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ON THE RANK OF EXTREME MATRICES IN SEMIDEFINITE
PROGRAMS AND THE MULTIPLICITY OF

OPTIMAL EIGENVALUES

GÁBOR PATAKI

We derive some basic results on the geometry of semidefinite programming (SDP) and eigen-
value-optimization , i.e., the minimization of the sum of the k largest eigenvalues of a smooth
matrix-valued function.

We provide upper bounds on the rank of extreme matrices in SDPs, and the first theoretically
solid explanation of a phenomenon of intrinsic interest in eigenvalue-optimization. In the spectrum
of an optimal matrix, the k th and (k / 1)st largest eigenvalues tend to be equal and frequently
have multiplicity greater than two. This clustering is intuitively plausible and has been observed
as early as 1975.

When the matrix-valued function is affine, we prove that clustering must occur at extreme points
of the set of optimal solutions, if the number of variables is sufficiently large. We also give a
lower bound on the multiplicity of the critical eigenvalue. These results generalize to the case of
a general matrix-valued function under appropriate conditions.

1. Introduction. A semidefinite programming problem (SDP) can be formulated in
the form

Min C • X

s.t. X º 0,(1.1)

A • X Å b ( i Å 1, . . . , m) ,i i

where Ai ( i Å 1, . . . , m) , C are symmetric matrices, bi ( i Å 1, . . . , m) real numbers, the
inner product of symmetric matrices is A • B Å aijbij , and X º 0 means that then( i , jÅ1

matrix X is symmetric and positive semidefinite. The dual of (1.1) is

TMax y b

s.t. Z º 0,(1.2)

m

y A / Z Å C .∑ i i

iÅ1

The origins of semidefinite programming can be traced back to the seventies; however it
has gained tremendous popularity only in the past few years. The importance of SDP is
due to several facts. It is an elegant generalization of linear programming, and to a large
extent inherits its duality theory. Also, it has a wealth of applications ranging from en-
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gineering to combinatorial optimization. For an extensive historic account, we refer to
Alizadeh (1995). A more recent survey is the paper of Vandenberghe and Boyd (1996).

A related problem can be described as follows. For an n by n symmetric matrix B
denote by li (B ) the i th largest eigenvalue of B . Let k √ {1, . . . , n}, and define

k

f (B) Å l (B) .(1.3) ∑k i

iÅ1

Let A be a smooth function mapping from Rm to the space of symmetric n by n matrices.
The eigenvalue-optimization problem is

mMin{ f (A(x)) : x √ R }.(EVk) k

When A is affine we call (EVk) an affine ; and a general problem otherwise. As it was
shown by Nesterov and Nemirovskii (1994) and Alizadeh (1995), the affine problem can
be formulated as an SDP; Alizadeh’s paper is also an excellent chronicle on this special
case. A recent, comprehensive survey on optimizing functions of eigenvalues was written
by Lewis and Overton (1996).

The purpose of this paper is to describe several basic results on the geometry of sem-
idefinite programs and eigenvalue-optimization. First we derive upper bounds on the rank
of extreme matrices in SDPs. These bounds are similar to the well-known bounds on the
number of nonzeros in extreme solutions of linear programs.

Next, we study a phenomenon of intrinsic interest in eigenvalue-optimization. At op-
timal solutions of (EVk) the eigenvalues of the optimal matrix tend to coalesce; if the
minimum is achieved at x*, then frequently lk(A(x*)) Å lk/1(A(x*)) , and lk(A(x*))
can have multiplicity larger than two.

The clustering phenomenon plays a central role in eigenvalue-optimization. The func-
tion fk is differentiable at B if and only if lk(B) ú lk/1(B) . If this condition fails to hold,
then the dimension of the subdifferential of fk at B grows quadratically with the multiplicity
of lk(B) . Furthermore, if fk is nonsmooth at A(x*) then generally the composite function
fk + A is also nonsmooth at x*. For the characterization of the subdifferential of fk and
fk + A we refer the reader to Overton and Womersley (1993) and Hiriart-Urruty and Ye
(1995). A more general treatment on computing subdifferentials of functions of eigen-
values can be found in Lewis (1996).

Therefore, clustering frequently causes the nondifferentiability of the objective function
at a solution point, making (EVk) a ‘‘model problem’’ in nonsmooth optimization. The
reason for clustering is intuitively clear: the optimization objective (‘‘pushing down’’ the
sum of the k largest eigenvalues) makes the eigenvalues coalesce around lk(A (x*)) .

We provide a theoretically sound explanation of the clustering phenomenon. For the
affine problem we prove that at a point x*, which is an extreme point of the set of optimal
solutions, if mú k(n 0 k) then lk(A (x*))Å lk/1(A(x*)) must hold, and there is a lower
bound on the multiplicity of lk(A(x*)); this bound is an increasing function of m . For
the general problem we show that if x* is an optimal solution of (EVk) , then A(x*)
minimizes fk on the tangent space of the set {A(x)Éx √ R m} at A(x*). If the restriction
of fk to the tangent space is strictly convex at A(x*), then the same results hold as in the
affine case.

The rest of the paper is organized as follows. In the remainder of this section we
introduce the necessary notation and review preliminaries. In §2 we derive the bounds on
the rank of extreme matrices in SDPs. In §3 we study a simple semidefinite program
whose optimum is fk(B) for a fixed symmetric matrix B . We derive a closed form ex-
pression for the optimal solution. Section 4 proves our main result, Theorem 4.3 on the
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multiplicity of optimal eigenvalues in the affine case. The proof utilizes the results of the
previous two sections. In particular, the upper bounds on the ranks of the slack matrices
in the corresponding SDP translate into a lower bound on the multiplicity of the k th largest
eigenvalue. Section 5 treats the general case. In §6 we outline how similar arguments can
be applied to a similar problem: minimizing the sum of the k eigenvalues which are largest
in absolute value.

