OCTANE: A NEW HEURISTIC FOR PURE 0-1 PROGRAMS

EGON BALAS

GSIA, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, ebl7@andrew.cmu.edu

SEBASTIAN CERIA

Graduate School of Business, Columbia University, New York 10027 and Axioma, New York, sceria@axiomainc.com

MILIND DAWANDE

University of Texas at Dallas, PO Box 830688, Richardson, Texas 78083, milind@utdallas.edu

FRANCOIS MARGOT

University of Kentucky, Lexington, Kentucky, finargot@ms.uky.edu

GABOR PATAKI

Department of Operations Research, University of North Carolina, Chapel Hill, North Carolina 27599, pataki@tucker.or.unc.edu

(Received December 1997; revisions received March 1998, June 1999; accepted October 1999)

We propose a new heuristic for pure 0—1 programs, which finds feasible integer points by enumerating extended facets of the octahedron,
the outer polar of the unit hypercube. We give efficient algorithms to carry out the enumeration, and we explain how our heuristic can be
embedded in a branch-and-cut framework. Finally, we present computational results on a set of pure O—1 programs taken from MIPLIB and

other sources.

1. INTRODUCTION

There is clearly a renewed interest in the research commu-
nity in computational integer programming. The recent suc-
cess of branch-and-cut as a solution framework for general
integer programs has revived an area that for a long time
had fallen out of favor. Most of this success, however, has
been obtained in the area of finding exact solutions for this
class of problems, while very little effort has focused on the
approximate solution of general 0—1 programs. In fact, the
literature on heuristics for general integer programs is quite
limited, with the main proposals to be found in no more
than half a dozen references over the last 30 years (Balas
and Martin 1980; Faaland and Hillier 1979; Glover 1968,
1977; Glover and Laguna 1997; Ibaraki et al. 1974). The
only heuristic that has been extensively tested with results
reported in the open literature is the pivot-and-complement
procedure (Balas and Martin 1980) developed two decades
ago. Most of the effort in finding approximate solutions
to hard 0-1 programs has focused on special classes of
problems.

This lack of results, however, does not mean that practi-
tioners and researchers are not interested in finding heuris-
tic solutions to general 0—1 programs. On the contrary, it
can be argued that most of the time, one cannot afford the
computational effort required to get an optimal solution to

a 0-1 program. This creates a hard problem for any prac-
titioner interested in feasible solutions that may not neces-
sarily be optimal; namely, how to get heuristic solutions for
problems where so few heuristic procedures are available.
Faced with this problem, most practitioners resort to what
has become the method of choice: run a branch-and-bound
or branch-and-cut algorithm with a time limit or until the
first feasible integer solution has been found.

In this paper we propose a new heuristic, called
OCTANE. It may be seen as one of the building blocks
of the algorithm for constructing the so-called enumerative
intersection cuts (Balas 1971, Burdet 1972, Glover 1972).
Its basis is the one-to-one correspondence between 0-1
points in R"” and the facets of the n-dimensional octahe-
dron. From x, a fractional solution to the LP-relaxation
of our 0-1 program, OCTANE selects a direction a, then
computes the first k facets of an octahedron containing x
that are intersected by the half line originating at x and
having direction a. Using the above-mentioned one-to-one
correspondence, this yields & 0—1 points, used as potential
solutions of the IP under consideration.

In §2 we introduce the necessary notation and give a
more precise high-level description of OCTANE. Section 3
deals with the enumeration of the first k£ facets of the octa-
hedron that are intersected by a given half line originating

Subject classifications: Integer programming: pure 0—1 programming. Heuristics: facet enumeration.

Area of review: COMPUTING & DECISION TECHNOLOGY.

0030-364X/01/4902-0207 $05.00
1526-5463 electronic ISSN

Operations Research © 2001 INFORMS
Vol. 49, No. 2, March-April 2001, pp. 207-225

208 / BaLas, CERIA, DAWANDE, MARGOT, AND PATAKI

inside the hypercube. We first obtain a simple algorithm for
finding the first facet intersected by the half line and then
show how to perform an efficient enumeration of the first
k intersected facets using the reverse search paradigm of
Avis and Fukuda (1991). In §4, we modify the algorithm
of §3 to generate extreme points of a truncated hypercube
instead of the hypercube.

Section 5 discusses important implementation issues, in
particular the choice of the endpoint x and direction a of
the half line used for the enumeration and the number k of
intersections to be computed. When embedding the heuris-
tic inside a branch-and-cut procedure, several additional
choices have to be made, for example, deciding from which
nodes of the branch-and-cut tree the heuristic should be
called. These issues are covered in §5, too. Finally, in §6
we report computational results obtained on a set of test
problems from MIPLIB (Bixby et al. 1992).

2. BASIC HEURISTIC

Consider a 0-1 integer program of the form

Min cx,

st. Ax > b (IP)

x;€{0,1},(i=1,...,n).

We baptized our heuristic OCTANE, for OCTAhedral
Neighborhood Enumeration. OCTANE performs a local
search in the integer neighborhood of a fractional LP-
solution of (IP). The local search can be described as fol-

lows. Let K be the unit hypercube centered at the origin,
and K* the regular octahedron circumscribing it, i.e.,

K={xeR":—

e
2
1
K* = xe[R”:||x||1<§n

1
=1xeR":6x< En,VSG {:I:l}”},

where e is the vector of all ones. K* is the outer polar of
K as defined in Balas (1972) i.e., the polar of K scaled by
a factor that causes K* to circumscribe K. Each facet of
K* contains exactly one vertex of K; and vice versa, every
vertex of K is contained in exactly one facet of K*. There-
fore there is also a one-to-one correspondence between the
vertices x of K + %e, (i.e., all 0-1 points) and facets 6 of
K* + ie, given by

1 1

5 o+ €="%.

The heuristic works by computing the first k intersections
of a half line originating at a fractional solution to the LP-
relaxation of (IP) with the extended facets of K*+1e, i.e.,
with the hyperplanes defining the facets. (In the sequel, we
do not distinguish between facets and extended facets, or

the normal & to the inequality defining the facet.) For nota-
tional convenience we shall carry out the enumeration in
K*, i.e., the octahedron centered at the origin. For some
fixed value of the parameter k, the heuristic performs these
steps:
1. Let x be a fractional LP-solution of (IP) and x =
X — %e.
2. Choose a vector a € R" and consider the half line
r={xX+2Xia|A >0}

originating at x with direction a.

3. Find {8&',...,08%}, the first k facets of K* inter-
sected by r and the corresponding 0-1 points % =
{x', ..., x*}.

4. The points in % that are feasible for (IP) serve as
heuristic solutions.

Notice that because x is fractional, x € int K*.
ExaMPLE 1. Consider the enumeration problem in R* with

% = (—0.33, —-0.36, —0.45),
a=(0.1,0.6,0.9).

