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In its efforts to provide automated meter-reading services to the utility industry, Schlumberger faces the problem
of deploying receivers efficiently. In a geographic region, the problem is to install the minimum number of
receivers on existing utility poles so that all wireless meters in that region can transmit their readings to at
least one. Schlumberger first encountered this large-scale problem in a project it ran for Illinois Power. It found
solving this problem manually very time consuming, and it had no ability to evaluate the robustness of the
resulting solution. We proposed and implemented an optimization-based approach that reduced the duration
and cost of implementations. In addition, we gave planners the ability to answer what-if questions.
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Schlumberger provides technology services,
such as oil-field services, resource management,

transactions-based technology and associated systems,
and semiconductor test equipment. It has offices in over
100 countries, employs more than 50�000 people, and
had revenues of $8.75 billion in 1999. Schlumberger’s
resource-management services (RMS) division is a
leading provider of electricity, gas, and water meters
with more than 200 million units installed around the
world. In 1999, RMS had revenues of $1.38 billion,
employed over 15�000 people, and had sales offices
and factories in more than 35 countries. In the
late 1990s, it started offering professional business
services for the utility industry. Through consulting,
meter deployment and management, data collection
and processing, and information analysis, RMS
helps clients optimize networks, achieve operating
efficiency, and increase customer loyalty.

Electricity is the most versatile, widely used form
of energy available. Unlike other forms though, it
cannot be stored. So providers must carefully moni-
tor demand and meticulously control production. Pro-
duction companies that generate, transmit, distribute,
or trade electricity need accurate measurements of
production and consumption. They must analyze data
promptly to ensure that they manage this energy
resource correctly and that power is always avail-
able when people want it. As the industry becomes

increasingly deregulated, to remain competitive, to
reduce costs, and to increase efficiency, utilities and
municipalities want to monitor their customers’ use
of power closely. They increasingly rely on such com-
panies as Schlumberger RMS to develop solutions
to meet these operations and maintenance needs.
Such systems can include a wide range of value-
added services, such as automated meter reading,
in-home messaging, security controls, remote discon-
nect, and other two-way services, that can give a util-
ity provider a competitive advantage.

We developed a solution to the problem of opti-
mally locating hardware for automated meter read-
ing (AMR). The meters send out their readings as
radio-frequency (RF) signals, which are captured by
a receiver nearby and relayed to a central data ware-
house. A receiver can capture readings from at most
540 meters within the range of a few hundred yards.
This range of coverage cannot be increased without
adversely affecting the life span of the battery in the
meter. In most cases, the ideal place for receivers is
high on the electricity poles the utility company owns.
The coverage area of a pole is the area from which
meters can successfully transmit to a receiver located
on that pole. The coverage area depends on the prop-
erties of the pole (height, material, and so forth)
and its surroundings (buildings, trees, rural or urban,
and so forth). To minimize the cost of the receivers,
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we must solve the following problem: Select the min-
imum number of poles, and assign every meter to a
selected pole without exceeding the capacity (that is,
meters assigned to them) of the poles.

In the late 1990s, Schlumberger had projects under-
way to install receivers to automatically read millions
of meters spread over thousands of square miles. In
1998, Schlumberger was installing AMR for a major
energy utility in Illinois. The network was to cover
15�000 square miles and collect data from approxi-
mately 1.1 million gas and electricity meters. In 1999,
Schlumberger signed a 15-year agreement to pro-
vide metering data and asset-management services to
PECO Energy. Under this agreement, it is responsible
for collecting data from more than 2 million electric
and gas meters in the PECO service area. Around
the same time, Schlumberger was awarded a contract
to supply the Pittsburgh Water and Sewer Authority
with AMR services for approximately 83�000 residen-
tial, commercial, and industrial customers. In all these
projects, the firm must solve the receiver-location
problem, and thus it needed a solution procedure that
can give good solutions reasonably quickly.

The Problem
We are given the locations of m meters numbered
1�2� � � � �m and of p poles numbered 1�2� � � � � p. We
denote the set of meters by M and the set of poles
by P . Each pole has a coverage area associated with
it, the area from which meters can successfully trans-
mit to a receiver located on that pole. To minimize
the cost of the required receivers, we must deter-
mine the minimum number of poles and assign every
meter to one (and only one) selected pole. In addi-
tion, each receiver has a predefined capacity limit, K,
which restricts the number of meters assigned to that
receiver. The objective is to select, without violating
the capacity restriction, the minimal number of poles
such that all the meters are covered.