Notation and preliminaries.

Linear algebra. S n denotes the set of n by n symmetric matrices, the set of n bynS/
n symmetric positive semidefinite matrices. For A , B √ S n , A º B [A ¥ B] means that
A 0 B is positive semidefinite [positive definite] . We denote by t(n) the n th triangular
number n(n / 1).1

2

For B √ S n the i th largest eigenvalue of B is denoted by li (B) . Also, mult (li (B ))
denotes the multiplicity of li (B) , that is the maximal p ¢ 1 such that

l ( B) Å ··· Å l (B) Å ··· Å l (B)j i j/p01

for some j such that j ° i ° j / p 0 1.
For a matrix A Å we denote by diag A the vector (a11 , . . . , ann)T . For £ √ R nn(a )ij i , jÅ1

we denote by Diag £ the diagonal matrix with diagonal elements £1 , ··· , £n .
We denote by e the vector of all ones, by e i the i th unit vector.

Convex analysis. Let S be a closed convex set. A convex subset F of S is called a
face of S if x √ F , y , z √ S , x Å (y / z) implies that y and z must both be in F . A1

2

vertex or an extreme point of S is a face consisting of a single element.
The vectors £

1 , . . . , £ p √ R n are affinely independent , if

p p
im £ Å 0, m Å 0∑ ∑i i

iÅ1 iÅ1

implies m1 Å ··· Å mp Å 0. We say that the matrices A1 , . . . , Ap are linearly (affinely)
independent, if the vectors formed of A1 , . . . , Ap by stacking their columns are linearly
(affinely) independent.

The dimension of the convex set S is

1 pdim S Å max{pÉ£ , . . . , £ √ S are aff inely independent} 0 1.

The standard reference for convex analysis is Rockafellar (1970).

Semidefinite programming. For the ease of reference we state the fundamental the-
orem of SDP-duality. It is a special case of duality for linear programs with cone-con-
straints. For a proof see, e.g., Wolkowicz (1981). Also, a general formulation of SDP
duality theory was given in Shapiro (1985).

THEOREM 1.1. Assume that both (1.1) and (1.2) have feasible solutions . Then the
following results hold .

(1) If (1.1) has a feasible X¥ 0, then the optimal values of (1.1) and (1.2) are equal ,
and (1.2) attains its optimal value .

(2) If (1.2) has a feasible (y , Z ) with Z ¥ 0, then the optimal values of (1.1) and
(1.2) are equal , and (1.1) attains its optimal value .
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2. Bounding the rank of extreme matrices in semidefinite programs.

THEOREM 2.1. The following results hold :
1. Suppose that X √ F , where F is a face of the feasible set of (1.1) . Let d Å dim F ,

r Å rank X . Then

t(r) ° m / d .(2.1)

2. Suppose that (y , Z ) √ G , where G is a face of the feasible set of (1.2) . Let d Å
dim G , s Å rank Z . Then

t(s) ° t(n) 0 m / d .(2.2)

PROOF OF 1. Since rank X Å r , we can write

TX Å QLQ

where Q √ R n1r , L √ S r , L ¥ 0. Since

T Tb Å A • X Å A • QLQ Å Q A Q • L ( i Å 1, . . . , m)(2.3) i i i i

we have

TQ A Q • L Å b ( i Å 1, . . . , m) .(2.4) i i

To obtain a contradiction, suppose that t(r) ú m / d . The system (2.4) is determined
by m equations, and dim S r Å t(r) . Hence there exist D1 , . . . , Dd/1 √ Sr linearly inde-
pendent matrices satisfying

TQ A Q • D Å 0 ( i Å 1, . . . , m ; j Å 1, . . . , d / 1).(2.5) i j

Since L is positive definite, there exists e ú 0 such that

L { eD º 0 ( j Å 1, . . . , d / 1).j

Define

L Å L / eD , L Å L 0 eD ,j,1 j j,2 j

(2.6)
T TX Å QL Q , X Å QL Q .j,1 j,1 j,2 j,2

The matrices Xj,1 and Xj,2 are feasible for (1.1) , and X Å (Xj,1 / Xj,2 ) . Since F is a face1
2

of the feasible set, we conclude that Xj,1 and Xj,2 are in F for j Å 1, . . . , d / 1.
On the other hand, as D1 , . . . , Dd/1 are linearly independent, the matrices L, L1,1 , . . . ,

Ld/1,1 and therefore also X , X1,1 , . . . , Xd/1,1 are affinely independent. As the latter are in
F , we obtain dim F ¢ d / 1, a contradiction.

PROOF OF 2. Denote by F the projection of the feasible set of the problem (1.2) to
the space of the Z variables,

m
mF Å Z º 0ÉZ Å C 0 y A for some y √ R .∑ i iH J

iÅ1
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For Z √ F denote by y(Z ) the vector in Rm satisfying Z Å C 0 y(Z )i Ai . Since them( iÅ1

matrices Ai are linearly independent, y(Z ) is well defined. Hence the feasible set of the
problem (1.2) can be written as

C Å {(y(Z ) , Z )ÉZ √ F}.

The points in F and C are in one-to-one correspondence. Moreover, it is easy to see
that the mapping assigning y(Z ) to Z is affine (that is, y(mZ1 / (1 0 m)Z2) Å my(Z1)
/ (1 0 m)y(Z2) , for a m real number, when Z1 , Z2 , mZ1 / (1 0 m)Z2 √ F) .

Hence also the faces of F and C are in one-to-one correspondence. Namely, F is a face
of F if and only if G Å {(y(Z ) , Z )ÉZ √ F} is a face of C, and for these faces
dim F Å dim G .