Then the set of facets intersected by r = x + Aa, and the
corresponding values of A are

8'=(—++), A=141,
8 =(+++), A=1.65,
& =(+—+), A=438,
8=(——4), A=63.

Here we simply write + for +1 and — for —1, and we
shall frequently use this notation in the rest of the paper
as well. Observe that r intersects all “top” facets of K* in
clockwise order, as shown in Figure 2.

Intersection of the facets of the octahedron in
Example 1.

Figure 1.

A more advanced version of OCTANE uses the knowledge
of the constraint set of (IP) at the enumeration stage, before
checking feasibility. We construct a set of inequalities with
disjoint supports and valid for all 0-1 solutions of (IP)

zf)és"xés(") (i=1,...,r),

and modify the enumeration algorithm to skip all the facets
of K* corresponding to 0—1 points that are not feasible for
these inequalities. This will be covered in §4.

The local search procedure described above may seem
somewhat unnatural at first, thus it is worth giving a brief
outline of its origin. The facet enumeration problem first
arose in the context of generating enumerative intersection
cuts for (IP). These cuts are based on the results sketched
below.

Let X be a nondegenerate fractional vertex (basic feasible
solution) of the LP-relaxation of (/P) and r,, ..., r, be the
half lines originating at X and pointing toward the adjacent
vertices of the polyhedron. Let {&, &2, ..., &%} be the
points in which ; intersects the Ist, 2nd, ..., kth facet of
K*+ %e intersected by r; in this order, and x!, x2, ..., x*
the 0—1 points contained in those facets.

THEOREM 1. (1) Let ax = B be the unique hyperplane
containing the n points &Y, ..., & with ax < B.
Then the inequality ax > B, which cuts off X, is satis-
fied by all feasible 0—1 points.

(2) Let o’x = B' be the unique hyperplane contain-
ing the n points &%, ..., &% for some k, >
l,....k, =2 1, with ¢/’x < 3. Then the inequal-
ity o'x = B, which cuts off X, is satisfied by all
feasible 0—1 points, with the possible exception of

xBU o xRkt xR

The inequality ax > 8 of (1) is a special case of an inter-
section cut, which can be derived in the above fashion
using any closed convex set in the role of K* + %e that
contains X but no O-1 point in its interior (Balas used a
sphere; K* 4 %e was first proposed in Balas et al. (1971).)
Balas (1971) also treats the degenerate case. The inequal-
ity a’x > B’ of (2) is a special case of an enumerative-
intersection cut, an idea proposed by Burdet (1972) and
Glover (1972). While an inequality of this type does cut
off 0—1 points, these can be listed and checked for feasibil-
ity, hence the inequality can be added to the formulation of
(IP) with no harm. The conceived strength of such a pro-
cedure is twofold: The enumeration makes the cut deeper,
and may produce good heuristic solutions of (IP), as the
enumerated 0—1 points are typically close to the fractional
optimum X.

We started our research with the goal of testing enumera-
tive intersection cuts. We found that whenever the enumer-
ated 0—1 points were feasible, they indeed turned out to be
good heuristic solutions of (IP). This led us to focus on the
second aspect of the enumeration algorithm (i.e., using it
as a heuristic). On one hand, we experimented with differ-
ent directions, starting points for the enumeration, and sev-
eral other options. On the other, we also developed faster

BaLAs, CERIA, DAWANDE, MARGOT, AND PATAKI / 209

algorithms (both theoretically and practically) for the enu-
meration.

3. ENUMERATING THE FACETS OF
THE OCTAHEDRON

3.1. A Simple Algorithm

In this section we describe a simple algorithm to enumer-
ate the facets of the octahedron in the order that they are
intersected by a given half line, starting from its endpoint
X. We first show that if & is a facet intersected by the half
line, but & is not the facet intersected first, then by chang-
ing the sign of a single entry of &, one can get a facet &'
intersected before 6. This was already observed by Balas
and Zoltners (1975) and yields a simple algorithm to find
the facet intersected first.
Consider the octahedron

1
K" = {x eR":6x < En’VSE {:I:l}"}.

For simplicity we call 6 € {£1}" a facet. Also, consider
the half line r = {x+ Aa : A > 0} originating at a point
X € int K*, with direction a € R". First, note that r intersects
a facet & for the value A(6) > 0 if and only if

- 1
(x+A(8)a)d = e

and

n/2— 8%

A =5,

> 0.

At this point we must introduce some notation. For & €
{£1}" and I € N we define

p(.1) = =3 8%, P(8):=n/2+p(8,N),
iel

q(0,1) == Zsiai’ Q(8) :=¢q(8, N).
A8, T) == p(8,1)/q(5,).

We also denote

v(i):—%(i:l,...,n).

1

Notice that x € int K* implies P(6) > O for all 8, and

DEFINITION 1. Let 6 be a facet of K*.

1. We call é reachable, if Q(6) > 0.

2. We call & first reachable if it is reachable, and A(J)
is minimal.

3. Let u be any vector in R". Flipping the ith component
of u is replacing u; by —u;. For I € N we denote
by u oI the vector obtained from u by flipping all
components in I. Also, we write u ¢ i for u< {i}.

210 / Bavras, CERIA, DAWANDE, MARGOT, AND PATAKI

4. Let & be a reachable facet of K*, and I C N. We say
that
(a) I is a feasible flip if 6 o1 is reachable.
(b) If, in addition, A(6¢ 1) < A(J), we say that [is
a decreasing flip. Increasing, nonincreasing, non-
decreasing, and constant flips are defined in the
obvious way.
(c) I is a single flip (resp. double flip), if |I| =1
(resp. |I| = 2). Otherwise I is a multiple flip.
Clearly, if 6 is not reachable, then either it is parallel to r
(iff Q(6) =0) or it is intersected by the ray with origin x
and direction —a (iff Q(8) < 0). If 6 is a reachable facet,
then

P(8)—2p(3.1)
0(8)—24(8,1)
The following technical lemma will be used through-

out this section; it can be proved by simple cross-
multiplication.

A(boI) =

LeEmMMA 1. Let py, q,, P, q, be real numbers, q, > 0,
q, > 0. Then the following hold.

(Average rule) 2 < 2 btn B2
q D@ Q+q)
(Left subtraction rule) If q, —q, > 0, then z—‘ <
_ 1
P2 P1—P2 < ﬂ.
a2 a1 =42 a1

(Right subtraction rule) If g, — q, > 0, then

P2 — P2 P2—Py
== =] =,
92 92 =4

SIS

The following theorem gives a necessary and sufficient con-
dition for the existence of decreasing flips.