A Simple Example
For example, consider the following case of 10 meters,
eight poles, and their coverage areas (Table 1). To
someone unfamiliar with how quickly the possible
number of combinations explodes, this problem may
seem easy. The first solution approach that comes to
mind is one that selects the poles in a greedy manner.
To use the greedy procedure to solve this problem,
we compute the number of meters each pole covers.
These numbers are listed in the column labeled Step 0.
Because pole 6 covers the highest number, we pick
that pole. In Step 1, for each unselected pole we com-
pute the number of meters in its area that have not
been covered by previously selected poles. We pick
the pole with the highest number. We proceed in

Meters
Pole covered Step 0 Step 1 Step 2 Step 3 Step 4 Step 5

1 1�2�3 3 2 1∗ — — —
2 2�3�9 3 2 1 0 0 0
3 5�6�7 3 2 1 1∗ — —
4 7�9�10 3 1 1 1 1∗ —
5 3�6�8 3 3∗ — — — —
6 1�4�7�9 4∗ — — — — —
7 4�5�9 3 1 1 1 0 0
8 1�4�8 3 1 0 0 0 0

Table 1: The table shows data for an example containing 10 meters and
eight poles. A greedy procedure selects, in each step, the pole (denoted
by an asterisk) that has the highest number of as yet unassigned meters
in its coverage area. Such greedy procedures do not guarantee optimality
and can often generate inferior solutions. In this case, the greedy proce-
dure selects five (1, 3, 4, 5, and 6) poles while the optimal solution has
only four (2, 3, 4, and 8) poles.

this manner, breaking ties arbitrarily, until we have
covered all the meters. For this example, the greedy
solution consists of poles 1, 3, 4, 5, and 6. Is that the
best possible solution for this problem? To establish
optimality, we have to evaluate all the possible com-
binations for this problem; the combinations that con-
tain at least three poles number 219. By enumerating
all the possible combinations, we establish that the
solution consisting of poles 2, 3, 4, and 8 is optimal.
Thus, the greedy solution is not optimal, and we can-
not confidently assume that for large problems the
greedy solution will be even close to optimal.

Existing Solution Method
In early 1998, Schlumberger signed a contract with
Illinois Power and was planning the deployment of
these receivers in Decatur, Illinois. To evaluate the
proposed solution approaches, we extracted a small
instance (containing 4�208 meters and 2�393 poles)
of the problem from the larger problem consisting
of 116�600 meters and 20�631 poles. Throughout this
paper, we use small problem and large problem to refer
to these two problem instances. Data (latitude and
longitude) on the geographical location of the poles
and meters was available.

Planners first tried to solve this problem using a
geographical information system (GIS). They input
the locations of the meters and the poles into the sys-
tem and printed them out on paper. The planners
then manually tried to locate the subset of poles that
would cover all the meters. While they obtained a
solution to the problem, they could not judge its qual-
ity. They also realized that this method was not scal-
able and would not work well for large problems.
They sought the help of a senior research scientist in
the Austin Technology Center. The scientist, an expert
in digital signal processing, had limited experience
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with optimization. He used MATLAB to implement
the greedy procedure and automatically generated a
solution to the small problem. The planners could
easily improve the solution by manual inspection.
They used the greedy procedure followed by manual
manipulation successfully to solve the small problem
and found a solution containing 171 poles. It was in
fact an optimal solution to the small problem. How-
ever, after all the effort they put into obtaining this
solution, they realized that the approach had the fol-
lowing deficiencies:

(1) It was extremely time consuming and took three
to four weeks to solve the small problem. The plan-
ners expected that it would take no less than six
months to solve the large problem, far too long.

(2) Because the amount of data (about the locations
of poles and meters) used was very large, there was a
high probability that some of that data was wrong. If
so, they would have to re-solve the problem with the
corrected data, consuming even more time.

(3) The approach was unable to handle the capacity
limitations of receivers. The total number of meters
assigned to a pole (or receiver) is called the receiver’s
load.