Therefore, it is enough to establish a bound on the rank of a matrix Z √ F , where F is
a face of F, dim F Å d . We can write F as

F Å {Z º 0ÉA* • Z Å b * ( j Å 1, . . . , t(n) 0 m)}j j

for symmetric matrices and real scalars ( j Å 1, . . . , t(n) 0 m ) . Hence the desiredA* b *j j

result follows from the bound (2.1) . h

In a semidefinite program, we may have several matrix variables constrained to be
positive semidefinite, as well as a vector of unconstrained real variables. We can prove
the following result.

THEOREM 2.2. Consider a semidefinite program with feasible set

qX º 0, . . . , X º 0, y √ R ,1 p

p

A • X Å b ( i Å 1, . . . , m ) ,∑ ij j i 1

jÅ1

p q

a X / y D Å B ( i Å 1, . . . , m ) ,∑ ∑ij j j ij i 2

jÅ1 jÅ1

where Aij , Dij and Bi are symmetric matrices , and aij , bi are scalars . Denote the order of
Bi by ni ( i Å 1, . . . , m2) and let

m2

m Å m / t(n )∑1 i

iÅ1

that is , m is the total number of equality constraints , if a constraint with a symmetric
matrix right-hand side in S n is counted as t(n) constraints . Suppose that (X1 , . . . , Xp ,
y) √ G , where G is a face of the feasible set . Let d Å dim G , rj Å rank Xj ( j Å 1, . . . ,
p) . Then

p

t(r ) ° m 0 q / d .(2.7) ∑ j

jÅ1

OUTLINE OF PROOF. Let m* Å m 0 q . As in the proof of the second part of Theorem
2.1, we can show that the projection of the feasible set onto the space of the Xj variables
is of the form
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p

F Å X º 0, . . . , X º 0, A* • X Å b * ( i Å 1, . . . , m*)(2.8) ∑1 p ij j iH J
jÅ1

for symmetric matrices and reals ( i Å 1, . . . , m* ; j Å 1, . . . , p) , and (X1 , . . . ,A * b *ij i

Xp) is in F , where F is a face of F of dimension d . Since rank Xj Å rj , we can write

TX Å Q L Q(2.9) j j j j

where Qj √ Lj √ Lj ¥ 0 ( j Å 1, . . . , p) . Similarly as in the proof of Theoremn1r rj jR , S ,
2.1 we obtain

p
TQ A*Q • L Å b ( i Å 1, . . . , p) .(2.10) ∑ j ij j j i

jÅ1

The system (2.10) has m* constraints and 1 ··· Å t(rj) . The proof canpr r1 pdim(S S ) ( jÅ1

be completed analogously to the proof of the first part of Theorem 2.1. h

REMARK 2.3. It is worth noting, how the bound on the number of nonzeros in extreme
solutions of linear programs can be recovered from the above results. Consider an LP
with feasible set

nF Å {x √ R Éx ¢ 0, Ax Å b}(2.11)

where A has m linearly independent rows. This set can be written as the feasible set of an
SDP in two different ways. We can treat the variable x √ R n as the direct product of n
positive semidefinite matrices of order 1. Then if the point x is in a face of dimension d
of F, and x has r nonzero components, the well-known inequality r ° m / d follows
from the bound (2.7) .

Alternatively, F is the set of diagonals of matrices in

n iF* Å {X √ S É(Diag a ) • X Å b ( i Å 1, . . . , m) , X Å 0 ( i x j)}/ i ij

where a 1 , . . . , am are the rows of A . There is a trivial correspondence between the faces
of F and F*. Hence, if X is contained in a face of dimension d of F*, and r Å rank X ,
then (2.1) yields

t(r) ° (m / t(n 0 1)) / d

which does not imply r ° m / d .

REMARK 2.4. The first proof of Theorem 2.1 was given in Pataki (1994) by using a
more general argument. The faces of are in one-to-one correspondence with the sub-nS/
spaces of R n . It was shown by Barker and Carlson (1975) that a convex subset of isnS/
a face, if and only if it is of the form

nF(L) Å {X √ S Éthe rangespace of X is contained in L}/

where L is a subspace of R n . Let r Å dim L . Then the dimension of F(L) is t(r) , and the
rank of matrices in F(L) is at most r .

Now, consider a different proof of Theorem 2.1. Let us denote by
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H Å {X : A • X Å b for i Å 1, . . . , m}.i i

Then the feasible set of program (1.1) is given by > H . By a theorem of Dubins (see,nS/
e.g., Stoer and Witzgall 1970, p. 116) a subset of the intersection of two convex sets is a
face iff it is the the intersection of two faces. Therefore F is a face of > H , if and onlynS/
if

F Å F(L) > H(2.12)

for an L subspace of R n . As shown in Pataki (1994) if F(L) is the minimal face satisfying
(2.12), then

dim F ¢ dim F(L) 0 m B dim F(L) ° dim F / m .(2.13)

Then (2.13) is equivalent to (2.1) . The technique used in the current proof of Theorem
2.1 are similar to the techniques used in the proof of Theorem 5 in Alizadeh, Haeberly,
and Overton (1997).

REMARK 2.5. Independently, Ramana and Goldman (1995) derived several results
on the geometry of the feasible sets of SDPs (such as a characterization of faces) .

3. A simple semidefinite characterization of fk(B) . In this section we shall develop
the second part of the theory necessary to prove eigenvalue-clustering in the optimal
solutions of (EVk) . Let B be a symmetric matrix of order n , and consider the SDP

Min kz / I • V

s.t. V, W º 0,(3.14)

zI / V 0 W Å B .

We shall give an explicit expression for the optimal solutions of (3.14) and prove that its
optimal value is fk(B) Å l1(B) / ··· / lk(B) .

