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ON THE RANK OF EXTREME MATRICES IN SEMIDEFINITE
PROGRAMS AND THE MULTIPLICITY OF
OPTIMAL EIGENVALUES

GABOR PATAKI

We derive some basic results on the geometry of semidefinite programming (SDP) and eigen-
value-optimization, i.e., the minimization of the sum of the k largest eigenvalues of a smooth
matrix-valued function.

We provide upper bounds on the rank of extreme matrices in SDPs, and the first theoretically
solid explanation of a phenomenon of intrinsic interest in eigenval ue-optimization. In the spectrum
of an optimal matrix, the kth and (k + 1)st largest eigenvalues tend to be equal and frequently
have multiplicity greater than two. This clustering is intuitively plausible and has been observed
as early as 1975.

When the matrix-valued function is affine, we prove that clustering must occur at extreme points
of the set of optimal solutions, if the number of variables is sufficiently large. We also give a
lower bound on the multiplicity of the critical eigenvalue. These results generalize to the case of
a general matrix-valued function under appropriate conditions.

1. Introduction. A semidefinite programming problem (SDP) can be formulated in
the form

MinC+« X
(1.1) st. Xx>0,
AX=b (i=1...,m)),
where A (i =1, ..., m), Caresymmetric matrices, b, (i = 1,..., m) rea numbers, the
inner product of symmetric matricesis A+ B = =;_; a;b;, and X > 0 means that the
matrix X is symmetric and positive semidefinite. The dual of (1.1) is
Max y'b

(1.2) st. Z»0,

yiA +Z=C.

M 3

The origins of semidefinite programming can be traced back to the seventies; however it
has gained tremendous popularity only in the past few years. The importance of SDP is
due to several facts. It is an elegant generalization of linear programming, and to a large
extent inherits its duality theory. Also, it has a wealth of applications ranging from en-
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gineering to combinatorial optimization. For an extensive historic account, we refer to

Alizadeh (1995). A more recent survey is the paper of Vandenberghe and Boyd (1996).
A related problem can be described as follows. For an n by n symmetric matrix B

denote by \; (B) the ith largest eigenvalue of B. Let k € {1, ..., n}, and define

(1.3) f(B) = z i (B).

Let A be a smooth function mapping from ®™ to the space of symmetric n by n matrices.
The eigenvalue-optimization problemis

(EVY) Min{ f,(A(X)) : x € 2™}.

When A is affine we call (EV) an affine; and a general problem otherwise. As it was
shown by Nesterov and Nemirovskii (1994) and Alizadeh (1995), the affine problem can
be formulated as an SDP; Alizadeh’s paper is aso an excellent chronicle on this special
case. A recent, comprehensive survey on optimizing functions of eigenvalues was written
by Lewis and Overton (1996).

The purpose of this paper is to describe several basic results on the geometry of sem-
idefinite programs and eigenval ue-optimization. First we derive upper bounds on the rank
of extreme matrices in SDPs. These bounds are similar to the well-known bounds on the
number of nonzeros in extreme solutions of linear programs.

Next, we study a phenomenon of intrinsic interest in eigenvalue-optimization. At op-
timal solutions of (EV,) the eigenvalues of the optima matrix tend to coaesce; if the
minimum is achieved at x*, then frequently A (A(X*)) = M1 (A(X*)), and N(A(X*))
can have multiplicity larger than two.

The clustering phenomenon plays a central role in eigenvalue-optimization. The func-
tion f.is differentiable at B if and only if A (B) > A\.1(B). If this condition failsto hold,
then the dimension of the subdifferential of f, at B grows quadratically with the multiplicity
of \(B). Furthermore, if f, is nonsmooth at A(x*) then generally the composite function
fc o A is aso nonsmooth at x*. For the characterization of the subdifferential of f, and
fc o A we refer the reader to Overton and Womersley (1993) and Hiriart-Urruty and Ye
(1995). A more general treatment on computing subdifferentials of functions of eigen-
values can be found in Lewis (1996).

Therefore, clustering frequently causes the nondifferentiability of the objectivefunction
at a solution point, making (EV,) a ‘‘model problem’’ in nonsmooth optimization. The
reason for clustering isintuitively clear: the optimization objective (** pushing down’’ the
sum of the k largest eigenvalues) makes the eigenvalues coalesce around A\ (A(X*)).

We provide a theoretically sound explanation of the clustering phenomenon. For the
affine problem we prove that at a point x*, which is an extreme point of the set of optimal
solutions, if m> k(n — k) then \ (A(X*)) = M1 (A(X*)) must hold, and thereisalower
bound on the multiplicity of A((A(x*)); this bound is an increasing function of m. For
the general problem we show that if x* is an optimal solution of (EV,), then A(x*)
minimizes f, on the tangent space of the set { A(x)| x € ™} at A(x*). If the restriction
of f, to the tangent space is strictly convex at A(x*), then the same results hold asin the
affine case.