In practice, poles should not have large loads
because (1) at any time, a receiver can “talk” to only
one meter. When a receiver has a large load, many
meter-to-receiver calls will find it busy, increasing the
number of calls and speeding up the depletion of the
meter’s battery and its need for maintenance visits.
Also, (2) as the number of customers increases in the
area, it is trivial to assign a new meter to an already
installed receiver but cumbersome to install a new
receiver. While each receiver has a theoretical capacity
limit of 540, in practice the limit is close to 300. In
the small problem, this capacity limit played no role
because the maximum number of meters in a pole’s
coverage area was only 120. However, for the large
problem, the planners had to incorporate a capacity
restriction.

(4) Planners could not answer such what-if ques-
tions as (1) How does the solution change if we use
only those poles that are taller than 25 feet? and
(2) What is the effect of not using poles made of
wood?

Because of these deficiencies the planners looked
for other ways to solve the problem. Another sci-
entist, who specialized in optimization and opera-
tions research at Schlumberger, became involved in
the discussions in June 1998. Soon, we developed
a mathematical-programming approach that proved
effective in addressing most of these concerns.

An Integer-Programming Approach
The pole-selection problem belongs to a well-studied
class of optimization models, called facility-location

problems (Daskin 1995). When the poles are assumed
to have infinite capacity (that is, they can accommo-
date all the meters within their coverage areas), the
problem belongs to the simplest subclass, called set-
covering problems (Dell’Amico et al. 1997).

Problem Formulation
We formulated the pole-selection problem as an opti-
mization problem with a linear objective function and
linear constraints, a linear program. Because of their
structure, linear programs can be solved very effi-
ciently. When a linear program contains integer vari-
ables, it is called an integer program. Formulating the
problem as an integer program requires a mathemat-
ical representation of the problem.

Recall that M is the set of meters numbered 1�2�
� � � �m and P is the set of poles numbered 1�2� � � � � p.
Each pole j has a set of meters, Cj ⊂ M , that it can
cover. We want to find a set of poles, S, such that
S ⊂ P ,

⋃
j∈S Cj =M , and the cardinality of S is the least

possible. This is a classic set-covering problem, which
is known to be NP-hard (Nemhauser and Wolsey
1988). The number of feasible solutions to this prob-
lem grows exponentially with the size of the prob-
lem, making it very difficult to solve large problems
to optimality even with a fast computer. (We give an
integer-programming formulation of this problem in
the Appendix.)

Solving the Small Problem
To demonstrate our approach’s effectiveness in reduc-
ing the time and effort needed to solve this prob-
lem, we started with the small problem consisting
of 4�208 meters and 2�393 poles. To use the integer-
programming formulation, we sought the feasible
combination of the poles and meters relying on data
in MATLAB. We took two or three days to develop the
necessary MATLAB procedures. Of possible combina-
tions of meters and poles, only 476�769 were feasible
because of distance considerations. The integer-
programming formulation contained 2�393 binary
variables, 4�208 constraints, and 476�769 nonzero
coefficients. We submitted this problem to CPLEX and
obtained a solution of 171 in about five minutes of
computational time, the same solution the business
unit obtained manually in three to four weeks. We
then assigned meters to the poles in a greedy manner.
That is, we sequentially assigned to each pole selected
all the meters in its cover set that were not already
assigned to another pole, obtaining a feasible assign-
ment that did not increase the number of poles.

We had successfully demonstrated the effectiveness
of the integer-programming approach. Impressed, the
business unit decided to use it for solving future pole-
selection problems.
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Solving the Large Problem
For the large problem, we used the integer-program-
ming approach exclusively. This problem contained
116�600 meters and 20�636 poles with 1.63 mil-
lion possible combinations of meters and poles. It
was much too large to tackle using the traditional
approach. Before submitting the problem to CPLEX,
we did some preprocessing to reduce its use of
memory:

(1) If the set of meters covered by a pole j1 was
a subset of the set of meters covered by pole j2,
we removed pole j1 from the formulation because it
would never be selected.

(2) If the set of poles covering meter i1 was a sub-
set of the set of poles covering meter i2, we removed
meter i2 from the formulation because a pole selected
for i1 would also cover i2.