We begin with a brief survey of previous results related to ours. The classical charac-
terization

Tf (B) Å Max B • XXk

n1ks.t. X √ R ,(3.15)

TX X Å I ,

is due to Ky Fan (1949). Showing the inequality ° is easy, by choosing the columns of
X as a set of eigenvectors corresponding to the k largest eigenvalues of B .

A more recent characterization that was obtained independently by Overton and Wom-
ersley (1992, 1993) and Hiriart-Urruty and Ye (1995) states

f (B) Å Max B • Uk

s.t. I º U º 0,(3.16)

I • U Å k .



346 G. PATAKI

/ 3905 0008 Mp 346 Wednesday May 06 02:23 PM INF–MOR 0008

This result can be regarded as a ‘‘continuous Ky Fan-theorem,’’ since these references
show

n T n1k T{U √ S ÉI º U º 0, I • U Å k} Å conv{X X ÉX √ R , X X Å I}(3.17)

and (3.17) can be used to give a simple and elegant proof of Ky Fan’s original charac-
terization (see, e.g., Overton and Womersley 1992). Furthermore, in Overton and Wom-
ersley (1993) and Hiriart-Urruty and Ye (1995) an explicit expression for the set of
optimal solutions of (3.16) is given.

Problem (3.14) was studied independently by Nesterov and Nemirovskii (1994, p. 238)
and Alizadeh (1995). They showed that its optimal value is fk(B ) . The proof of Nesterov
and Nemirovskii is direct. Alizadeh proved his result by showing that (3.16) and (3.14)
are dual semidefinite programs with equal optimal value (the latter has a strictly interior
feasible solution).

For our purposes, we need not only the optimal value of (3.14), but also an explicit
expression for the optimal z , V and W . We proceed as follows: first we determine the
optimal solutions for a diagonal B , with the restriction that V and W be also diagonal.
Next we drop the diagonality restriction on V and W , while keeping it on B . Finally, we
determine the optimal solutions of (3.14).

LEMMA 3.1. Let l √ R n , l1 ¢ ··· ¢ ln . Consider the LP

TMin kz / e £

s.t. £, w ¢ 0,(3.18)

ze / £ 0 w Å l.

The optimal value of (3.18) is li and (z*, £*, w*) is an optimal solution if and onlyk( iÅ1

if

l ° z* ° l ,(3.19) k/1 k

T
£* Å (l 0 z*, . . . , l 0 z*, 0, . . . , 0 ) ,1 k

(3.20)
Tw* Å (0, . . . , 0, z* 0 l , . . . , z* 0 l ) .k/1 n

PROOF. Let (z , £, w) be feasible for (3.18). Then

T T 1 kkz / e £ ¢ (ze / £) (e / ··· / e )

T 1 kÅ (l / w) (e / ··· / e )

¢ l / ··· / l .1 k

The first inequality is tight if and only if £k/1 Å ··· Å £n Å 0. The second inequality is
tight if and only if w1 Å ··· Å wk Å 0, thus the choice of the optimal (z*, £*, w*)
follows. h

LEMMA 3.2. Let l be as in Lemma 3.1 and L Å Diag l. Consider the SDP



347RANK OF EXTREME MATRICES

/ 3905 0008 Mp 347 Wednesday May 06 02:23 PM INF–MOR 0008

Min kz / I • V

s.t. V, W º 0,(3.21)

zI / V 0 W Å L.

The optimal value of (3.21) is li , and (z*, V *, W *) are optimal if and only if V *k( iÅ1

Å Diag £*, W * Å Diag w*, and (z*, £*, w*) are chosen as in (3.19) and (3.20).

PROOF. Replacing the constraints V º 0, W º 0 with diag V ¢ 0, diag W ¢ 0 yields
(3.18), a relaxation of (3.21). Thus (3.21) has optimal value at least li . This valuek( iÅ1

is attained if both V * and W * are diagonal.
We must also show that arbitrary optimal V * and W * matrices are diagonal. Let (z*,

V *, W *) be an optimal solution of (3.21). Therefore (z*, diag V *, diag W *) must be
an optimal solution of (3.18), hence by Lemma 3.1 they are chosen according to (3.19)
and (3.20). Partition the matrices V * and W * as

* * * *V V W W11 12 11 12
V * Å , W * Å ,(3.22) F G F G* * * *V V W W21 22 21 22

where the diagonal blocks are k by k and n 0 k by n 0 k , respectively. Since the diagonal
elements of are 0, and V * º 0, we must have Å 0 and Å 0. Since the diagonal* * *V V V22 22 12

elements of are 0, and W * º 0, Å 0 and Å 0. Since also z*I / V * 0 W ** * *W W W11 11 12

Å L holds, V * and W * must be diagonal. h

THEOREM 3.3. Consider the SDP (3.14). Write B Å QLQT with Q being an n by n
orthonormal matrix , L Å diag l, l1 ¢ ··· ¢ ln . The optimal value of (3.14) is li ,k( iÅ1

and (z*, V *, W *) are optimal if and only if

l ° z* ° l ,(3.23) k/1 k

TV * Å Q(Diag £*)Q ,
(3.24)

TW * Å Q(Diag w*)Q ,

where

T
£* Å (l 0 z*, . . . , l 0 z*, 0, . . . , 0 ) ,1 k

(3.25)
Tw* Å (0, . . . , 0, z* 0 l , . . . , z* 0 l ) .k/1 n

PROOF. Given the above decomposition of B we can rescale (3.14) to get (3.21)
without changing its objective value. The correspondence between the solutions of the
rescaled and the original problem is: (z*, V *, W *) is an optimal solution to the rescaled
problem if and only if (z*, QV *QT , QW *QT ) is an optimal solution to (3.14). Our
theorem then follows from Lemma 3.2. h