THEOREM 2. Let & be a reachable facet of K*, and I C N.
Then I is a decreasing flip if and only if one of the following
conditions hold:

e ¢(8,1) >0 and A(8) < A(S,1);

e ¢(6,1) <0 and A(8) > A(6,1);

e q(8,1)=0and 0 < p(8,1).

PROOF. As 6 is fixed, for brevity we omit it from the above
symbols; i.e., we denote P = P(5), A = A(d), q(I) =
q(6, 1), etc. First, assume g(/) > 0. We shall prove that /
is a decreasing flip if and only if A < A(1).

(If): The inequality A < A(I) is equivalent to

As X eintK*, P(8o1) =P —2p(I) > 0, hence

P> 2p(I). (2)
By (1) and (2) we get Q > 2¢(I), that is

0—2q(I) > 0. (3)

Hence [is a feasible flip, and applying the left subtraction
rule to (1) yields

P—2p(I) - f’ @)
0-2¢(I) 0
that is 7 is a decreasing flip.

(Only if): Suppose that [is a decreasing flip, equiva-
lently (3) and (4) above hold. By the right subtraction rule
we get

P 2p(I)
=— < —==A(). (5)
0 2q(I)
Second, assume g(I) < 0. Then A(I) < A if and only if
—p(I) P
—rd) <. (6)
—q() Q
Also I is a decreasing flip if and only if
P—2p(I) P
p-2p) P ™
0-2q(1) 0

By the average rule, (6) and (7) are equivalent.
The case g(I) =0 is straightforward to check. [

To make our presentation more compact, we introduce
the following notation. We define the ratio p/0 by
p _|too if p>0,
0 |- if p<o.

Then Theorem 2 can be rewritten as Theorem 2'.

THEOREM 2'. Let & be a reachable facet of K*, and
I C N. Then I is a decreasing flip if and only if one of the
following conditions holds:

e ¢(86,1) >0 and A(8) < A(S,1);

e ¢(8,1) <0 and A(8) > A6,).

ReEMARK 1. Notice that in Theorem 2’ it suffices to check
the ratio A(8,1) to decide whether [is a feasible and
decreasing flip. Simple cross-multiplication proves that / is
a constant flip, iff p(8,1) = q(6,1) =0 or A(8) = A(8,1)
regardless of ¢(8,1)’s sign. Therefore, when, for an [
with g(8, I) # 0, the opposite inequality between A(J) and
A(8, 1) holds in Theorem 2', then [is either an infeasible
or an increasing flip.

THEOREM 3. Let 0 be a reachable facet of K*, I and J
disjoint subsets of N. Assume that IUJ is a decreasing flip
for 8. Then either I or J is a decreasing flip for 6.

ProoF. We distinguish three cases (the case when either
one of ¢(8,1) or ¢(6,J) is zero is straight-forward to
check), and use a short notation, as in the previous theorem.

Case 1. g(I) > 0 and g(J) > 0. Suppose that neither /
nor J is decreasing, i.e.,

L)

A>Mand./\/ .
q(J)

Z) ®)

By the average rule, then

p(IUJ)
~q(1u))’

©)

a contradiction.

Case 2. q(I) <0 and g(J) < 0. The proof is similar to
Case 1.

Case 3. q(I) > 0 and g(J) < 0. Suppose that neither /
nor J is decreasing, i.e.,

p) _ —r(J)

=A< . 10
an) S ~4(7) (10
Then, by the average rule (with p,/q, = P/Q, p,/q, =
—p(J)/ —q(J)).
p) <PPo 2p(J) an
q(l) ~ 0~ 0-29()’
and by the right subtraction rule (with p,/q, = p(I)/q(I),
P2/q = (P—2p(J))/(Q—24q(J))), we obtain
P _ P—2p(1UJ) 02

0~ 0-29(1VJ)’

contradicting the assumption that /U J is a decreasing flip.
Case 4. g(I) < 0 and ¢(J) > 0. Follows by
symmetry. O

ExAMPLE 1. (Continued.) For 8 I ={1,2} is a decreas-
ing double flip. By Theorem 3 at least one of {1} and {2}
must be decreasing. Indeed, {2} is a decreasing flip, but
{1} is increasing.

The following assumptions shall remain in force
throughout the rest of the paper.

az0, v(l) > > v(n) and no index i
with p(i) = ¢(i) = 0 exists. (13)

We do not lose generality by assuming a > 0 as flipping
any component of both x and a yields a problem isomor-
phic to the original one. Precisely, 6 is intersected by r for
the value A if and only if §¢1i is intersected for the same
value by the ray with origin x¢i and direction a¢i. Assum-
ing that there is no index i with p(i) = q(i) = 0 is also
nonrestrictive because such a component may be removed
from the problem, the value chosen for 8, being irrelevant.

Using these assumptions and specializing Theorem 2" we
obtain a corollary.

COROLLARY 1. Let 8 be a reachable facet of K*. Then

(1) i € N is a decreasing flip if and only if one of the
following conditions holds:
(1.1) 6, = +1 and v(i) > A(8);
(1.2) 6, =—1 and v(i) < A(5).

(2) 6 is first reachable if and only if there is no decreasing
single flip for 0.

BaLas, CERIA, DAWANDE, MARGOT, AND PaTAKI / 211

Proor. (1) follows by the characterization of decreasing
flips in Theorem 2. In (2) the “only if” part is obvious. To
prove “if”” assume that & is not first reachable and it differs
from a first reachable facet in the index set I = {i|, ..., i,}.
As I is a decreasing flip in 8, by Theorem 3 at least one
of the i;s must be a decreasing flip. [J

In the following, we state two algorithms: one for finding
the intersection of r with the boundary of K*, and one for
enumerating the first £ extended facets of K* intersected
by r. These are improvements on the corresponding algo-
rithms proposed in Balas (1972).

To find a first reachable facet, we consider a simple algo-
rithm that, given a reachable facet 8, repeatedly applies a
series of decreasing flips:

ALGORITHM FIRST-FACET

Let 6 be a reachable facet of K*.

while (there is a decreasing single flip i for 8)
set 6 =001.

end while

end

LEMMA 2. The following hold.

(1) For an arbitrary initial & Algorithm First-Facet termi-
nates in at most 2n iterations.

(2) If the initial 6 is set to e, then it terminates in at most
n iterations, and can be implemented to run in O(n).