The rest of the paper is organized as follows. In the remainder of this section we
introduce the necessary notation and review preliminaries. In 82 we derive the bounds on
the rank of extreme matrices in SDPs. In 83 we study a simple semidefinite program
whose optimum is f(B) for a fixed symmetric matrix B. We derive a closed form ex-
pression for the optimal solution. Section 4 proves our main result, Theorem 4.3 on the
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multiplicity of optimal eigenvalues in the affine case. The proof utilizes the results of the
previous two sections. In particular, the upper bounds on the ranks of the slack matrices
in the corresponding SDP translate into alower bound on the multiplicity of the kth largest
eigenvalue. Section 5 treats the general case. In 86 we outline how similar arguments can
be applied to asimilar problem: minimizing the sum of the k eigenvalues which arelargest
in absolute value.

Notation and preliminaries.

Linear algebra. $" denotes the set of n by n symmetric matrices, $" the set of n by
n symmetric positive semidefinite matrices. For A, B € §", A > B[A > B] means that
A — B is positive semidefinite [ positive definite] . We denote by t(n) the nth triangular
number 3n(n + 1).

For B € §" the ith largest eigenvalue of B is denoted by \; (B). Also, mult (A; (B))
denotes the multiplicity of \; (B), that is the maximal p = 1 such that

N(B) = =N(B) =" = Nip1(B)

forsomejsuchthatj=i=j+p—1.

For amatrix A = (a;)!;-, we denote by diag A the vector (&, .. ., ayn)'. Forv e "
we denote by Diag v the diagonal matrix with diagona elementsv,, - - - , v,.

We denote by e the vector of all ones, by €' the i th unit vector.

Convex analysis. Let Sbe a closed convex set. A convex subset F of Sis called a
face of Sif x€ F,y,z€ S, x = 3(y + z) implies that y and z must both be in F. A
vertex or an extreme point of Sis aface consisting of a single element.

The vectorsv?, .. ., vP € ®R" are affinely independent, if
P _ p
> wv' =0, > ui=0
i=1 i=1
implies 4y = - -+ = p, = 0. We say that the matrices A, . . ., A, are linearly (affinely)
independent, if the vectors formed of A, ..., A, by stacking their columns are linearly

(affinely) independent.
The dimension of the convex set Sis

dim S= max{p|v?',...,v" € Sare affinely independent} — 1.
The standard reference for convex analysis is Rockafellar (1970).

Semidefinite programming. For the ease of reference we state the fundamental the-
orem of SDP-duality. It is a specia case of duality for linear programs with cone-con-
straints. For a proof see, e.g., Wolkowicz (1981). Also, a genera formulation of SDP
duality theory was given in Shapiro (1985).

THeorem 1.1. Assume that both (1.1) and (1.2) have feasible solutions. Then the
following results hold.
(1) If (1.1) hasafeasible X > 0, then the optimal values of (1.1) and (1.2) areequal ,
and (1.2) attainsits optimal value.
(2) If (1.2) has a feasible (y, Z) with Z > 0, then the optimal values of (1.1) and
(1.2) are equal, and (1.1) attains its optimal value.
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2. Bounding the rank of extreme matricesin semidefinite programs.

THeorem 2.1. The following results hold:
1. Supposethat X € F, where F is a face of the feasible set of (1.1). Letd = dim F,
r = rank X. Then
(2.1) t(r)=m+d.

2. SQuppose that (y, Z) € G, where G is a face of the feasible set of (1.2). Let d =
dim G, s=rank Z. Then

(2.2) t(s) = t(n) — m+ d.

ProorF oF 1. Sincerank X = r, we can write

X = QAQ"

whereQ € 2™, A € 8", A > 0. Since

(2.3) b =A*X=A*QAQ"=Q"AQ*A (i=1,...,m)
we have
(2.4) Q'AQ+*A=Db (i=1,...,m).

To obtain a contradiction, suppose that t(r) > m + d. The system (2.4) is determined
by m equations, and dim §" = t(r). Hence there exist A4, ..., Ag4y1 € S linearly inde-
pendent matrices satisfying

(2.5) Q'AQ-A; =0 (i=1,....,m;j=1,...,d+ 1).
Since A is positive definite, there exists e > 0 such that

AxeAj>0 (j=1,...,d+1).
Define

Aj’1=A+6Aj, AjyzzA_EAj,
(2.6)
Xj,l = QAj,lQTa Xj,z = QAj,zQT-

The matrices X;, and X, are feasible for (1.1), and X = 3(X;, + X;,). Since F isaface
of the feasible set, we conclude that X, and X, arein Fforj=1,...,d + L

Ontheother hand, as A4, . . ., Ay, 1 arelinearly independent, the matrices A, A4, . . .,
Agy11 and therefore dso X, Xy1, ..., Xq:11 are affinely independent. As the latter arein
F,weobtaindmF = d + 1, acontradiction.

Proor oF 2. Denote by & the projection of the feasible set of the problem (1.2) to
the space of the Z variables,

<I>={Z:O|Z=C— > ViA forsomey € %m}.

i=1
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For Z € & denote by y(Z) the vector in R™ satisfying Z = C — 22, y(Z); A. Since the
matrices A, are linearly independent, y(2) is well defined. Hence the feasible set of the
problem (1.2) can be written as

¥ ={(y(2),2)|Z< 2}.

The points in ® and ¥ are in one-to-one correspondence. Moreover, it is easy to see
that the mapping assigning y(Z) to Z is affine (that is, y(uZy + (1 — w)Z) = uy(Zy)
+ (1 — w)y(Z), for au rea number, when Z,, Z,, uZ, + (1 — u)Z, € ®).