Finally we remark that the optimal solutions of (3.14) do not depend on the choice of
B’s eigenvectors. Suppose that the distinct eigenvalues of B are

l (B) , . . . , l (B)i i1 r
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in descending order and lk(B) Å Then the distinct eigenvalues of V * and W * inl (B) .is

Theorem 3.3 are

l (B) 0 z*, . . . , l (B) 0 z* and z* 0 l (B) , . . . , z* 0 l (B) ,i i i i1 s01 s/1 s01

respectively. Therefore, choosing different eigenvectors of B to represent the eigenspace
corresponding to ( j Å 1, . . . , r) does not change V * and W *.l (B)ij

In the following we shall denote

V (B) Å {(z , V, W )É(z , V, W ) is an optimal solution of (3.14)}.k

This set is a line segment if lk(B) ú lk/1(B) and a singleton otherwise. Let (z , V, W )
√ Vk(B) with z Å (lk(B) / lk/1(B)) . Then from Theorem 3.3 we obtain1

2

rank V / rank W / mult(l (B)) Å n .k

4. Multiplicity of optimal eigenvalues: The affine case. In this section we present
our main results about the multiplicity of optimal eigenvalues in the affine case.

Let A0 , A1 , . . . , Am be symmetric matrices, that we assume to be linearly independent.
Let A(x) Å A0 / xi Ai . Substituting A(x) for B in (3.14) yields the SDP-formulationm( iÅ1

for the affine problem

Min kz / I • V
x,z,V ,W

s.t. V, W º 0,(4.26)

zI / V 0 W Å A(x) .

This formulation was discovered independently by Nesterov and Nemirovskii (1994) and
Alizadeh (1995). The results of the previous section show that the optimal solutions of
program (4.26) are determined by the optimal solutions of (EVk) : the only possible degree
of freedom we have is choosing z*.

Denote the optimal value of (EVk) by and the set of optimal solutions by O, i.e.*f k

m *O Å {x √ R Éf (A(x)) Å f }.(4.27) k k

The set O is a level set of the function fk + A ( in its definition we can write fk(A (x))
° hence it is convex and closed.*f )k

To exclude trivial cases, from now on we assume m ¢ 1 and k õ n (when k Å n ,
(EVk) is a linear program).

LEMMA 4.1. The set O does not contain a line , i .e ., if y √ R m , x / ly √ O for all l
√ R then y Å 0 must hold .

PROOF. Since m ¢ 1, and the Ai matrices are linearly independent, it suffices to show
that the level set

n *C Å {Z √ S Éf (Z ) ° f }k k

does not contain a line. Suppose that Y is a symmetric matrix such that Z / lY √ C for
all l √ R. Since fk(Z / lY ) can be determined from Ky Fan’s formulation (3.15) it
follows that Y • XX T Å (0Y ) • X X T Å 0 must hold for all X n by k matrices satisfying
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X TX Å I . This in turn implies fk(Y ) Å fk(0Y ) Å 0. Since k õ n , we conclude Y Å 0 as
needed. h

Since O does not contain a line, it has at least one extreme point (Rockafellar 1970,
Corollary 18.5.3) .

LEMMA 4.2. Let x* be an extreme point of O . Then the set

F* Å {x*} 1 V (A(x*))k

is a face of the feasible set of (4.26).

PROOF. Denote the feasible set of (4.26) by F, and the set of its optimal solutions by
F . We have

*F Å {(x , z , V, W ) √ FÉkz / I • V Å f }k

Å {{x} 1 V (A(x))Éx √ O}.k

Since x* is an extreme point of O, F* must be a face of F . As F is a face of F, our claim
follows. h

We recall the definition of the function t , and introduce the function t

t( i) Å i( i / 1)/2,
(4.28)

t( l , r , s) Å max{ i / j : t( i) / t( j) ° l , i ° r , j ° s}.

THEOREM 4.3. Let x* be an extreme point of O, and assume m ú k(n 0 k) . Then

l (A(x*)) Å l (A(x*)) , and(4.29) k k/1

mult(l (A(x*))) ¢ n 0 t( t(n) 0 m 0 1, k 0 1, n 0 k 0 1).(4.30) k

PROOF. Define F* as in Lemma 4.2, let d Å dim F*, and denote li Å li (A(x*))
( i Å 1, . . . , n) . Clearly,

1 if l ú l ,k k/1

d Å(4.31) H
0 if l Å l .k k/1

Let (x*, z , V, W ) √ F*, with z Å (lk / lk/1) , and let i Å rank V, j Å rank W . Then1
2

clearly

i ° k and j ° n 0 k .

Moreover, in program (4.26) the number of equality constraints is t(n) , and the number
of unconstrained variables is m / 1. Hence Theorem 2.2 implies

t( i) / t( j) ° ( t(n) 0 m 0 1) / d .(4.32)

Since m ú k(n 0 k) , we get t(k) / t(n 0 k) ú ( t(n) 0 m 0 1) / 1, hence i Å k and
j Å n 0 k cannot both hold. Therefore
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l (A(x*)) Å l (A(x*))k k/1

follows. To prove (4.30) note that

i / j / mult(l (A(x*))) Å nk

and

d Å 0, i ° k 0 1, j ° n 0 k 0 1.

