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‘ The seymour problem'

e Hard set-covering problem with 4944 rows, 1372 variables.

e Purpose: Finding minimal set of irreducible configurations in

the proof of the 4-colour theorem.

e Absolute integrality gap is < 19.16 (LP: 403.84; best IP
solution: 423.00).

e A good case study in solving hard IP’s.




Tools used to solve it'

1. Branch-and-bound.
2. Cutting with disjunctive cuts.

3. Preprocessing, and decomposition.
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Using branch-and-bound I

e 1996: CPLEX 4.0 for ~ 1000 wall-clock hours. Gap closed:
8.92 (G. Astfalk, HP).

A better choice is to use

e Strong branching: (ABCC, CPLEX) Compute penalties for 10
candidate variables, by doing 50 dual simplex pivots on both
branches. Pick the variable with the best penalty. Gap closed
by CPLEX 5.0 within 100,000 nodes: ~ 9.
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Figure 1. Default vs. strong branching on the seymour problem
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‘ Using disjunctive cuts I

Given T, an optimal solution to

Min cx

st. Az > e

e B&B : picks a variable to branch.
o L&P : picks ~ 100 variables to generate o'z > 3

— valid for conv ({ Az > e, z; =0} U{Az >e, z;, =1})

— violated by .

from the set of fractional variables.
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Figure 2: A disjunctive cut




‘Using disjunctive cuts'

Fact: SB works < disjunctive cuts work. Reason: SB picks the
best of a set of disjunctions. Disjunctive cutting applies many of

them. Both try to improve the effect of branching.

e Disjunctive cuts for 10 rounds, 100 cuts in each round (6
hours). Gap closed: 9.45.
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‘How to select the best cutting Variables?l

the best?

Options:

9.45.

(2) Select them by computing SB penalties. Test 200 variables
with 50 dual simplex pivots, pick the 100 with the best
penalties. Gap closed: 10.28.

(3) Same as (2), but test 400 variables with 100 pivots ...
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e We have =~ 600 variables to generate cuts from. Which 100 are

(1) Select the most fractional ones (closest to 0.5). Gap closed:

~




-~

Fact:

Time for testing variables < Time for generating cuts <<

Time incurred by creating harder LP’s by adding cuts.
It may be worth

e generating all 600, then

e selecting the best afterwards.

-
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‘How to select the best cuts?'

e We have ~ 600 cuts, all violated by the current solution .
Which 100 are the best?

Options:

(1) Select the 100 most violated, also prefer sparser ones, etc.

(2) Select the 100 with the best euclidean distance.

dist (z,{z|a’z=03}) =

(3) Select the 100 with the best dual steepest edge prices.
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(4) Select the 100 by usage within dual simplex with steepest edge

pricing. If a cut is pivoted on, mark it. Continue, until

e 100 cuts have been marked, or

e the problem has been fully reoptimized.
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Conclusion:

(1) Out of 600 cuts, less than 300 are ever pivoted on !

(2) Selecting 250 by usage works the best. Additional advantage:
sparser cuts get selected this way.

(3) Gap closed by 10 rounds: ~ 12.5.
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/ Which point to cut off ?I \

e Gap closed with same cut selection strategy, but cutting off an

interior point: ~ 13.0.

Figure 3: Cutting off an interior point optimal solution

Cuts + CPLEX on the strengthened formulation raises the gap by

\16 units total. /
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Raising the bound by 16 units with cutting and

some branching would do the job!
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/ ‘ Preprocessing I \

Deleting dominated rows and columns reduces the problem from

o from (m = 4944, m = 1372, nnz = 33549) to
(m = 4323, n = 882, nnz = 27987).

e The preprocessed problem is equally hard for cutting, and

branch-and-bound.

e But: Preprocessing works well within branch-and-bound
(Forrest, Ladanyi). Gap closed,

— By our branch-and-bound after 50,000 nodes, using SB, no
cuts: =~ 8.

— BY CPLEX after 50,000 nodes, using SB: ~ 9; difference
may be due to CPLEX generating clique cuts.
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Decomposition I
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Figure 4: The matrix after preprocessing
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:-) The matrix decomposes into 2 independent blocks!
:-( But the smaller one has only 18 variables ...
:-) But it has a 1 unit gap, and solves in a minute!

:-) = with no work, we reduced the gap to be closed by 1!
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e :-( Not quite ...since

e If cutting/branching closes the gap by x units on the original
problem, it closes the gap by = — 1 units on the reduced

problem ...

e Reason: we have already solved the smaller problem without

noticing it!

-
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4 )
‘The final run'

Goal: generate a small number of nodes within branch-and-cut,

with > units of gap closed.

e 10 rounds of cutting + 4 levels of branching + 2 rounds of
cutting + 4 levels of branching + 1 round of cutting.

e We used preprocessing throughout only on the setcovering

constraints.

e We generated 256 nodes, best: 16.77; worst: 15.17; median:
16.29.
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The 256 nodes were solved on the Condor computing platform at
Wisconsin and Argonne. Total wall clock time, including
generating the 256 nodes, and solving them: =~ 8000 hours.

Conclusion: The optimal solution is indeed 423.
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Remarks

e Seymour’s solution of value 423 was found only very late; most

nodes were run using the cutofl value 424.

e More reduction in time is still possible: mostly by generating

better balanced nodes.
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