Hence a so the faces of ® and ¥ are in one-to-one correspondence. Namely, F isaface
of @ if and only if G = {(y(Z), Z)|Z € F} is a face of ¥, and for these faces
dmF = dimG.

Therefore, it is enough to establish a bound on the rank of a matrix Z € F, where F is
aface of &, dim F = d. We can write ¢ as

®={Z>0|A/«Z=Db/(j=1,...,tn) — m)}

for symmetric matrices A/ and real scalarsb/ (j = 1, ..., t(n) — m). Hence the desired
result follows from the bound (2.1). O

In a semidefinite program, we may have several matrix variables constrained to be
positive semidefinite, as well as a vector of unconstrained real variables. We can prove
the following result.

THEOREM 2.2. Consider a semidefinite program with feasible set

X,>0,...,%>0, ye %9,

AeX=b (i=1...,m),

M=

J

LMo

q
X+ > yby=8B (i=1...,m),
i j=1

where A, D;; and B; are symmetric matrices, and a;, b are scalars. Denote the order of
Bibyn (i=1,...,m)andlet

m = ml+§ t(n)

that is, mis the total number of equality constraints, if a constraint with a symmetric
matrix right-hand side in §" is counted as t(n) constraints. Suppose that (X, ..., X,
y) € G, where G is a face of the feasible set. Letd = dm G, r; =rank X (j =1, ...,
p). Then

(2.7) t(r;) =m-q+ d.

J

LMo

OUTLINE OF PROOF. Letm’ = m — . Asin the proof of the second part of Theorem
2.1, we can show that the projection of the feasible set onto the space of the X; variables
is of the form
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(2.8) <I>={X1ZO,...,XpZO,ZAi’j-)(,-zbi’ (i=1,...,m’)}
j=1

for symmetric matrices Aj; and realsb{ (i=1,...,m’;j=1,...,p), and (X, ...,
X,) isin F, where F isaface of ¢ of dimension d. Since rank X; = r;, we can write

(2.9) X = QAQf

whereQ € ™", A; €81, A >0(j =1,...,p). Smilarly asin the proof of Theorem
2.1 we obtain

(2.10) QAQ-A=b (i=1...,p).

M=

J

The system (2.10) has m’ constraints and dim($™ X - - - §) = =/, t(r;). The proof can
be completed analogously to the proof of the first part of Theorem 2.1. O

Remark 2.3. Itisworth noting, how the bound on the number of honzerosin extreme
solutions of linear programs can be recovered from the above results. Consider an LP
with feasible set

(2.11) ®={xe€ 2"|x =0, A = b}

where A has m linearly independent rows. This set can be written as the feasible set of an
SDP in two different ways. We can treat the variable x € 2" as the direct product of n
positive semidefinite matrices of order 1. Then if the point x is in a face of dimension d
of ®, and x has r nonzero components, the well-known inequality r = m + d follows
from the bound (2.7).

Alternatively, ® isthe set of diagonals of matricesin

d' ={Xes|(Diaga)X=b (i=1...,m), X% =0(#])}

wherea?, ..., a" aretherowsof A. Thereisatrivia correspondence between the faces
of & and ®’. Hence, if X is contained in a face of dimension d of ®’, and r = rank X,
then (2.1) yields

t(r)=(m+t(n—-1)) +d

which does not imply r = m + d.

Remark 2.4. Thefirst proof of Theorem 2.1 was given in Pataki (1994) by using a
more general argument. The faces of §7 are in one-to-one correspondence with the sub-
gpaces of R". It was shown by Barker and Carlson (1975) that a convex subset of S is
aface, if and only if it is of the form

F(L) = { X € §" |the rangespace of X is contained in L}

where L isasubspace of ®". Let r = dim L. Then the dimension of F(L) ist(r), and the
rank of matricesin F(L) isat most r.
Now, consider a different proof of Theorem 2.1. Let us denote by
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H={X:A*X=bfori=1,...,m}.
Then the feasible set of program (1.1) isgiven by §7 N H. By atheorem of Dubins (see,
e.g., Stoer and Witzgall 1970, p. 116) a subset of the intersection of two convex setsisa
face iff it isthe the intersection of two faces. Therefore F isaface of §T N H, if and only
if
(2.12) F=F(L)NH

for an L subspace of R". Asshown in Pataki (1994) if F(L) isthe minimal face satisfying
(2.12), then

(2.13) dmF=dmF(L) —me& dmF(L) =dmF + m.
Then (2.13) is equivalent to (2.1). The technique used in the current proof of Theorem

2.1 are similar to the techniques used in the proof of Theorem 5 in Alizadeh, Haeberly,
and Overton (1997).

Remark 2.5. Independently, Ramana and Goldman (1995) derived several results
on the geometry of the feasible sets of SDPs (such as a characterization of faces).

3. A simple semidefinite characterization of f,(B). In thissection we shall develop
the second part of the theory necessary to prove eigenvaue-clustering in the optimal
solutions of (EV,). Let B be a symmetric matrix of order n, and consider the SDP

Minkz + | «V
(3.14) st. V,W>0,
2 +V-W=B.
We shall give an explicit expression for the optimal solutions of (3.14) and prove that its
optimal valueisf (B) = \i(B) + - -+ + \(B).

