
can be gained from branching on those variables
(of course, adding these 50 cuts will not result
in a lower bound as good as the one from a 50
level deep branch-and-bound tree).

In our first experiment, we generated 10
rounds of 100 cuts, by selecting the 100
variables that were the most fractional in the
current LP optimum. This run took about 6
hours, and closed about 9.45 units of the gap!

After some experimentation, we produced a
formulation called Formulation 1, that we
thought was worth trying to finish off with
branch-and-bound. The setup was as follows:

•  In each cutting iteration we generated cuts
from all the fractional variables; there were
typically about 600 of these.

•  We sorted the cuts, by putting the one first
from which the euclidean distance of the LP
optimal solution is the largest, and so on.
The distance of the hyperplane {x | ax =b }
from the point x– is

Then, assuming that we have c cuts, we
perform the following step for i = 1, …, c:

–  If the cosine of the angle of i th cut
hyperplane with any one of the first 
i – 1 cut hyperplanes is greater than
0.999, we discarded the i th cut.

From the remaining cuts we picked the
first 250, and added them to the LP
formulation.

We call the above method cut selection by
distance. Another method that is quite natural is
called cut selection by usage; we describe this
method next. Suppose again, that we would like
to select the “best” 250 cuts to be added to the
LP formulation. We tentatively add all of them,
then track the course of the reoptimization by
the dual simplex algorithm using the steepest
edge pivot rule. Whenever a cut is pivoted on,
we mark it. We let dual simplex run, until 250
cuts get marked; these will be the selected ones.
We never unmark a cut, and whether a cut is
pivoted on once, or more than once does not
matter. Perhaps surprisingly, we found that out
of more than 600 cuts, each of which is violated
by the current solution, we could never choose
more than about 350 with this method – at
most this many are ever pivoted on in the course
of the reoptimization!

Cut selection by distance and by usage
performed quite similarly on the seymour
problem; it would be interesting to see how they
work on other hard IP's, especially, when more
than one type of cut (e.g. knapsack, flow-cover,
Gomory-cuts) is used.

Figure 2 depicts the progress of the cutting
plane algorithm with two different settings
versus branch-and-bound with default
branching and strong branching. The cutting
strategy that worked best was cutting off an LP
solution in the interior of the optimal face, as
opposed to the usual vertex cutting.  On the
horizontal axis one mark means 10 thousand
enumerated nodes for branch-and-bound, and
one round of cutting for lift-and-project cuts.
The progress made by branch-and-bound and
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Figure 2:  Cutting with 2 options vs.
branch-and-bound with 2 options
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cutting planes is quite well comparable this way,
even though the time taken by the four different
algorithms between two tickmarks on the
horizontal axis can be different of course. For
example branch-and-bound with SB took about
a week to enumerate 100 thousand nodes, while
with default branching it took only 3 days. The
most time-consuming was cutting with the
“interior point cutting” option; this took about
2 weeks. Still, in the case of seymour the
question is simply solving it, or not; hence the
few days difference in the running times is
irrelevant in this case. From Figure 2 it is clear
that after 100 thousand nodes, or 10 rounds,
both algorithms completely “ran out of steam”;
even after several more months, or years they
would not solve the problem. 

Formulation 1 was fed to the CPLEX branch-
and-bound solver, again with the well-tested SB
setting. After about 100 thousand nodes, the
lower bound was further pushed up by about 3
units, for the total of about 15 units; at that
point it was clear, that this way we will never
solve the problem. At the same time, it also
became clear that producing a limited number
of nodes in a branch-and-cut tree, each with at
least 15-16 units of the gap closed, would do the 
trick; we would simply need to process those
nodes by branch-and-bound afterwards. Hence
we set up a run to generate the required nodes,
in which a certain number of cutting rounds
was followed by branching for a number of
levels in the branch-and-bound tree, then the
process repeated. Precisely, we 

• Generated 10 rounds of cuts at the root
node.

• Ran B&B for 4 levels.
• At each of the 24 = 16 nodes, we generated 2

more rounds of cuts.
• Ran B&B for 4 levels.
• At each of the 28 = 256 nodes, we generated

1 more round. 

That is, at the end we had 28 = 256 nodes in the
tree, and on the way from the root to any one of
them 13 rounds of cuts were generated. We used
SB for the variable selection; interior-point
cutting, and selecting 250 cuts by usage for cut

generation. We remark that all cuts generated
within the tree were globally valid, i.e. they were
used at the other nodes as well. 

In the end, the gap closed at 
• the best node was: 16.77
• the worst: 15.17
• the median: 16.29

We remark that the problem was preprocessed
at the root node by deleting all dominated rows
and columns as usual in setcovering problems.
The reduced problem has 4323 rows, and 882
columns; the IP value of 423 in the original
problem corresponds to the value of 238 in the
preprocessed problem. Although in the parallel
processing of the nodes we had to set the cutoff
values to take into account the preprocessing, we
translated these values back to correspond to the
original instance.