PrROOF. A component of the current & is flipped if it is in
one of states (1.1) or (1.2) of Corollary 1. During the algo-
rithm A(6) keeps decreasing. So, if 8, is flipped in state
(1.1), then it will not be flipped again. If 8, is flipped in
state (1.2), then we may flip it again in state (1.1), when
A(8) becomes less than v(i). Hence every component of &
changes at most twice. This argument proves (1). If § = e,
and the consecutive flips are 1,2, ..., then all components
are flipped at most once. Also, we can find the next decreas-
ing flip in O(1) time per iteration. This implies (2). O

ExAMPLE 1. (Continued.) Starting at 8* if we first flip
component 1 from — to +, then en route to &' it will be
flipped back to —. However, if we flip component 2 first,
then we immediately get the first reachable &'.

Now we turn to the problem of enumerating the first
k facets of K* intersected by r. Let 6* be a fixed first
reachable facet. Define the auxiliary weighted digraph G =
(V,A,w) as

— {8 e{£1}": 0(8) > 0},
A={(8,80i):A(8) < A(S0i)},
w(8,801) = A(8oi)— A(S) for (8,80i) € A.

Note that G is weakly connected: If Q(8') and Q(8?) are
positive, then we can arrange the flips leading from &' to
8% so that Q(8) is also positive for every intermediate §.
Moreover, by Corollary 1 for all 6 € V\{6*} there exists a

212 / Bavras, CERIA, DAWANDE, MARGOT, AND PATAKI

directed path from 6* to 8. (This path can be chosen as the
reverse of the path obtained by first performing decreasing
flips starting at & and leading to an arbitrary first reachable
facet, then performing constant flips leading to 6*.) There-
fore, finding the first k facets of the octahedron intersected
by r is equivalent to finding the k nodes of G whose dis-
tance from &* is minimal. Although G is of exponential
size, we can find 6* in time linear in n, and given any 6 we
can generate each of its neighbors in G in constant time.

The following algorithm, which is merely a restatement
of Dijkstra’s algorithm for finding a shortest path tree in
a digraph with nonnegative arc-weights (see for example
Tarjan 1983), finds the k nodes of G whose distance from
0* is minimal.

ALGORITHM ENUMERATE
Label 6* with A(6*). Set count=0.
while (count < k)
Select a labeled, unscanned node 9,
with A(8) minimal.
Scan &, by generating each &' such that (6, &) € A,
and assigning it the label A(§'), if it has
not been labeled before.
Set count = count + 1
end while

Because for every 6 € V the length of every path from 6*
to 6 is A(8) — A(6%), there is no need to update labels. We
now study the computational complexity of Algorithm 2.

THEOREM 4. If 6 # &' implies A(8) # A(8'), then Algo-

rithm Enumerate can be implemented in O(knlogk) time.

ProOOF. We keep the labeled nodes in a balanced binary tree
T.In T, a node 6 is identified by A(5), and its description
consists of a pointer to its parent among the scanned nodes
and the index in which they differ. Because we need only
the k nodes closest to 6*, the size of T can be kept at most
k. Thus the cost of an individual operation on T (such as
checking membership, insertion, or deletion) is O(logk).

Since every node in G has O(n) neighbors, the total
time taken by the operations performed on 7 is O(nlogk)
in one iteration of the while loop, and O(knlogk) in the
entire algorithm. We generate the full description of only k&
nodes that are scanned during the algorithm, at the cost of
O(kn). The claimed complexity follows. [

The assumption of Theorem 4 fails to hold whenever
the ray r intersects more than one facet of K* in the same
point. This case is taken care of by the algorithm of the
next section.

3.2. A Reverse Search Algorithm

In this subsection we describe a more efficient algorithm for
the facet enumeration problem based on the reverse search
paradigm of Avis and Fukuda (1991). Informally, inside the
while loop of Algorithm Enumerate we shall only generate

nodes 0’ that have not been previously labeled; in other
words, we never examine arcs connecting two nodes of
the partially built shortest path tree. This approach has the
following advantages:

o If there are different facets at the same distance from
6*, i.e., the assumption of Theorem 4 fails, in Algorithm
Enumerate we can no longer identify the nodes by this
distance. In this case (because comparing two n-bit num-
bers is an operation of cost O(n)), the complexity of the
simple enumeration algorithm becomes O(kn?log k). Using
reverse search we can retain the O(knlogk) complexity.

e Even if there are no facets at the same distance from
6*, the reverse search algorithm is considerably faster in
practice.

Before formally describing the reverse search algorithm,
we give two examples to illustrate each one of these issues.
For a randomly chosen ray the probability of hitting two
extended facets for the same A value is zero. However, for
certain rays, intersecting a large number of extended facets
at the same distance is the rule rather than the exception,
as shown by the following example.

ExaMmpLE 2. Consider the LP-relaxation of (/P)
P={x|Ax2b0<x<e},

where A is m x n. Let x be a vertex of P, and a a direction
pointing from x to an adjacent vertex. Let x = x — %e, and
0* a fixed facet of K* intersected first by r. Then, after a
possible permutation of components, x, a and 6* will have
the form

_1|‘/2..._1/2 1/2 - 1?2...)

%=
a=(0 - 0 0 -0)
6*2(- ... = + o+),

where £ > n — m. This can be seen as follows: As x is a
vertex, at least n —m of its components are at their lower
or upper bounds. Also, a must have zeros in all the corre-
sponding components, except for one.

Let r > 1. If we flip any t components of 6* among
the first ¢, the resulting facets will all have the same A
value. That is, there will be groups of extended facets with
cardinality

(1)) ()

at the same distance from &*. If n —m (hence also £) is
large, then checking the corresponding 0-1 points for fea-
sibility is computationally prohibitive even for the facets of
the second group. As the rays are exactly of this form when
generating enumerative intersection cuts, we must conclude
that these cuts cannot be made very deep.

ExaMPLE 3. The shortest path tree produced by Algorithm
Enumerate for all reachable facets in Example 1 is shown
in Figure 2 (for the moment the reader may ignore the

Figure 2. A shortest path tree of Example 1.
' (—1++)
(4| ++) M (l——+)
F:(l+—-4)

vertical bars; they will only be used later). Note that even
in this small example there is an arc in the digraph G,
namely (83, 6*) that is not an arc of the shortest path tree.
The aim of the reverse search procedure, to be described
next, is precisely to disregard such arcs.

Let 6* be a fixed first reachable facet of K*. We introduce
a function

fiV\{6"} —V,

to be defined below, such that the graph G, = (V,A,),
where A, = {(8,8¢1): f(§0i) = 6} is a subgraph of G
and an arborescence rooted at 6*. We then show that f
can be efficiently reversed, i.e., in Algorithm Enumerate
one can generate only those nodes 6¢i € V that satisfy
(8,001i) € A, using only local information at 8.

We introduce the following notation. We denote by
dec, (8) the set of decreasing + to — flips in 0. Similarly,
noninc_(8) denotes the set of nonincreasing — to + flips
in 8.