We begin with a brief survey of previous results related to ours. The classical charac-

terization
f(B) = Max B+ XX T
(3.15) st. Xe @™k
XX =1,
is due to Ky Fan (1949). Showing the inequality = is easy, by choosing the columns of
X as a set of eigenvectors corresponding to the k largest eigenvalues of B.

A more recent characterization that was obtained independently by Overton and Wom-

erdey (1992, 1993) and Hiriart-Urruty and Ye (1995) states
f(B) =Max B-U

(3.16) st. 1>U>0,
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This result can be regarded as a *‘ continuous Ky Fan-theorem,”” since these references
show

(317) {Ues|1=Ux0,1+U=k} = conv{XXT| X € 2™ XX = I}

and (3.17) can be used to give a simple and elegant proof of Ky Fan’s original charac-
terization (see, e.g., Overton and Womersley 1992). Furthermore, in Overton and Wom-
erdey (1993) and Hiriart-Urruty and Ye (1995) an explicit expression for the set of
optimal solutions of (3.16) is given.

Problem (3.14) was studied independently by Nesterov and Nemirovskii (1994, p. 238)
and Alizadeh (1995). They showed that its optimal valueisf,(B). The proof of Nesterov
and Nemirovskii is direct. Alizadeh proved his result by showing that (3.16) and (3.14)
are dual semidefinite programs with equal optimal value (the latter has a strictly interior
feasible solution).

For our purposes, we need not only the optimal value of (3.14), but also an explicit
expression for the optimal z, V and W. We proceed as follows: first we determine the
optimal solutions for a diagonal B, with the restriction that V and W be also diagonal.
Next we drop the diagonality restriction on V and W, while keeping it on B. Finally, we
determine the optimal solutions of (3.14).

LeEmmA 3.1. LetA € ", Ny = --+ = \,. Consider the LP
Minkz + ev
(3.18) st. v, w=0,
Ze+v—W=NA\.

The optimal value of (3.18) isX; \; and (z*, v*, w*) isan optimal solution if and only
if

(319) )\k+l =7 = )\ka
v¥ =0\ — Z%, ..., N — Z¥, o} oo, 00T,

(3.20)
w* = (0, ..., 0O 75— Negns - - 285 = N

Proor. Let (z, v, w) befeasible for (3.18). Then
kz+ew= (ze+v)"(er+ - + €
=(N+w)T(e'+ - + €)

=N+ N

The first inequality is tight if and only if v, = - -+ = v, = 0. The second inequality is
tight if and only if w, = --- = w, = 0, thus the choice of the optimal (z*, v*, w*)
follows. O

LeEmmA 3.2. Let N\ beasinLemma 3.1 and A = Diag . Consider the SDP
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Minkz + | «V
(3.21) st. V,Wx>0,
2 +V—-W=A.

The optimal value of (3.21) is=k, N, and (z*, V*, W*) are optimal if and only if V*
= Diagv*, W* = Diag w*, and (z*, v*, w*) are chosen asin (3.19) and (3.20).

ProoF. Replacing the constraints V > 0, W > 0 with diag V = 0, diag W = 0 yields
(3.18), arelaxation of (3.21). Thus (3.21) has optimal value at least =¥, \; . Thisvalue
is attained if both V* and W* are diagonal.

We must also show that arbitrary optimal V* and W* matrices are diagonal. Let (z*,
V*, W*) be an optimal solution of (3.21). Therefore (z*, diag V*, diag W*) must be
an optimal solution of (3.18), hence by Lemma 3.1 they are chosen according to (3.19)
and (3.20). Partition the matrices V* and W* as

Vi VL} [Wﬁ L}
3.22 V* = , W* = ,
(322) [VZ V% W3 W3

where the diagonal blocks are k by k and n — k by n — k, respectively. Since the diagonal
elementsof V 3, are0, and V* > 0, wemust haveV 3, = 0and V 1, = 0. Sincethe diagonal
elementsof W3, are 0, and W* > O, WT, = Oand W3, = 0. Sincealso z* | + V* — W*
= A holds, V* and W* must be diagonal. O

THEOREM 3.3. Consider the SDP (3.14). Write B = QAQT with Q being an n by n
orthonormal matrix, A = diag\, \; = - - - = \,. The optimal value of (3.14) is=}; \;,
and (z*, V*, W*) are optimal if and only if

(3.23) N1 = 2% = Ny,

V* = Q(Diagv*)Q",

(3.24)
W* = Q(Diag w*)QT,
where
vy =\, — Z%, ..., N — Z¥, o} ..., 0 T,
(3.25)
w* = (0, ey 0, = Ny e 2 =N

Proor. Given the above decomposition of B we can rescale (3.14) to get (3.21)
without changing its objective value. The correspondence between the solutions of the
rescaled and the original problemis: (z*, V*, W*) isan optimal solution to the rescaled
problem if and only if (z*, QV*QT, QW*QT") is an optimal solution to (3.14). Our
theorem then follows from Lemma 3.2. O

Finally we remark that the optimal solutions of (3.14) do not depend on the choice of
B’s eigenvectors. Suppose that the distinct eigenvalues of B are

Ny(B), ... N (B)
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in descending order and \«(B) = \;(B). Then the distinct eigenvalues of V* and W* in
Theorem 3.3 are

N,(B) —z%, ... N (B —2F and Z* — N, (B),...,Z* — N_,(B),

respectively. Therefore, choosing different eigenvectors of B to represent the eigenspace
corresponding to A (B) (j = 1, ..., r) does not change V* and W*.
In the following we shall denote

Q(B) ={(z,V,W)|(z,V, W) isan optimal solution of (3.14)} .

