‘Solving the seymour problem from MIPLIBI

Gabor Pataki

Dept. of OR
UNC, Chapel Hill

Stefan Schmieta, Dept. of IE/OR, Columbia University
Sebastian Ceria, Columbia Business School and Dash
Optimaization

Michael Ferris, University of Wisconsin

Jeff Linderoth, Argonne National Laboratory

_ /

‘ The seymour problem'

e Hard set-covering problem with 4944 rows, 1372 variables.

e Purpose: Finding minimal set of irreducible configurations in

the proof of the 4-colour theorem.

e Absolute integrality gap is < 19.16 (LP: 403.84; best IP
solution: 423.00).

e A good case study in solving hard IP’s.

Tools used to solve it'

1. Branch-and-bound.
2. Cutting with disjunctive cuts.

3. Preprocessing, and decomposition.

-

Using branch-and-bound I

e 1996: CPLEX 4.0 for ~ 1000 wall-clock hours. Gap closed:
8.92 (G. Astfalk, HP).

A better choice is to use

e Strong branching: (ABCC, CPLEX) Compute penalties for 10
candidate variables, by doing 50 dual simplex pivots on both
branches. Pick the variable with the best penalty. Gap closed
by CPLEX 5.0 within 100,000 nodes: ~ 9.

_ /

-

413 T T T T T T T T T

4121

Strong branching

411+

410

409 -

408

407

Default branching

406

405

404

403 1 1 1 1 1 1 1 1 1

Figure 1. Default vs. strong branching on the seymour problem

/

-~

‘ Using disjunctive cuts I

Given T, an optimal solution to

Min cx

st. Az > e

e B&B : picks a variable to branch.
o L&P : picks ~ 100 variables to generate o'z > 3

— valid for conv ({ Az > e, z; =0} U{Az >e, z;, =1})

— violated by .

from the set of fractional variables.

-

Figure 2: A disjunctive cut

‘Using disjunctive cuts'

Fact: SB works < disjunctive cuts work. Reason: SB picks the
best of a set of disjunctions. Disjunctive cutting applies many of

them. Both try to improve the effect of branching.

e Disjunctive cuts for 10 rounds, 100 cuts in each round (6
hours). Gap closed: 9.45.

-

-~

‘How to select the best cutting Variables?l

the best?

Options:

9.45.

(2) Select them by computing SB penalties. Test 200 variables
with 50 dual simplex pivots, pick the 100 with the best
penalties. Gap closed: 10.28.

(3) Same as (2), but test 400 variables with 100 pivots ...

-

e We have =~ 600 variables to generate cuts from. Which 100 are

(1) Select the most fractional ones (closest to 0.5). Gap closed:

~

-~

Fact:

Time for testing variables < Time for generating cuts <<

Time incurred by creating harder LP’s by adding cuts.
It may be worth

e generating all 600, then

e selecting the best afterwards.

-

10

‘How to select the best cuts?'

e We have ~ 600 cuts, all violated by the current solution .
Which 100 are the best?

Options:

(1) Select the 100 most violated, also prefer sparser ones, etc.

(2) Select the 100 with the best euclidean distance.

dist (z,{z|a’z=03}) =

(3) Select the 100 with the best dual steepest edge prices.

_ /

11

-~

~

(4) Select the 100 by usage within dual simplex with steepest edge

pricing. If a cut is pivoted on, mark it. Continue, until

e 100 cuts have been marked, or

e the problem has been fully reoptimized.

12

-~

Conclusion:

(1) Out of 600 cuts, less than 300 are ever pivoted on !

(2) Selecting 250 by usage works the best. Additional advantage:
sparser cuts get selected this way.

(3) Gap closed by 10 rounds: ~ 12.5.

-

13

/ Which point to cut off ?I \

e Gap closed with same cut selection strategy, but cutting off an

interior point: ~ 13.0.

Figure 3: Cutting off an interior point optimal solution

Cuts + CPLEX on the strengthened formulation raises the gap by

\16 units total. /

14

Raising the bound by 16 units with cutting and

some branching would do the job!

15

/ ‘ Preprocessing I \

Deleting dominated rows and columns reduces the problem from

o from (m = 4944, m = 1372, nnz = 33549) to
(m = 4323, n = 882, nnz = 27987).

e The preprocessed problem is equally hard for cutting, and

branch-and-bound.

e But: Preprocessing works well within branch-and-bound
(Forrest, Ladanyi). Gap closed,

— By our branch-and-bound after 50,000 nodes, using SB, no
cuts: =~ 8.

— BY CPLEX after 50,000 nodes, using SB: ~ 9; difference
may be due to CPLEX generating clique cuts.

_ /

16

-

Decomposition I

(@)

500 - .

e
1000 | |} -
H
h
1500 1§ 4§ .

s
2000 |;*

oy ..s}:.' s

.o “ %%,{
#
|

X
o e B>

'S
X]
e
° ey oo i o B
R

L
2500 |+

2 iy

3000 f*: ¥

, ,,..._
Ve VLT et W
R g ¢ o
Y- g
Pk
et
T
“m - -
”

3500

. .
4000

o 500
Nz = 27987

Figure 4: The matrix after preprocessing

/

17

:-) The matrix decomposes into 2 independent blocks!
:-(But the smaller one has only 18 variables ...
:-) But it has a 1 unit gap, and solves in a minute!

:-) = with no work, we reduced the gap to be closed by 1!

18

-~

e :-(Not quite ...since

e If cutting/branching closes the gap by x units on the original
problem, it closes the gap by = — 1 units on the reduced

problem ...

e Reason: we have already solved the smaller problem without

noticing it!

-

19

4)
‘The final run'

Goal: generate a small number of nodes within branch-and-cut,

with > units of gap closed.

e 10 rounds of cutting + 4 levels of branching + 2 rounds of
cutting + 4 levels of branching + 1 round of cutting.

e We used preprocessing throughout only on the setcovering

constraints.

e We generated 256 nodes, best: 16.77; worst: 15.17; median:
16.29.

_ /

20

The 256 nodes were solved on the Condor computing platform at
Wisconsin and Argonne. Total wall clock time, including
generating the 256 nodes, and solving them: =~ 8000 hours.

Conclusion: The optimal solution is indeed 423.

-

21

4 N

Remarks

e Seymour’s solution of value 423 was found only very late; most

nodes were run using the cutofl value 424.

e More reduction in time is still possible: mostly by generating

better balanced nodes.

22