The definition of f is:

if dec,(8)#@
Let i = min{j | j € dec, (8)}.
Set f(8) =b01.

elseif noninc_(98) # @.
Let i = max{j | j € noninc_(0)}
set f(6) =d0i.

else f(6) is undefined.

end if

THEOREM 5. The following hold:

(1) There is a unique first reachable facet 6*, for which f
is undefined.
(2) The graph G, is an arborescence rooted at 6*.

ProOF. Denote by A* the value of A for which r intersects
the first facet of K*. By Corollary 1 and Assumption (13),
a facet & is first reachable, if and only if it is of the form

. t
5:(_...i:|:...j:+...+),
where

>A* ifi<s
v(i) =A" ifs+1<i<t
<A* ifizt+1.

BaLas, CERIA, DAWANDE, MARGOT, AND PaTakl / 213

If & is among these facets, then f(6) is undefined if and
only if all the ambiguous components (i.e., those marked
+) are +, hence part (1) of the claim follows. Also,
A(f(8)) = A(d) if and only if J is first reachable. In this
case, f flips the largest index between s+ 1 and ¢, hence
G cannot contain a circuit, i.e., G, is an arborescence, as
required. [

ExaMmPLE 1. (Continued.) The shortest path tree of
Figure 2 is the same as G,. At a facet § on the left side of
the vertical bar for all indices i v(i) > A(8) and the oppo-
site inequality holds for all indices on its right side. In &*
the decreasing flips are 1 and 2. Flipping 2 we obtain 8!
the parent of 8* in the tree.

Finally we show how to reverse f’; that is, given a reach-
able facet 6 of K*, how to compute all indices i that satisfy
f(6¢i) =20 in O(n) time. Clearly, f(6¢i) =6 if and only
if one of the conditions (1) and (2), below, hold:

(1) (1.1) i edec, (801).
(1.2) {1,...,i—1}Ndec, (60i) = 2.
(2) (2.1) i e noninc_(d ¢ i).
(2.2) {i+1,...,n}Nnoninc_(d¢i) = &.
(2.3) dec (60i) =@.

Now, assume that min-plus(d) is a field added to the
description of & in Algorithm Enumerate that contains the
smallest index of a + component of 6. Then we consider
the following.

ALGORITHM REVERSE-f

Input : A reachable facet 0 of K*.

Output : Set of indices i satisfying f(6¢i) = 9.
Seti=1.

while (8, = —1 and v(i) > A(8))

Output i.
Seti=i+1.
end while
Set i =n.

while (5,— =41 and v(i) < A(8))
if (Q(8<>i) > 0 and v(min-plus(d)) < A(8<>i))
Output i.
end if
Seti=i—1.
end while

LEmMMA 3. Algorithm Reverse-f is correct.

ProoE. First we show that the indices output in the first
while loop are exactly the ones that satisfy (1). Clearly,
(1.1) holds iff i is an increasing — to + flip in §, that is,

6, =—1 and v(i) > A(9).

By the nonascending order of the wv(i)s, (1.2) is equiva-
lent to

thus our claim follows.

214 |/ Bavras, CERIA, DAWANDE, MARGOT, AND PATAKI

Second, we show that the indices output in the second
while loop are exactly the ones that satisfy (2). Clearly,
(2.1) is true iff i is a nonincreasing + to — flip in &, that is,

0,=+1, v(i) < A(d) and Q(6¢i) > 0.

Again, by the nonascending order of the v(i)s (2.2) is
equivalent to

n

8y =--6,=+1,
and (2.3) is equivalent to
v(min-plus(6¢i)) < A(6¢1iQ). (14)

If i = min-plus(6), then min-plus(6¢i) =i+ 1 and (14) is
trivially true, as

A, i+ 1) < A8, i) < A(S) < A(80i).

If i # min-plus(6), then min-plus(6 ¢ i) = min-plus(8). The
correctness of our algorithm follows. [

COROLLARY 2. Suppose that in the while loop of Algo-
rithm Enumerate we only generate facets 6 = 6o 1i that
satisfy f(8') = 6. Then the algorithm can be implemented
in O(knlogk) time.

PrROOF. Straightforward; we must only notice that
min-plus(8 © i) can be computed in constant time from
min-plus(6) when 6¢i is added to the list of labeled
nodes. [

Finally, we outline a modification of the reverse search
algorithm to obtain an additional speedup. Let &6* be a
fixed first reachable facet of K* (found by Algorithm First-
Facet). In the definition of the function f, it is then suf-
ficient to consider only those flips in which 6 and 6* dif-
fer. That is, we define f* by simply replacing dec, () and
noninc_(8) in the definition of f by their intersection with
{i | 6, # 6F}. By Corollary 1 the only reachable facet for
which f* is undefined is 6*. The only components of a
reachable facet o that are flipped by f* are the ones differ-
ent from 6*, hence on any path from 6 to 6* the hamming-
distance from 6* keeps decreasing. Therefore Theorem 5
holds with f replaced by f*. Also, we can compute the
indices i s.t. f*(6¢1i) =6 by an algorithm similar to Algo-
rithm Reverse- f by restricting the indices to consider to the
set {i|6; = 67}

4. THE EXPANDED OCTAHEDRON

One of the main drawbacks of the above described algo-
rithm is that every 0-1 point enumerated must be checked
for feasibility, a time-consuming operation when the linear
system of (IP) is large. Moreover, our procedure does not

use the knowledge of the constraint set. We could envision
using that information in the choice of the direction a, as
we will do in §5, but it would also be desirable to avoid,
by other means, the enumeration of facets of the octahe-
dron that lead to infeasible 0—1 points. We now show that
this is indeed possible, without a significant increase in the
complexity of the results explained so far. For this we use
a construction introduced by Balas and Zoltners (1975).

DEeFINITION. The inequality
7o S sx < 8 (15)

is a canonical inequality (CI for short) if s € {0, £1}" and
s, and z, are integers, with z, < s,, (one of z, = —o0, 5, =
+oo is allowed). If z, = s,, then (15) is called a canonical
equality (CE for short).

We are interested only in valid canonical inequalities (equa-
tions), i.e., canonical inequalities satisfied by all feasible
0-1 points.

Let

<s'x<sp (i=1,...,1) (16)

be a system of canonical inequalities, where the s’s have
disjoint support.

LEMMA 4. Every vertex of the polytope
1 :
O=1xeK:x+ € satisfies (16)

is a vertex of K.

PrOOF. The coefficient matrix of the system (16) is totally
unimodular. O

We call Q a truncated cube.