This set is aline segment if \(B) > N\ 1(B) and a singleton otherwise. Let (z, V, W)
€ 0 (B) with z = 3(\(B) + \,1(B)). Then from Theorem 3.3 we obtain

rank V + rank W + mult(\(B)) = n.

4. Multiplicity of optimal eigenvalues: The affine case. In this section we present
our main results about the multiplicity of optimal eigenvaluesin the affine case.

Let Ay, Ay, ..., A, be symmetric matrices, that we assume to be linearly independent.
Let A(X) = Ao + 20y X% A . Substituting A(x) for B in (3.14) yields the SDP-formulation
for the affine problem

Min kz + 1V

x,zV W
(4.26) st. V,W>0,
2 +V-—-W=A(X).

This formulation was discovered independently by Nesterov and Nemirovskii (1994) and
Alizadeh (1995). The results of the previous section show that the optimal solutions of
program (4.26) are determined by the optimal solutionsof (EV,): the only possibledegree
of freedom we have is choosing z*.

Denote the optimal value of (EV,) by f§ and the set of optimal solutions by 6, i.e.

(4.27) 0={xe 2" |f(A(X)) = I}

The set 0 is a level set of the function f, < A (in its definition we can write f,(A(X))
= f¥) henceit is convex and closed.

To exclude trivial cases, from now on we assume m = 1 and k < n (when k = n,
(EV,) isalinear program).

LEmmA 4.1. The set @ does not contain aline, i.e.,ify € 2™, x + Ay € @for all \
€ #theny = 0 must hold.

Proor. Sincem = 1, and the A; matrices are linearly independent, it sufficesto show
that the level set
e={zes"|f(Z2) =Tk}

does not contain a line. Suppose that Y is a symmetric matrix such that Z + \Y € ¢ for
al A € R Since f,(Z + \Y) can be determined from Ky Fan’s formulation (3.15) it
follows that Y« XXT = (=Y) « XXT = 0 must hold for al X n by k matrices satisfying
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XTX = 1. Thisin turn implies f (Y) = f(—=Y) = 0. Sincek < n, we conclude Y = 0 as
needed. O

Since @ does not contain a ling, it has at least one extreme point (Rockafellar 1970,
Corollary 18.5.3).

LEMMA 4.2. Let x* be an extreme point of 4. Then the set
Fr={x*} X Q(A(x*))

is a face of the feasible set of (4.26).

Proor. Denote the feasible set of (4.26) by ®, and the set of its optimal solutions by
F. We have

F={(x,2,V,W) € ®lkz+ |+V =1}
= {{x} X Q(A(X))Ix € 6}.
Since x* is an extreme point of 0, F* must be aface of F. AsF isaface of ®, our claim
follows. O
We recall the definition of the function t, and introduce the function
t(i) =i(i +1)/2,

(4.28)
r(l,r,s)=max{i+j:t(i)+t(j)=1i=r,j=s}.

THEOREM 4.3. Let x* be an extreme point of 0, and assume m > k(n — k). Then
(4.29) M(A(X*)) = Mer(A(X*)), and

(4.30) mult(An(A(X*)) =n—7(t(n) —m—-1, k-1, n—-k—1).

Proor. Define F* asin Lemma 4.2, let d = dim F*, and denote \; = \; (A(x*))
(i=1,...,n). Clearly,

1 if N> Mars
(4.31) d=
0 |f )\k = )\|(+1.

Let (x*, z,V, W) € F*, withz= 3(A\ + \,1), and leti = rank V, j = rank W. Then
clearly

i=k and j=n-Kk

Moreover, in program (4.26) the number of equality constraintsist(n), and the number
of unconstrained variablesis m + 1. Hence Theorem 2.2 implies

(4.32) t(i) + t(j) = (t(n) — m— 1) + d.

Sincem > k(n — k), we get t(k) + t(n — k) > (t(n) — m—1) + 1, hencei = k and
j = n — k cannot both hold. Therefore
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M(A(X*)) = M (A(X*))
follows. To prove (4.30) note that
i +J + mulit(\n(A(X*))) =n
and
d=0, i=k-1, j=n—-k-1.
By (4.32) we get
i+j=7t(n)-m-1L,k-1,n-k-1)=
mMuit(Av(A(X*)) =n—7(t(n) —m—-1L k-1, n—-k—-1)

asrequired. O

Next, we study the consequences of Theorem 4.3 on the nonsmoothness of the objective
function of (EV,) at an optimal solution. Ky Fan’s formula (3.15) and the SDP (3.16)
provide a characterization of f, as the pointwise maximum of (infinitely many) linear
functions. Hence the subdifferential of f, a B is given as (Rockafellar 1970, p. 214)