By (4.32) we get

i / j ° t( t(n) 0 m 0 1, k 0 1, n 0 k 0 1) c

mult(l (A(x*))) ¢ n 0 t( t(n) 0 m 0 1, k 0 1, n 0 k 0 1)k

as required. h

Next, we study the consequences of Theorem 4.3 on the nonsmoothness of the objective
function of (EVk) at an optimal solution. Ky Fan’s formula (3.15) and the SDP (3.16)
provide a characterization of fk as the pointwise maximum of (infinitely many) linear
functions. Hence the subdifferential of fk at B is given as (Rockafellar 1970, p. 214)

T n1k T TÌ f (B) Å conv{X X ÉX √ R , X X Å I , B • XX Å f (B)}(4.33) k k

nÅ {U √ S ÉI º U º 0, I • U Å k , B • U Å f (B)}(4.34) k

( the convex hull operation is not needed in (4.34) as the set of optimal solutions of (3.16)
is convex). It can be shown that X √ R n1k with X TX Å I satisfies B • XX T Å fk(B) if and
only if its columns are eigenvectors of B corresponding to its k largest eigenvalues. The
‘‘if ’’ part is obvious; the ‘‘only if ’’ part can be proved by using the result of Overton
and Womersley (1993) and Hiriart-Urruty and Ye (1995) characterizing the set in (4.34).
Hence fk is not differentiable at B if and only if lk(B) Å lk/1(B) . If this condition is
satisfied, then dim Ì fk(B) Å t(mult(lk(B))) holds (see the above references) .

Hence Theorem 4.3 proves that the function fk is nonsmooth at A(x*), moreover, it
gives a lower bound on the dimension of Ì fk(A(x*)) .

The subdifferential of the composite function fk + A at x* can be computed as (see the
above references)

TÌ( f + A)(x*) Å {(A • U , . . . , A • U) ÉU √ Ìf (A(x*))}.k 1 m k

Therefore fk + A will generally be nonsmooth at x* when fk is nonsmooth at A(x*). This
is not always true; a trivial counterexample is when A(x) å I .

REMARK 4.4. For a matrix B √ S n we can define the interior and exterior multiplic-
ities of the eigenvalue lk(B) as (see Cullum, Donath, and Wolfe 1995)

mult (l (B)) Å max{ jÉl ( B) Å l (B)}int k k0 j k

mult (l (B)) Å max{ jÉl ( B) Å l (B)}.ext k k/ j k

Note that Theorem 4.3 proves multext (lk(A(x*)) ¢ 1, and gives a lower bound on the
sum of the interior and exterior multiplicities, but not on either of them. The reason is that
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in the proof we can guarantee an upper bound on the sum of the ranks of the slack matrices,
but not on any of them. (Of course, if k ° n /2 and m is large enough to guarantee
mult(lk(A(x*))) ¢ k / l for some l ¢ 1, then the exterior multiplicity of lk(A(x*))
will have to be at least l .)

For the same reason, to prove lk(A(x*)) Å lk/1(A(x*)) we must consider an extreme
point optimal solution in the x-space; the proof does not work by looking at an extreme
point optimal solution of the SDP-formulation (4.26). If (x*, z , V, W ) is such a solution,
then we must have (z , V, W ) √ Vk(A(x*)) with z being equal to either lk(A(x*)) or
lk/1(A(x*)) . Then the upper bound on rank V / rank W translates into a lower bound
on multint (lk(A(x*))) / multext (lk/1(A(x*))) , but does not prove lk(A(x*))
Å lk/1(A(x*)) , which is necessary to show the nonsmoothness of fk at A (x*).

REMARK 4.5. Unfortunately, the bound on mult(lk(A(x*))) in (4.30) is not a simple
function of n , m , and k . We can calculate an explicit expression as follows. For a positive
integer q and a real number l define

p ph ( l) Å max{ Ép integer, t( ) ° l}q q q

________√
p pÅ max{ Ép integer, ° 2l / 0.25 0 0.5} .q q

First notice that if i / j is fixed, then t( i) / t( j) is minimal, when Éi 0 jÉ° 1. Therefore

t( l) :Å t( l , /` , /`) Å max{ i / j : t( i) / t( j) ° l }(4.35)

pÅ max{p integer : 2t( ) ° l }
(4.36)

2

Å 2h ( l /2)2

where the equality of (4.35) and (4.36) follows, since l is integer, and /p pt( ) t( )2 2

and differ by at most 1/4. Also, if r ° s , t( l) ° r / s then the maximum of i / jp2t( )2

in the definition of t( l , r , s) is attained if the difference of i and j is minimal. Therefore

r / h ( l 0 t(r)) , if r õ h ( l /2)1 2

t( l , r , s) Å(4.37) H
2h ( l /2) , otherwise.2

Since the bound on mult(lk(A(x*))) is the same if we replace k by n0 k we may assume
k ° n /2. Also, m ú k(n 0 k) implies lk(A(x*)) Å lk/1(A(x*)) , hence we may assume
that m is large enough, so that

t( t(n) 0 m 0 1) ° n 0 2.

Therefore we can substitute l Å t(n) 0 m 0 1, r Å k 0 1, s Å n 0 k 0 1 into (4.37) to
compute the bound in (4.30) explicitly. For n Å 100, the graph of Figure 1 plots the
bound on the multiplicity of mult(lk(A(x*))) as a function of m for k Å 1 and k Å 50.

REMARK 4.6. mult(lk(A(x*))) can be large, even if m is small, as the following
example shows. Let m Å 1, A0 Å I , and A1 an arbitrary n by n symmetric matrix that has
a k by k principal minor equal to a 0 matrix. Since A(x) has Ik as a principal minor
regardless of the choice of x , fk(A (x)) ¢ k for arbitrary x (e.g., by Ky Fan’s theorem).
x* Å 0 is optimal, and the multiplicity of lk(A(x*)) is n .



352 G. PATAKI

/ 3905 0008 Mp 352 Wednesday May 06 02:23 PM INF–MOR 0008

FIGURE 1. Multiplicity-bounds for n Å 100

REMARK 4.7. It is interesting to note that for k Å 1 there are very few classes of
problems where Theorem 4.3 does not ensure a multiple first eigenvalue. Consider

Min l (A / D)1 0

s.t. D diagonal,(4.38)

I • D Å 0.