We shall be interested in facets of K* whose correspond-
ing 0-1 points satisfy (16). The correspondence between
0-1 points x and facets 6 of K* is given by § = 2x —e.
Thus a 0-1 point x satisfies the system (16) if and only if
the corresponding facet 6 of K* satisfies

[<s'8<ul (i=1,...,1), (17)

with I =2z} —s'e, ufy =25}, — s'e.
We call the polytope

1
o = {x eR"|dx < 7" for all 6 € {£1}" satisfying (17)}

an expanded octahedron. Q* is the outer polar of Q,
as defined in Balas (1972). It can be obtained from K*
by the removal of those facets containing vertices of K
violating (16).

We define a facet of Q* to be reachable, first reachable
and a flip to be feasible, decreasing, increasing, etc., by
simply replacing K* by Q* in Definition 1. We consider
the problem of finding a first reachable facet of Q* and
enumerating the first k facets intersected by r.

To simplify the exposition, we restrict ourselves to the
case when there is only one canonical inequality. General-
izing the results for the case of more than one inequality
is straightforward, at the cost of introducing more cumber-
some notation. We denote the inequality (17) in the generic
fashion

[<sé<u. (18)

We fix 6%, a first reachable facet of Q*.

THEOREM 6. Let 6 be a reachable facet of Q*, and assume

(i p) = i18,# 87 8,5,=+1),
(myeoomy) = (18,8, 85, =—1).

Then one of the assertions (1) and (2) is true.

(1) & is first reachable.

(2) (2.1) There is a decreasing single flip in &;
(2.2) There is a decreasing double flip in 6 of the form
(p;» m;) for some | < min{v, w}.

PrOOF. As (1) and (2) cannot hold simultaneously, we
assume that (1) is false, and prove that either (2.1) or (2.2)
must hold. Denote

N.(8) ={i]d; #&;}.

We distinguish two cases.

Case 1. The inequality (18) is not tight for 5. As N,(J)
is a decreasing flip for 6, Theorem 3 shows that there exists
i € N,(8) with A(6¢i) < A(J). Also, by the argument in
Lemma 4 and the one-to-one correspondence of vertices of
K and facets of K*, ¢ i cannot violate the inequality (18),
hence i is a decreasing flip.

Case 2. The inequality (18) is tight for 6. Assume / <
56 = u (an analogous argument holds when [= 56 < u, or
[=56 = u). In this case a single flip may result in violating
the inequality (18). As flipping p, fori=1, ..., v decreases
56 and flipping m; for j =1, ..., w increases it, we must
have w < v. Partition N,(J) as

{pr,m}U---U{p,, m,} U{p,.}
U A{p,}Ufz U Ufz;}

where
{z1s... ;) ={i e N(8) | s, =0}.

We can perform any of the above single or double flips
without violating (18). By Theorem 3 at least one of these
flips decreases A(8), thus the required claim follows. O

Using Theorem 6, it is straightforward to extend Algo-
rithm First-Facet to find the first facet of Q* intersected
by a half line: We must start with a reachable facet of Q*
and perform a decreasing single or double flip as long as
one exists. Contrary to the case of the octahedron, there is
no obvious bound on the running time of this procedure.
Balas and Zoltners (1975) describe a different algorithm

BaLas, CErRIA, DAWANDE, MARGOT, AND PaTakl / 215

(not based on single or double flips) with worst-case com-
plexity O(n?). In our experience, our method works well
in practice.

Modifying Algorithm Enumerate is also straightforward.
As in the previous section, we define the auxiliary weighted
digraph G = (V, A, w) as

V={8e{£l}":1<s6<u, 0() >0},
A={(8,800):1<|1]<2
and A(8) < A(So1)),
w(8,801) = A(8o1)—A(8) for (8,801) € A.

The number of nondecreasing double flips in a reachable
facet of Q* is O(n?). Thus the running time of the algo-
rithm is O(kn*logn), if there are no two facets with the
same A value, and O(kn’logn) otherwise.

Finally, we outline a reverse search algorithm to enumer-
ate the facets of Q*. We define a function

g:V\{§'} —V

such that the graph G, = (V, A,), where A, = {(§,0') :
g(8") = 6} is a subgraph of G and an arborescence rooted
at 6*. We also describe a procedure to reverse g.

First we give an informal description of g. If there is
a single decreasing or nonincreasing flip for §, we choose
one as in the case of the octahedron. If there is no such flip,
then we consider the restricted set of double flips described
in Theorem 6. If there is a decreasing double flip among
them with a nonnegative value of the resulting g, then we
choose the one with the maximal A. If not, then we choose
one with a negative g value having a minimal A. We break
ties using lexicography. That is, the preference among the
restricted set of double flips is given by the same rule, as
the preference among the single flips.

For the formal definition of g we need some more nota-
tion. For 8, a reachable facet of Q*, we denote

dec,(6) ={i|6,#0;, andiisa
decreasing + to — flip for 6},
noninc_(6) = {i| 6, # 6}, and i is a
nonincreasing — to + flip for 6},
dec, ,(8) = {I'| I is a decreasing double flip
of the form (p,, m,), with ¢(6,1) > 0},
noninc_ ,(8) = {I | 7is a nonincreasing double flip
of the form (p,, m,), with ¢(8,1) <0}.

Here (p,, m,) is the notation introduced in Theorem 6. The
definition of g is given below:

if dec,(8)#@
Let i = min{j | j € dec, (5))}.
Set g(8) =doi.

elseif dec_(6) # @
Let i = max{; | j € dec_(5)}.
Set g(8) = ¢i.

elseif dec, ,(0) # @

216 / BALAS, CERIA, DAWANDE, MARGOT, AND PATAKI

Let I = the first element of dec, ,(5).
Set g(8) =b¢1.

elseif dec_ ,(0) # @
Let I = the last element of dec_ ,(5).
Set g(6) =éb01.

else g is undefined.

end if

The same argument as the one used for f* proves that
G, is an arborescence rooted at 6*. Finally, we show how
to reverse g, that is, given & is a reachable facet of QF,
how to compute all single or double flips I that satisfy
g(8¢01) =25 in O(n?) time. The algorithm is a straightfor-
ward extension of Algorithm Reverse-f, that requires some
extra bookkeeping. We have that g(6¢ 1) = 6 if and only
if exactly one of the conditions (1), (2), (3), and (4) below
holds:

(1) I ={i} and

(1.1) i edec,(8¢i)
(1.2) {1,...,i—1}Ndec,(60i) = @;

(2) I ={i} and

(2.1) i € noninc_(6¢1)
(2.2) {i+1,...,n}Nnoninc_(8¢i) =2
(2.3) dec,(60i) =2

(3) [I| =2 and

(3.1) I edec, ,(601)

(32) {(J|A(J,801) > A(1,601)}Ndec, ,(60]) =0
(3.3) dec, (60) =2

(3.4) noninc_(8¢1) =a;

(4) |I| =2 and

(4.1) I enoninc_ ,(601)

4.2) {(J|A(J,001)<A(I,801)}Nnoninc_ ,(601) =
6]

(4.3) dec, ,(60l) =@

(4.4) dec,(60l)=2

(4.5) noninc_(6¢1) = 2.