(4.33) 9 (B) = conv{ XXT| X € #™ XTX =1, B+ XXT = f(B)}
(4.34) ={Ues"I=Ux0l+U=Kk,B+U=f(B)}

(the convex hull operation isnot needed in (4.34) asthe set of optimal solutionsof (3.16)
is convex). It can be shown that X € #™* with XX = | satisfiesB « XX = f(B) if and
only if its columns are eigenvectors of B corresponding to its k largest eigenvalues. The
““if " part is obvious; the “‘only if ** part can be proved by using the result of Overton
and Womerdley (1993) and Hiriart-Urruty and Y e (1995) characterizing the setin (4.34).
Hence f, is not differentiable at B if and only if \(B) = A\1(B). If this condition is
satisfied, then dim 0 f(B) = t(mult(\(B))) holds (see the above references).

Hence Theorem 4.3 proves that the function f, is nonsmooth at A(x*), moreover, it
gives alower bound on the dimension of 9 f (A(x*)).

The subdifferential of the composite function f, o A a x* can be computed as (see the
above references)

I(fe A)(X*) ={(Ac*U, ..., AnsU)T|U € If(A(X*))} .

Therefore f, © A will generally be nonsmooth at x* when f, is nonsmooth at A(x*). This
is not always true; a trivial counterexample iswhen A(x) = 1.

ReMARK 4.4. For amatrix B € §" we can define the interior and exterior multiplic-
ities of the eigenvalue \(B) as (see Cullum, Donath, and Wolfe 1995)

Multine (M(B)) = max{ j[Ne-;(B) = M(B)}
Multe (A(B)) = max{ j| N\t j(B) = M(B)}.

Note that Theorem 4.3 proves multe (A (A(X*)) = 1, and gives a lower bound on the
sum of the interior and exterior multiplicities, but not on either of them. The reason isthat
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in the proof we can guarantee an upper bound on the sum of the ranks of the dack matrices,
but not on any of them. (Of course, if k = n/2 and m is large enough to guarantee
mult(A(A(Xx*))) = k + | for some | = 1, then the exterior multiplicity of N\ (A(x*))
will have to be at least | .)

For the same reason, to prove A (A(X*)) = N1 (A(X*)) we must consider an extreme
point optimal solution in the x-space; the proof does not work by looking at an extreme
point optimal solution of the SDP-formulation (4.26). If (x*, z, V, W) is such a solution,
then we must have (z, V, W) € Q. (A(x*)) with z being equal to either A\((A(X*)) or
M1 (A(Xx*)). Then the upper bound on rank V + rank W trandates into a lower bound
on multi (A(A(X*))) + multee(M:1(A(X*))), but does not prove N(A(X*))
= M1 (A(X*)), which is necessary to show the nonsmoothness of f, at A(x*).

RemARK 4.5.  Unfortunately, the bound on mult(A(A(x*))) in (4.30) isnot asimple
function of n, m, and k. We can calculate an explicit expression asfollows. For a positive
integer g and a real number | define

ha(1) = max{2| p integer, t(2) = I}

max{ 2| p integer, £ = v2I + 0.25 — 0.5} .
First noticethat if i + j isfixed, thent(i) + t(j) isminimal, when |i — j| = 1. Therefore
(4.35) 7(1) == 7(l, +o0, +0) = max{i +j:t(i) +t(j) =1}

= max{ p integer : 2t(5) = |}
(4.36)
= 2h,(1/2)

where the equality of (4.35) and (4.36) follows, since | is integer, and t(330) + t(30
and 2t(8) differ by at most 1/4. Also, if r = s, 7(1) = r + sthen the maximum of i + j
in the definition of (1, r, s) is attained if the difference of i and j is minimal. Therefore

r+h(l —t(r)), ifr<Chy(l/2)0
(4.37) 7(l,r,s) = {

2h,(1/2), otherwise.

Since the bound on mult(\.(A(Xx*))) isthe same if wereplace k by n — k we may assume
k = n/2. Also, m > k(n — k) implies A (A(X*)) = M1 (A(X*)), hence we may assume
that mis large enough, so that

T(t(n) —-m—-1)=n- 2.

Therefore we can subgtitutel =t(n) —m—- 1, r=k—-1,s=n—k — linto (4.37) to
compute the bound in (4.30) explicitly. For n = 100, the graph of Figure 1 plots the
bound on the multiplicity of mult(A(A(x*))) as afunction of mfor k = 1 and k = 50.

RemMARK 4.6. mult(A\(A(x*))) can be large, even if mis small, as the following
example shows. Let m = 1, A, = |, and A; an arbitrary n by n symmetric matrix that has
a k by k principal minor equal to a O matrix. Since A(x) has I, as a principal minor
regardless of the choice of x, f,(A(x)) = k for arbitrary x (e.g., by Ky Fan’'s theorem).
x* = 0isoptimal, and the multiplicity of N (A(X*)) isn.
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Ficure 1. Multiplicity-bounds for n = 100

RemARk 4.7. It is interesting to note that for k = 1 there are very few classes of
problems where Theorem 4.3 does not ensure a multiple first eigenvalue. Consider

Min A, (A, + D)
(4.38) st. D diagonal,
l«D=0.