Problem (4.38) arises in combinatorial optimization: when A0 is chosen as the La-
placian matrix of a graph, it yields a relaxation of the maximum cut problem ; see, e.g.,
Delorme and Poljak (1993) . In this paper the authors show that the solution of (4.38)
is always unique. An equivalent problem can be obtained by writing D as a linear
combination of m Å n 0 1 matrices, hence (4.30) does not imply a multiple first
eigenvalue. Indeed, there are instances of (4.38) , where the first eigenvalue of the
optimal matrix is simple. On the other hand, most other eigenvalue-optimization prob-
lems with k Å 1 appearing in the literature have m ¢ n , therefore the existence of a
multiple first eigenvalue is guaranteed. For another example where m õ n ( in fact m
Å 1) see Rendl and Wolkowicz (1997) .

REMARK 4.8. Upper bounds on mult(lk(A(x*))) are established in Shapiro and Fan
(1995). These bounds hold generically , that is, the subset of matrices {A0 , A1 , . . . , Am}
for which mult(lk(A(x*))) exceeds the upper bound forms a subset of (S n)m/1 , with
Lebesgue measure zero. Results of similar flavor were obtained in Alizadeh, Haeberly,
and Overton (1997). They show a generic lower bound on the rank of extreme matrices
in semidefinite programs.

5. Multiplicity of optimal eigenvalues: The general case. Consider the problem

mmin{ f (A(x)) : x √ R }(5.39) k

where A : Rm r S n is a smooth function.
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LEMMA 5.1. Let x* be an optimal solution to (5.39) with optimal value Define*f .k

A Å A(x*),0

A Å ÌA(x*)/Ìx ( i Å 1, . . . , m) .i i

Then A0 minimizes fk on the affine subspace

m
mA / y A Éy √ R .∑0 i iH J

iÅ1

PROOF. The problem (5.39) can be rewritten as

min f (X )k

(5.40)
s.t. X √ C ,

where C Å {A(x)Éx √ R m}. As A0 is an optimal solution of (5.40) and fk is locally
Lipschitz at A0 , a necessary condition of nonsmooth optimization (see Clarke 1990, p.
52) implies

0 √ Ì f (A ) / N (A ) .(5.41) k 0 C 0

Here Ì fk(A0) denotes the generalized gradient of fk at A0 , which by the convexity of fk

reduces to its subdifferential. The set NC(A0) is the normal cone of the (not necessarily
convex) set C at A0 defined as (see Clarke 1990, p. 11).

N (A ) Å {YÉY • V ° 0 for all V √ T (A )}(5.42) C 0 C 0

with TC(A0) being the tangent cone of C at A0 in the Clarke sense (see the same reference) .
However, as C is a smooth manifold, TC(A0) reduces to the usual tangent space of C at
A0 translated to the origin (see, e.g., Aubin and Frankowska 1990, p. 151), that is

m
mT (A ) Å y A Éy √ R .∑C 0 i iH J

iÅ1

But now condition (5.41) is sufficient to guarantee that A0 minimizes fk on A0 /
TC(A0) . h

As a corollary we obtain

THEOREM 5.2. Assume k õ n . Let x* be an optimal solution to (5.39) and define A0 ,
Ai ( i Å 1, . . . , m) as in Lemma 5.1. Suppose that fk is strictly convex at A0 on the affine
subspace

m
mA / y A Éy √ R .(5.43) ∑0 i iH J

iÅ1

Then

l (A ) Å l (A ) , and(5.44) k 0 k/1 0
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mult(l (A )) ¢ n 0 t( t(n) 0 m 0 1, k 0 1, n 0 k 0 1).(5.45) k 0

PROOF. Define the function Ax * as

m
mA (y) Å A / y A (y √ R ) .∑x * 0 i i

iÅ1

Let O denote the set of optimal solutions of the linearized problem

mO Å {y √ R Éf (A (y)) Å f (A )}.(5.46) k x * k 0

By Lemma 5.1, 0 √ O. But the strict convexity of fk on the affine subspace (5.43) at A0

Å Ax *(0) is equivalent to the strict convexity of fk + Ax * at 0. Therefore 0 is an extreme
point of O, and Theorem 4.3 implies the clustering of eigenvalues at A0 Å Ax *(0) . h

Theorem 5.2 clarifies that the reason that causes multiple eigenvalues to occur is not A
being affine; rather it is the strict convexity assumption being satisfied. On the other hand,
the existence of an optimal solution x* that would satisfy this assumption cannot be
guaranteed in general, when A is not affine.

6. Minimizing the sum of eigenvalues in absolute value. Let B √ S n , k ° n . Let B
have eigenvalues m1(B) , . . . , mn(B) arranged in such a way that Ém1(B)É ¢ ···

¢ Émn(B)É. Define

k

g (B) Å Ém (B)É.(6.47) ∑k i

iÅ1

Let A : Rm r S n be a smooth function. In this section we study the problem

mmin{g (A(x)) : x √ R }.(6.48) k

For duality theory, algorithms, and applications we refer to Overton (1992) and Overton
and Womersley (1993).

The clustering phenomenon also occurs in optimal solutions of (6.48). Specifically, if
x* is an optimal solution, then frequently Émk(A(x*))É Å Émk/1(A(x*))É, and the eigen-
values attaining Émk(A(x*))É can appear more than twice in the spectrum of A(x*) (on
either side, or both sides) .

In this section we outline how the ideas presented in the previous sections can be used
to explain the clustering of eigenvalues in (6.48).

First, we consider two simple SDP’s to determine gk(B) for a fixed B √ S n

Min kz / I • (V / W )

s.t. V, W , S , T º 0,
(6.49)

zI / V 0 W Å B ,

zI / S 0 T Å 0B ,

and
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Max B • (X 0 Y )

s.t. I º X , Y º 0,(6.50)

I • (X / Y ) Å k .