We give a high-level description of the algorithm
to reverse g, then outline how it can be efficiently
implemented.

ALGORITHM REVERSE-g
Input : A reachable facet 6 of Q*.
Output : Set of single and double flips /
satisfying g(6¢ 1) = 6.
Seti=1.
while (v(i) > A(8))
if (6, =67 = —1 and (1.2) holds)

Output i.
end if
Seti=i+1.
end while
Set i =n.

while (v(i) < A(8))
if (Si =0 =41, Q(6¢i) >0 and (2.2)~(2.3) hold)
Output i.
end if
Seti=i—1.
end while
for (all I with |I| =2, A(8,1) > A(S))
if (5, =07, q(6,1) <0 and (3.2)-(3.4) hold)
Output /.
end if
end for
for (all I with |I| =2, A(6,1) < A(8))
if (6, =67, ¢q(6,1) >0, Q(601)>0
and (4.2)—(4.5) hold)
Output 1.
end if
end for

The conditions spelled out in the while loops are equiv-
alent to conditions (1.1), ..., (4.1), respectively. First we
outline how to check the condition (1.2) in the first while
loop. This condition is true if and only if for all j €
{1,...,i—1} one of the assertions (i)—(iv) below holds:

(i) 6, =—1
(ii) 6;=+1 and &7 =+1
(iii) 0, =+1, 87 =—1,5;,=—1 and s(60i)=u
(iv) 6;=+1,067=—1,5;,=+1 and s(80i)=1.
It is trivial to find whether j satisfies (i) or (ii). If we
encounter an index j for which (iii) holds, we set a flag
to true, and for the remaining indices we shall allow only
those flips i, which push the canonical inequality to its
upper bound. This method takes care of detecting indices
J satisfying condition (iii) (and (iv), using a different flag).
Checking conditions (2.2)—(2.3) in the second while loop
can be done similarly.

Second, we show a more efficient way of computing
double flips I that satisfy g(6¢ 1) = 8. To find such an I,
assume again

{pl"" ’pv}: {l|61¢6;k, Sisl-:—l—l}
{ml"" ’mw} = {l|61756;k, 8,'5[:_1}

and that the p;s and m s are in increasing order. Define

Do =my =0,
Doy = Myqy i=n+1
If I =1{i,i,} with §;s; = —1 and §;5;, = +1 satisfies

g(6oI) =4, then for some index j between O and
min{v, w}

P <i <Dju

m; <i, <mj,

must hold. Hence the restricted set of double flips in 6¢ 1
can be constructed from the corresponding set in 8. Also,
the method to check that 7 is the double flip chosen by g
in 61 is entirely analogous to the method given for the
single flips.

5. IMPLEMENTATION ISSUES

In this section, we discuss several issues related to the
implementation of OCTANE. Most of them are of a prac-
tical nature, and our insights are based on extensive exper-
imentation with a set of test problems. As we have seen,
OCTANE requires three inputs, namely the starting point
of the enumeration, the direction of the ray, and the number
k of intersections to compute. Additionally, if we decide to
use an expanded octahedron, we have to generate a set of
canonical inequalities that cuts off as many integer infeasi-
ble points as possible. Moreover, in the case where the cho-
sen starting point has some integer entries, we may decide
to perform the enumeration in the space corresponding to a
face of the hypercube containing the starting point by fixing
some of the variables to the value they take in this point.
When a relatively large number of entries in the starting
point are integer, this allows us to reduce significantly the
space in which the enumeration is performed, yielding a
considerable speedup. On the other hand, fixing too many
of these variables may result in an infeasible ILP, implying
that the enumeration might become a waste of time.

Early in our experimentation we found that using rays
that start at the LP optimum and varying only their direc-
tions is not enough for finding good feasible solutions:
The origin of the rays must also be varied. Thus we were
led to develop OCTANE as a tool to be used within a
branch-and-cut framework (Balas et al. 1996, Hoffman and
Padberg 1993, Padberg and Rinaldi 1991) by running it
from different nodes of the enumeration tree. Depending on
the problem at hand, the goal might be to solve the prob-
lem to optimality (and use the heuristic to hopefully find
an optimum solution earlier) or to find a relatively good
solution relatively quickly. In the former case, the heuris-
tic plays a secondary role because, for most problems of
interest, proving that a given solution is optimal is almost
as hard as finding a provably optimal solution. In the latter
case the heuristic plays a primary role, and a crucial point
is to decide from which nodes of the enumeration tree the
heuristic should be called.

These goals are conflicting, and there are several reason-
able ways of comparing the performance for different set-
tings. We focused on optimizing the total running time of
the procedure at the cost of “missing” some good solutions
that could be found earlier in the search tree. We embedded
OCTANE into the branch-and-cut code MIPO described in
Balas et al. (1996).

5.1. The Starting Point for the Enumeration

To start OCTANE, we need to select a point x, in the inte-
rior of K*. When running the heuristic within a branch-
and-cut framework a natural choice is to let x = x — %e,
where x is the optimal solution found when solving the
linear programming relaxation at the current node of the
enumeration tree.

BaLas, CERIA, DAWANDE, MARGOT, AND PaTakt / 217

5.2. The Directions for Enumeration

The main purpose of enumerating the facets of the
expanded octahedron along a particular ray x + Aa is to
explore the O—1 points that are in “a neighborhood” of x
in the order given by the direction a. Intuitively, if a ray is
directed toward the “inside” of the feasible region it seems
more likely to lead to the enumeration of a feasible 0-1
solution. We experimented with several different directions.
We found that the overall performance of the directions that
go inside the feasible region dominates that of the direc-
tions that go “outside.” The set of directions we finally set-
tled for is:

e Average ray: The vector defined as the average of the
set of extreme rays (normalized) of the cone C defined by
the current optimal basis of the LP.

e Objective ray: The inward normal to the objective
function.

o Difference ray: The vector defined as the difference
between the optimal solution of the linear relaxation at the
current node and at the root node of the enumeration tree.

o Average (weighted) slack ray: The vector defined as
the weighted average of the extreme rays of C correspond-
ing to the nonbasic slacks with positive reduced cost at
the current fractional point. The weights are defined by the
inverse of their reduced costs.

We also tested randomly generated rays, but practi-
cally no feasible solutions were found when using these
directions.