Problem (4.38) arises in combinatorial optimization: when A, is chosen as the La-
placian matrix of agraph, it yields arelaxation of the maximum cut problem; see, e.g.,
Delorme and Poljak (1993). In this paper the authors show that the solution of (4.38)
is always unique. An equivalent problem can be obtained by writing D as a linear
combination of m = n — 1 matrices, hence (4.30) does not imply a multiple first
eigenvalue. Indeed, there are instances of (4.38), where the first eigenvalue of the
optimal matrix is simple. On the other hand, most other eigenval ue-optimization prob-
lems with k = 1 appearing in the literature have m = n, therefore the existence of a
multiple first eigenvalue is guaranteed. For another example where m < n (in fact m
= 1) see Rendl and Wolkowicz (1997).

RemMARK 4.8. Upper bounds on mult(\ (A(x*))) are established in Shapiro and Fan
(1995). These bounds hold generically, that is, the subset of matrices{ Ao, Aq, . . ., An}
for which mult(\(A(x*))) exceeds the upper bound forms a subset of (s")™*, with
L ebesgue measure zero. Results of similar flavor were obtained in Alizadeh, Haeberly,
and Overton (1997). They show a generic lower bound on the rank of extreme matrices
in semidefinite programs.

5. Multiplicity of optimal eigenvalues: The general case. Consider the problem
(5.39) min{ f,(A(x)) : x € 2™}

where A : R™ — §" is a smooth function.



RANK OF EXTREME MATRICES 353
LemMmA 5.1. Let x* be an optimal solution to (5.39) with optimal value f§ . Define
Ao = A(x*),
A =0A(x*)Iox (i=1,...,m).

Then A, minimizes f, on the affine subspace

{Ao+ Y ALY €E 7?”“}-
i=1
Proor. The problem (5.39) can be rewritten as

min f (X)
(5.40)
st. XeC,

where C = {A(x)|x € 2™}. As A, is an optimal solution of (5.40) and f, is locally
Lipschitz at Ay, a necessary condition of nonsmooth optimization (see Clarke 1990, p.
52) implies

(5.41) 0 € 0f(Ao) + Nc(Ao).

Here 0 f.(A;) denotes the generalized gradient of f, at Ay, which by the convexity of f,
reduces to its subdifferential. The set Nc(Ay) is the normal cone of the (not necessarily
convex) set C at A, defined as (see Clarke 1990, p. 11).

(5.42) Ne(A,) = {Y|Y+V = 0foral V € Te(A)}

with T (A) being the tangent cone of C at A, in the Clarke sense (seethe samereference).
However, as C is a smooth manifold, T¢(Ay) reduces to the usual tangent space of C at
A, tranglated to the origin (see, e.g., Aubin and Frankowska 1990, p. 151), that is

Te(a) = {5 yalye 7).

But now condition (5.41) is sufficient to guarantee that A, minimizes f, on Ay +

Tc(A). DO
As a corollary we obtain

THEOREM 5.2. Assumek < n. Let x* be an optimal solution to (5.39) and define A,

A (i=1,...,m)asin Lemma 5.1. Suppose that f, is strictly convex at A, on the affine
subspace
(5.43) {Ao+zyimye%m}.
i=1
Then

(544) )\k(AO) = )\k+1(A0)i and
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(5.45) mult(\e(Ag)) =n—7(t(h) —m—-1, k—1,n—-k—-1).

Proor. Define the function A« as
Ac(y) =R+ Y A (YE M.
i=1

Let 6 denote the set of optimal solutions of the linearized problem

(5.46) 0 ={ye 2" [f(Ax(y)) = f(Ao)} .

By Lemma 5.1, 0 € 6. But the strict convexity of f, on the affine subspace (5.43) at A,
= A (0) is equivalent to the strict convexity of f, o A~ a 0. Therefore 0 is an extreme
point of @, and Theorem 4.3 implies the clustering of eigenvaluesat A, = A, (0). O

Theorem 5.2 clarifies that the reason that causes multiple eigenvalues to occur is not A
being affine; rather it isthe strict convexity assumption being satisfied. On the other hand,
the existence of an optima solution x* that would satisfy this assumption cannot be
guaranteed in general, when A is not affine.

6. Minimizing the sum of eigenvaluesin absolutevalue. LetB e §", k=n.LetB
have eigenvalues u1(B), ..., u,(B) arranged in such a way that |u(B)| = ---
= |un(B)|. Define

k
(6.47) (B) = 3 |wm(B)I.

i=1
Let A: ®™— $" be a smooth function. In this section we study the problem
(6.48) min{ g(A(x)) : x e 2M}.

For duality theory, algorithms, and applications we refer to Overton (1992) and Overton
and Womersley (1993).

The clustering phenomenon also occurs in optimal solutions of (6.48). Specifically, if
x* isan optimal solution, then frequently | u(A(X*))| = | w1 (A(X*)) ], and the eigen-
values attaining | u(A(Xx*))| can appear more than twice in the spectrum of A(x*) (on
either side, or both sides).

In this section we outline how the ideas presented in the previous sections can be used
to explain the clustering of eigenvaluesin (6.48).