These two procedures (Daskin 1995, p. 95) reduced
the size of the formulation by 50 to 60 percent. We
submitted the reduced formulation to CPLEX, and
after about three hours of computation, it arrived at
a solution that selected 1�431 poles. Depending on
how the meters were assigned to the selected poles,
we noticed that 10 to 12 percent of the receivers were
assigned 360 or more meters. Before implementing the
solution, we had to address this limitation.

Capacity Restriction
We had been operating under the assumption that a
receiver could cover an infinite number of meters in
its range. However, each receiver can cover only a
finite number of meters, K, and the total number of
meters assigned to it must be less than that. (We give
corresponding integer program in the Appendix.)

The resulting integer program is much larger
than the integer program we described previously.
For example, for the small problem containing
4�208 meters and 2�393 poles, the new formulation
contained 144�225 binary variables, 6�601 constraints,
and 953�538 nonzero coefficients. Thus, the capaci-
tated problem could be expected to require greater
computational resources. In reality, we were unable
to solve to optimality the capacitated version of the
small problem. We used a heuristic approach by
selecting only the closest K meters for each pole.

The theoretical upper limit for K was 540. How-
ever, to plan for additional meters in the future and to
provide performance guarantees, we needed a lower
capacity limit, which might increase the number of
poles required. To study this trade-off between the
capacity limit and the number of poles, we heuris-
tically solved the finite capacity problem for various
values (K = 170, 212, 270, 310, 360, and �) of capacity
using the following approach:

(1) For each pole j , we removed all meters in Cj

except for the closest K.
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Figure 1: This figure shows the sensitivity of the optimal solution to the
capacity limit. The capacity is shown on the horizontal axis while the total
number of poles and the average urban load are shown on the left and
the right vertical axis, respectively. For both curves, the slope changes
significantly around the capacity of 270.

(2) Because every pole then had at most K meters
in its coverage area, we could solve the problem
without the capacity restrictions. We can use the for-
mulation (Problem UNC-SC) from the Appendix to
select the minimum number of poles needed to cover
all meters.

(3) We assigned each meter to the nearest selected
pole.

Meters are denser in urban areas than in rural areas.
Therefore, the average load of receivers is higher in
urban areas. In fact, in rural areas �Cj � hardly ever
exceeds 100. Moreover, once the poles have been
selected, the method in Step 3 assigned meters to
poles quite evenly. The average load of a pole was
close to the maximum in urban areas (and low in rural
areas) (Table 1, Figure 1).

Our results indicated that by using a capacity limit
of 270, we stayed well below the maximal possi-
ble capacity, and the number of poles required to
cover the meters increased by only five to six per-
cent to 1�501. We decided to use a capacity limit of
270. Illinois Power is implementing the solution with
1�501 poles in Decatur, Illinois (Table 2).

Using the Tool
Project planners use the tool as follows:

(1) Collect the geographical data (longitude, lati-
tude) of the poles and the meters using a GIS. Export
this data into a text file so that it can be easily input
into MATLAB.

(2) Import the data into MATLAB, compute the dis-
tances between the poles and the meters, and deter-
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K Total poles Average urban load

170 1,678 110�4
212 1,603 116�0
270 1,501 130�9
310 1,495 132�2
360 1,488 134�0
� 1,435 147�6

Table 2: This table illustrates the sensitivity of the solution to the capacity
limit. It shows the total number of poles selected and the average urban
load for five different capacity choices. For both measurements, perfor-
mance changes suddenly around the capacity of 270.

mine the coverage area and the meters inside it for
each pole.

(3) For each pole, retain only the K (the capacity
limit) closest meters in its coverage area. This ensures
that the solution generated by the integer program
does not violate the capacity restriction. Output the
feasible combinations of poles and meters in the for-
mat needed by GAMS.

(4) Import the pole-meter combination data into
GAMS and solve the resulting integer program. As it
solves the problem, review the best solution identi-
fied so far and the upper limit on its distance from
the optimal solution. Using this information, decide
when to stop the solver. GAMS outputs the current
solution (the poles selected) to a text file.

(5) Input the text file containing the selected poles
into MATLAB and assign meters to the poles in any
fashion. (The assignment does not alter the number
of poles selected, and Step 3 ensures staying within
capacity limit.) Output data on the poles and the
meters assigned to them into a text file.

(6) Input the text file containing the solution into
the GIS and plot it on a map of the region. Review the
solution and accept it for implementation or prepare
what-if questions.