As shown in Alizadeh (1995) (6.49) and (6.50) are dual SDPs with equal optimal value.
In Overton and Womersley (1993) the optimal solutions of (6.50) are determined. Here
we give the analogous result for (6.49). The proof of the following theorem is similar to
the proof of Theorem 3.3, hence omitted.

THEOREM 6.1. Consider the SDP (6.49). Write B Å QLQT with Q an n by n ortho-
normal matrix , L Å Diag l. Let {m1 , . . . , mn} be a permutation of {l1 , . . . , ln} s .t .
Ém1É ¢ ··· ¢ ÉmnÉ, and assume

j k1 , k2 ¢ 0, k1 / k2 Å k .
j l1 ¢ ··· ¢ ¢ ÉmkÉ and 0ln ¢ ··· ¢ ¢ ÉmkÉ.l 0lk n0k /11 2

Then the optimal value of (6.49) is ÉmiÉ and (z*, V *, W *, S*, T*) is optimal if andk( iÅ1

only if

Ém É ° z* ° Ém É,(6.51) k/1 k

T TV * Å Q(Diag £*)Q , W * Å Q(Diag w*)Q ,(6.52)

T TS* Å Q(Diag s*)Q , T* Å Q(Diag t*)Q ,(6.53)

where

T
£*Å (l 0 z*, . . . , l 0 z*, 0, . . . , 0 )1 k1

Tw*Å (0, . . . , 0, z*0 l , . . . , z*0 l )k /1 n1

(6.54)
Ts*Å (0l 0 z*, . . . ,0l 0 z*, 0, . . . , 0 )n n0k /12

Tt*Å (0, . . . , 0, z*0 (0l ) , . . . , z*0 (0l )) . hn0k 12

Analogously to the remark following Theorem 3.3, it can be shown that the set of
optimal solutions of (6.49) is uniquely (up to the choice of z) determined by B ; we shall
denote this set by Qk(B) .

Consider the case when the function A is affine. Assume m ¢ 1 and for x √ R m define

m

A(x) Å A / x A∑0 i i

iÅ1

where A0 , A1 , . . . , Am √ S n and we assume w.l.o.g. that A1 , . . . , Am are linearly inde-
pendent. Substituting B Å A(x) in (6.49) yields the SDP-formulation for the affine prob-
lem
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Min kz / I • (V / W )
x,z,V ,W ,S,T

s.t. V, W , S , T º 0,
(6.55)

zI / V 0 W Å A(x) ,

zI / S 0 T Å 0A(x)

(derived in Alizadeh 1995).
The set of optimal solutions of (6.48) is closed and convex. Moreover, it is also bounded

(since gk has bounded level sets) hence it has at least one extreme point. Let us introduce
the notation

k k
Uk Å   , k Å   .2 2

The analogue of Theorem 4.3 is

THEOREM 6.2. Let x* be an extreme point of the set of optimal solutions of (6.48),
and assume

U U Um ú k(n 0 k) / k(n 0 k) .

Then

Ém (A(x*))É Å Ém (A(x*))É.(6.56) k k/1

PROOF OUTLINE. Let

F* Å {x*} 1 Q (A(x*)) .k

Similarly to the proof of 4.2 one can show that F* is a face of the feasible set of (6.55)
of dimension 1, when Émk(A(x*))É ú Émk/1(A(x*))É and 0 otherwise.

To obtain a contradiction, suppose Émk(A(x*))É ú Émk/1(A (x*))É. Let (x*, z , V, W ,
S , T ) √ F* with z Å (Émk(A(x*))É / Émk/1(A(x*))É) . Define k1 and k2 as in Lemma1

2

6.1. Then we must have

rank V Å k , rank W Å n 0 k , rank S Å k , rank T Å n 0 k .(6.57) 1 1 2 2

On the other hand, in the feasible set of (6.55) the number of unconstrained variables
is m / 1, and the number of equality constraints is 2t(n) . Therefore, Theorem 2.2 implies

t(k ) / t(n 0 k ) / t(k ) / t(n 0 k ) ° 2t(n) 0 (m / 1) / 1 B1 1 2 2

m ° k (n 0 k ) / k (n 0 k ) .(6.58) 1 1 2 2

The right-hand side of inequality (6.58) is maximized when k1 Å k, k2 Å Hence if mUk .
is greater than k(n 0 k) / (n 0 then (6.57) is impossible; thus Émk(A(x*))ÉU Uk k)
Å Émk/1(A (x*))É follows, as needed. h

It is shown in Overton and Womersley (1993) that the function gk is nondifferentiable
at the matrix B , if and only if Émk(B)É ú Émk/1(B)É. Hence Theorem 6.2 implies that gk

is nonsmooth at A(x*).
The subdifferential of the composite function gk + A at x* can be computed as (see the

above references)
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TÌ(g + A)(x*) Å {(A • U , . . . , A • U) ÉU √ Ìg (A(x*))}.k 1 m k

Therefore gk + A will generally be nonsmooth at x* when gk is nonsmooth at A(x*). An
example showing that this is not always the case is when A(x) å I .

It is interesting to note that the threshold value of m in Theorem 6.2 that is needed to
ensure nondifferentiability of gk at A(x*) is roughly the half of the threshold value re-
quired for fk (cf. Theorem 4.3). Also, it is possible to derive a lower bound on the
‘‘multiplicity’’ of Émk(A(x*))É; precisely, on the number of appearances of the eigen-
values attaining Émk(A(x*))É in the spectrum of A(x*). The lower bound is an increasing
function of m .

Furthermore, when A is a not necessarily affine, smooth function, Lemma 5.1 is true
when fk is replaced by gk ; hence a result analogous to Theorem 5.2 can be proven for the
function gk .
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