First, we consider two ssmple SDP's to determine g,(B) for afixed B € "

Minkz + 1« (V + W)
st. V,W,S Tx>0,
(6.49)
2+V-W=B,
4+S-T=-B,

and
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Max B« (X — Y)
(6.50) st. 1=X,Y=0,
le(X+Y) =k

As shown in Alizadeh (1995) (6.49) and (6.50) are dual SDPs with equal optimal value.
In Overton and Womersley (1993) the optimal solutions of (6.50) are determined. Here
we give the analogous result for (6.49). The proof of the following theorem is similar to
the proof of Theorem 3.3, hence omitted.

THEOREM 6.1. Consider the SDP (6.49). Write B = QAQT with Q an n by n ortho-
normal matrix, A = Diag \. Let { us1, ..., un} be a permutation of { Ay, ..., \n} S.t.
lpal = -+ = |pnl, and assume

d kl,kzzo,kl‘f‘kz:k.

Pz =N = lmdand Nz = N =
Then the optimal value of (6.49) is=K, |ui| and (z*, V*, W*, S*, T*) isoptimal if and
only if

(6.51) |pa] = 2% = |,
(6.52) V* = Q(Diagv*)QT,  W* = Q(Diagw*)Q",
(6.53) S* = Q(Diags*)Q", T* = Q(Diag t*)QT,
where
vi=(\M—2Z% .., Ng— ZF, o} 0 )T
w* = (0, o} rARE D VICT A D
(6.54)
S*=(—NM—2Z% ..., = Nokpr1 — Z%, o} 0 )T
t* = (0, o 0, Z* = (—Ni), - 2 — (=\)". O

Analogously to the remark following Theorem 3.3, it can be shown that the set of
optimal solutions of (6.49) is uniquely (up to the choice of z) determined by B; we shall
denote this set by 0,(B).

Consider the case when the function A is affine. Assumem = 1 and for x € 2™ define

AG) = Ao+ 3 XA

where Ag, A4, ..., Ay € 8" and we assume w.l.o.g. that A, ..., A, are linearly inde-
pendent. Substituting B = A(x) in (6.49) yields the SDP-formulation for the affine prob-
lem
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Min kz+1+(V+ W)

xzV ,W,ST

st. V,W,S Tx0,
(6.55)
4 +V-W=A(x),

4+S-T=-A)

(derived in Alizadeh 1995).

The set of optimal solutions of (6.48) isclosed and convex. Moreover, it isa so bounded
(since g has bounded level sets) hence it has at least one extreme point. Let usintroduce
the notation

k=00 k=030

The analogue of Theorem 4.3 is

THEOREM 6.2. Let x* be an extreme point of the set of optimal solutions of (6.48),
and assume

m > k(n — k) + k(n — k).
Then

(6.56) (A | = | peea (A(X*)) .
ProOF OUTLINE. Let

F* = {x*} X O (A(x*)).

Similarly to the proof of 4.2 one can show that F* is aface of the feasible set of (6.55)
of dimension 1, when | u (A(X*))| > |1 (A(X*))| and O otherwise.

To obtain a contradiction, suppose | u(A(X*))| > | (A(X*))]. Let (x*, z,V, W,
S, T) € F*with z= 3(| i (A(X*))| + |1 (A(x*))|). Define k, and k, as in Lemma
6.1. Then we must have

(6.57) rankV=1k;, rank W=n—k;, rank S=k,, rank T=n — k..

On the other hand, in the feasible set of (6.55) the number of unconstrained variables
ism+ 1, and the number of equality constraintsis 2t(n). Therefore, Theorem 2.2 implies

t(ke) + (N — k) + t(ko) + t(N— k) = 2((N) — (M+ 1) + 1 &
(6.58) M= ki(n— k) + k(N — k).

The right-hand side of inequality (6.58) is maximized when k; = k, k, = k. Hence if m
is greater than k(n — k) + k(n — k) then (6.57) is impossible; thus |u(A(X*))|
= | a1 (A(Xx*))| follows, as needed. O

It is shown in Overton and Womersley (1993) that the function g is nondifferentiable
at the matrix B, if and only if | w(B)| > | 1(B)|. Hence Theorem 6.2 implies that g,
is nonsmooth at A(x*).

The subdifferential of the composite function g, A at x* can be computed as (see the
above references)
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(o A)(x*) = {(Ar*U, ..., An*U)T|U € dgu(A(x*))}.

Therefore gy A will generally be nonsmooth at x* when g, is nonsmooth at A(x*). An
example showing that thisis not always the case iswhen A(x) = I.

It is interesting to note that the threshold value of min Theorem 6.2 that is needed to
ensure nondifferentiability of g, at A(x*) is roughly the half of the threshold value re-
quired for f, (cf. Theorem 4.3). Also, it is possible to derive a lower bound on the
“multiplicity’’ of |u(A(x*))|; precisely, on the number of appearances of the eigen-
values attaining | u(A(x*))| inthe spectrum of A(x*). The lower bound isanincreasing
function of m.

Furthermore, when A is a not necessarily affine, smooth function, Lemma 5.1 is true
when f, is replaced by g,; hence a result analogous to Theorem 5.2 can be proven for the
function g.
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