(7) Perform the what-if analysis and iterate until
you reach an acceptable solution.

We had many ideas for automating this process and
developing a good user interface. However, we have
not pursued them because most users had technical
backgrounds and did not ask for automation and a
user interface. In addition, they are using the tool in
a strategic manner mainly during the early stages of
a project, making further investments unattractive.

Benefits to Schlumberger
Schlumberger benefited in three areas from the
integer-programming-based tool for pole selection.

The tool was able to reduce the time the firm took
to determine the receiver-installation sites from three
to six months to less than one month, allowing it to
generate revenue sooner.

Schlumberger used fewer planners per project than
it would have. For the small problem, the integer-
programming approach saved three person-weeks of
planning time. Extrapolating to the large problem, we
estimate that the savings in planning time would be
around 784 person-weeks. At a cost of US$1,000 to
$2,000 per person-week, that would be a savings of
US$0.78 to $1.57 million.

In addition, the project managers conceded that the
solution determined by this tool would be at least
10 percent better than one determined manually. We
based this estimate on the difference between the inte-
ger program’s solution for the small problem and the
first manual solution for it. Because the problem was
small, we were able to scrutinize the solution and
improve it. However, we probably could not make
such an improvement for large problems. Assum-
ing that the load (receiver to meter ratio) remains
the same, the firm would need 14�160 receivers to
cover the 1.1 million meters. By using the integer-
programming method, it might reduce that number
by 1�415. The resulting savings in equipment and
labor costs, at a rate of US$200 to $400 per receiver,
would be about 0.28 to 0.57 million dollars. Thus, we
estimate the total savings from this new approach to
be between US$1.06 to $2.14 million.

This tool had an unexpected organizational benefit.
While other units of Schlumberger have used opera-
tions research methods for years to solve strategic and
operational problems, this project was RMS division’s
first to use operations research methods. As a direct
result of the project’s success, RMS managers realized
that recruiting people with operations research back-
grounds could help them to reduce inefficiencies and
improve their competitiveness.

Extensions
The integer-programming approach could be used to
solve extensions to this problem.

Different Types of Poles
We assumed in our initial work that all the poles
were identical, which in reality is not true. Even if
two poles have exactly the same coverage area, a pole
that is easily accessible (say, on a road) is preferred
to one that is not (say, in a pond). Similarly, a pole
with a street light is preferred because the transformer
used by the light can be used by the receiver as well,
thus saving money. We can implement this feature in
the problem by assigning different weights (preferred
poles get lower weights) to the poles. Let the weight
assigned to pole j be Wj . Then, we need only to mod-
ify the objective function, making it to minimize

p∑
j=1

WjYj �
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This change does not significantly alter the com-
putational complexity of the problem and the time
required to solve it.

Different Types of Receivers
Various types of receivers are available to cover the
meters, and these receivers differ in shape, distance
of coverage area, and costs. Assume that N types of
receivers are available and that we can place only one
type on any pole. Let the costs of these receivers be
R1�R2� � � � �RN . Let Y n

j , n ∈ �1�2� � � � �N �, be a 0–1 vari-
able, taking the value of one if a receiver of type n is
placed on pole j . Let Cn

j be the subset of meters that
the pole j covers if it has a receiver of type n. Then,
the uncapacitated optimization problem can be for-
mulated (Appendix, Problem MRT-SC) as an integer
program.

Appendix

Integer-Programming (IP) Formulation Without
Capacity Restrictions
Assuming that receivers have infinite capacity, the
pole-selection problem can be formulated as an inte-
ger program as follows:

Problem UNC-SC

Minimize
p∑

j=1

Yj

subject to
∑

�j�i∈Cj �

Yj ≥ 1 ∀i�

Yj ∈ �0�1� ∀j�
In this formulation, Yj is a 0–1 variable and is set

equal to one if pole j is selected and set to zero oth-
erwise. The objective is to minimize the total number
of poles selected. The set of constraints indicates that
for every meter, among all the poles that can commu-
nicate with this meter, at least one pole is selected.
Let {Y ∗

j , j = 1�2� � � � � p} be the optimal solution to the
integer program. Then, S = �j � Y ∗

j = 1�.