The Condor system     

Heterogeneous clusters of workstations are
becoming an important source of computing
resources.  One approach to use these clusters of
machines more effectively allows users to run
their (computing intensive) jobs on idle
machines that belong to somebody else.  The
Condor system [10, 8] that has been developed
at University of Wisconsin-Madison is one
scheme that manages such resources in a local
intranet setting.  It monitors the activity on all
participating machines, placing idle machines in
the Condor pool, that are allocated to service
job requests from users. Users' programs are
allowed to run on any machine in the pool,
regardless of whether the user submitting the job
has an account there or not.  The system
guarantees that heavily loaded machines will not
be selected for an application.

Machines enter the pool when they become
idle, and leave when they get busy, e.g. the
machine owner returns.  To protect ownership
rights, whenever a machine's owner returns,
Condor immediately interrupts any job running
on that machine, migrating the job to another
idle machine.  In fact, the running job is
initially suspended in case the executing
machine becomes idle again within a short
timeout period. If the executing machine

remains busy, then the job is migrated to
another idle workstation in the pool or returned
to the job queue. For a job to be restarted after
migration to another machine a checkpoint file
is generated that allows the exact state of the
process to be re-created.  This design feature
ensures the eventual completion of a job.  In
order to use the checkpoint feature, the job to
be executed must just be relinked before being
submitted to the Condor manager.  An
additional benefit of this relinking is that remote
I/O can be performed on the submitting
machine, therefore limiting the footprint of the
job on the executing machine.

There are various priority orderings used by
Condor for determining which jobs and
machines are matched at any given instance.  A
job advertises its requirements via the simple
mechanism of a “job description file”.  This file
informs Condor of the location of the
executable and the input and output files, along
with the required architecture, operating system
and memory needs of the job.  A machine
similarly advertises its properties and a matching
scheme (implemented within the resource
manager) pairs jobs to machines.  Based on the
priority orderings, running jobs may sometimes
be preempted to allow higher priority jobs to
run instead.  Condor is freely available and has
been used in a wide range of production
environments for more than ten years.

Since the CPLEX suite of optimization
procedures comes in library form, it is very easy
to carry out the relinking of a simple driver
program to run the seymour problem.  On June
23, 1999, we submitted two separate CPLEX
6.0 jobs in an attempt to solve Formulation 1
described above. Both were set to run in depth
first search mode to ensure the size of the stored
branch and bound tree did not exceed the
memory of the machines on which it ran.  A
cutoff value was set that excludes the presumed
optimal solution by 1.  In one job, the
remaining parameters to CPLEX were set to
default values, while in the other job, strong
branching was carried out.  At the time of
writing this article, both jobs are still running.
Condor has provided both jobs with over 600
days of CPU time in the ensuing two years.
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One of the jobs has explored over 13.4 million
nodes of the tree, while the other has processed
close to 2.5 million nodes.  As expected, neither
has found a solution that exceeds the cutoff
value, and furthermore, the lower bound has
remained essentially stagnant for the large part
of this time.  Clearly, just applying brute force
execution time to this problem is not going to
solve it.  However, it is interesting to note the
reliability of both the Condor and CPLEX
systems to be able to continue executing on a
variety of different machines during this two
year period.

One issue about the above computation is
that each execution is limited to one processor.
While it would be possible to use the parallel
version of CPLEX to increase resources applied
to the solution, it is not at all clear whether the
parallel code would be able to run in the
Condor environment.  

Processing the nodes on Condor      

Instead, we submitted the 256 IP subproblems
described above, as 256 separate tasks. While the

efficiencies generated by intercommunication
between these tasks would be lost, the extra
processing available at the root nodes of all the
tasks that was described above was thought to
more than compensate for this loss.
Furthermore, any collection of resources could
be used to solve these 256 instances, involving
state-of-the-art commercial packages.

MPS input files for all 256 subproblems can
be found at [7]. Each problem is listed with the
ID of the corresponding node in the branch-
and-bound tree. The file you get by clicking on
the link will be called “node.mps”. The nodes
are sorted by lower bound, which is computed as
the value of the LP relaxation.

These problems were processed using CPLEX
6.6 and XPRESS 11.50.  219 of the problems
were solved using CPLEX via Condor at
Wisconsin. The remainder were processed using
XPRESS 11.50 and CPLEX 6.6 at Columbia.

In general, we used 423.01 as the upper
cutoff for the solvers, since at the outset of this
work we were somewhat skeptical regarding the
existence of a solution of value 423; we did have
one with value 424 though. On July 4, 2000, we

did find a solution with 423, after this the
remaining subproblems were set up with an
upper cutoff of 422.01. In the end, we were able
to generate several solutions of value 423. The
electronic citation [7] gives the binary variables that
take on value 1 in two distinct optimal solutions.

For the 219 jobs that were run under Condor,
the total CPU time used to process them all was
443.6 days, with 41.7 days idle time for jobs
waiting in the Condor queue. During this time
10,244,500 nodes were explored using
3,261,696,402 pivots running on a total of 883
different machines. The longest single node took
36 days to complete, and the shortest completed
in just under 53 minutes.  At Columbia, a
further 48.9 CPU days were used to explore
934,868 nodes. The actual elapsed time between
starting the process and ending the process was
37 days, starting in June 2000 and ending on
July 26, 2000.
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