IP Formulation for the 10-Meter,
Eight-Pole Example

Minimize Y1 +Y2 +Y3 +Y4 +Y5 +Y6 +Y7 +Y8

subject to Y1 +Y6 +Y8 ≥ 1 (1)

Y1 +Y2 ≥ 1 (2)

Y1 +Y2 +Y5 ≥ 1 (3)

���

Y4 ≥ 1

Y1�Y2�Y3�Y4�Y5�Y6�Y7�Y8 ∈ �0�1��

The objective is to minimize the sum of variables Y1
through Y6, which represent the poles selected. The

constraints require that every meter is covered by at
least one selected pole. For example, meter 1 is in the
coverage areas of poles 1, 6, and 8. Thus, constraint (1)
indicates that at least one of these poles should be
selected.

IP Formulation with Capacity Restrictions
To formulate this problem, we have to introduce a
new set of binary variables Xij . Xij is set equal to 1 if
meter i is assigned to pole j , and set to zero otherwise.
Thus, the integer-programming formulation for this
problem is

Problem CAP-SC

Minimize
p∑

j=1

Yj

subject to
∑

�i�i∈Cj �

Xij ≤KYj ∀j�
∑

�j�i∈Cj �

Xij ≥ 1 ∀i�

Yj ∈ �0�1�� Xij ∈ �0�1� ∀i� j�
As in the previous case, the objective here is to

select the minimum number of poles that cover all
the meters. The first constraint imposes the restriction
that if a pole is not selected the number of meters
assigned to that pole must be zero. On the other hand,
if a pole is selected, the number of meters assigned
to it is restricted to be less than K, the capacity limit.
Constraint (2) ensures that every meter is assigned
to exactly one pole. Let us now revisit the 10-meter,
eight-pole example and impose a capacity limit of two
meters per pole. The resulting formulation is

minimize Y1 +Y2 +Y3 +Y4 +Y5 +Y6 +Y7 +Y8

subject to X�1��1� +X�2��1� +X�3��1� ≤ 2Y1 (4)

X�2��2� +X�3��2� +X�9��2� ≤ 2Y2 (5)

���

X�4��7� +X�5��7� +X�9��7� ≤ 2Y7 (6)

X�1��8� +X�4��8� +X�8��8� ≤ 2Y8 (7)

X�1��1� +X�1��6� +X�1��8� = 1 (8)

X�2��1� +X�2��2� = 1 (9)

���

X�9��2� +X�9��4� +X�9��6� +X�9��7� = 1 (10)

X�10��4� = 1 (11)

Y4 ≥ 1

Y1�Y2�Y3�Y4�Y5�Y6�Y7�Y8 ∈ �0�1��
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Selected pole Meters assigned

1 2�3
3 5�7
4 9�10
5 6�8
6 1�4

Table 3: This table presents an optimal solution for the 10-meter, eight-
pole example with capacity limit two. The optimal solution consists of five
poles (1, 3, 4, 5, and 6) with two meters assigned to each pole.

The solution with poles 1, 3, 4, 5, and 6 with
the meter assignments 2�3; 5�7; 9�10; 6�8; and 1�4;
respectively, is an optimal solution to this problem
(Table 3).

IP Formulation with Different Types of Receivers

Problem MRT-SC

Minimize
N∑
n=1

Rn

[ p∑
j=1

Y n
j

]

subject to
∑

��j�n��i∈Cn
j �

Y n
j ≥ 1 ∀i�

N∑
n=1

Y n
j ≤ 1 ∀j�

Y n
j ∈ �0�1� ∀j�n�

The objective here is to minimize the total cost
of the selected receivers. Constraint (1) ensures that
for every meter, among the pole, meter-type combi-
nations in whose coverage area it falls, at least one
combination is selected in the optimal solution. Con-
straint (2) ensures that on every pole, only one type
of receiver is installed.
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Jesse M. Pantalion, General Manager, Illinois Power
Project, 2475 Federal Drive, Decatur, Illinois 62526,
writes: “This is to certify that the methods and
results reported in the paper ‘Schlumberger optimizes
receiver location for automated meter reading’ were
developed for and applied to Schlumberger’s map-
ping for deployment of a wireless metering system
for Illinois Power Company. In addition, these meth-
ods will be available for application to the plan-
ning of future wireless metering systems for other
Schlumberger clients.”