5.3. The Octahedron Versus the
Expanded Octahedron

An important question is whether we should use the octa-
hedron or the expanded octahedron for facet enumeration.
Clearly, the first procedure is simpler and faster but poten-
tially leads to the enumeration of many facets that do not
correspond to feasible points. On the other hand, work-
ing with the expanded octahedron is computationally more
expensive, but because fewer facets are enumerated, the
procedure might lead to an overall better performance. Our
extensive computational experiments, which are summa-
rized in Tables A.1 and A.2 in the appendix, confirm that
this is indeed the case.

5.4. Number of Facets to Be Intersected

The number of facets of the expanded octahedron to be
intersected along a search direction is determined as fol-
lows. If, for the first 10 facets intersected, there exists an
inequality in the problem formulation that is violated by
all the enumerated 0-1 points, then we stop the enumera-
tion along this half line. The rationale behind this choice
is that if the first 10 points generated are all cut off by
a single inequality, it is very likely that no feasible point
will be generated for this enumeration, a fact confirmed
empirically.

Otherwise, i.e., if the first 10 facets intersected are not
all cut off by a single inequality, we enumerate at most
FMAX = 100 facets along the half line.

218 / BaLas, CERIA, DAWANDE, MARGOT, AND PATAKI

5.5. Space for Enumeration

Let x be the optimal solution when solving the LP-
relaxation of (I/P) at a node of the branch-and-cut tree.
Define F ={i € N |0 < x; < 1} as the set of fractional
variables. Given a direction a, we considered the fol-
lowing choices for the space where we carried out the
enumeration:

e The full space R".

e The space R” of fractional variables.

First, we note that for any S, € S, € N, there is a one-
to-one correspondence between the set of facets of the
expanded octahedron in the space of the variables in S, and
a proper subset of the set of facets of the expanded octahe-
dron in the space of the variables in S,. Hence, we pay for
the reduction in dimension by losing facets, some of which
might contain feasible points for /P. On the other hand,
enumerating facets in the smaller space is computationally
cheaper than in the larger space.

We also experimented with “intermediate” spaces, by
adding to the fractional space a set of randomly selected
variables in N\F. As expected, there is a trade-off between
the quality of the feasible points found and the time spent
for the enumeration. Our computational experiments indi-
cate that the search should be carried out in the fractional
space. In the appendix we present detailed comparisons
for the full space versus the fractional space of variables.
The results are summarized in Tables A.1 and A.2 of the
appendix.

5.6. Generation of Canonical Inequalities

For s € {0, 1}" we define the strength str(s) of the canon-
ical inequality (CI) corresponding to s by

[(s) = min{sx : x € P}, u(s) = max{sx : x € P},

|supp(s)| [supp(s)|
) uppel—i) 00

where supp(s) is the support of s.

When s € {0, £1}" the strength of the corresponding CI
is defined by first complementing all variables with nega-
tive coefficients, then using the above definition. Clearly,
the stronger a CI, the smaller the number of infeasible
points that are enumerated. Our computational experiments
confirm this.

The generation of the CIs was implemented as follows.
First, we extract a maximal set of disjoint canonical equa-
tions (CEs) directly from the problem formulation if such
equations exist, by always picking the CE whose support is
the largest among those using only variables not yet in any
CE. Second, among the inequalities in the formulation, we
consider the ¢ ones with the largest support corresponding
to variables not yet used. We compute the strength of the
CIs obtained by taking a {0, +1} vector corresponding to
the sign-pattern of these inequalities, setting to O all coef-
ficients corresponding to a variable already in some CE.

str(s) =

We also compute the strength of the CI obtained by sim-
ply setting to 1 all coefficients corresponding to remain-
ing variables. Among these 7+ 1 inequalities we pick the
strongest one.

Because computing the strength of an inequality requires
solving a pair of linear programs, ¢ cannot be too large. In
our current implementation, we set £ = 5.

In this fashion, we generated some CEs when they were
available and one CI. Of course, it is possible to generate
more than one of the latter, e.g., by repeating the second
step. However, so far we have not found a good way of
doing this.

5.7. The Frequency of Enumeration

Because the primary aim of using the heuristic in a branch-
and-cut framework is to find feasible solutions as early as
possible in the search tree, we use OCTANE heavily close
to the root node and subsequently reduce its usage as we go
deeper in the branch-and-cut tree. For the first five levels
of the branch-and-cut tree, we use OCTANE at every node.
Subsequently, we use OCTANE once every eight nodes of
the branch-and-cut tree.

6. COMPUTATIONAL TESTING OF OCTANE
6.1. The Test Bed

We tested OCTANE on a wide variety of pure 0-1 pro-
grams arising from applications. Many of our test prob-
lems are taken from MIPLIB, a publicly available library
of real-world mixed integer programs compiled by Bixby
et al. (1992). The GAPxx problems are generalized assign-
ment problems obtained from the OR-Library maintained
by Beasley (1990). TSP43 is a 43-city asymmetric traveling
salesman problem (see Balas et al. 1996 for a more detailed
discussion of this instance). Table 1 contains the character-
istics of the problems used in our test bed. Apart from the
fact that all these problems are pure 0-1 programs, they do
not share any particular problem structure.

To assess the difficulty of these problems, we solved all
of them to optimality with the branch-and-cut code MIPO
using Lift-and-Project cuts (Balas et al. 1996). The required
times reported in this paper refer to seconds on an HP720
Apollo desktop workstation with 64 megabytes of memory.
The linear programs were solved using CPLEX 3.0.

6.2. OCTANE Within MIPO

We implemented OCTANE and tested the different options
described in §5. Because we were interested in compar-
ing the performance of different parameter settings of
OCTANE and in comparing OCTANE to other heuristics,
in our basic tests we made sure that the branch-and-cut
algorithm did not gain any information on the feasible
points found by any of the heuristics. This guaranteed that
the nodes of the enumeration tree will be identical in all
runs, independent of the chosen heuristic. We also called

BaLAs, CERIA, DAWANDE, MARGOT, AND PATAKI / 219

Table 1. Problem characteristics.

Problem 0-1 Value of Value of Branch-and-Cut Branch-and-Cut
Name Constraints Variables LP Optimum IP Optimum Time Nodes
BM23 20 27 20.57 34 6.14 512
GAP51 32 192 568.64 563 8.02 398
GAP61 40 256 768.22 761 149.26 1966
GAP84 56 384 1126.13 1117 778.77 5956
LI152LAV 97 1989 4656.36 4722 4325.77 4624
LP4L 85 1086 2942.5 2967 64.32 190
LSEU 28 89 834.68 1120 12.59 468
MISCO1 53 82 57.00 563.5 12.47 358
MISCO03 95 159 1910.00 3360 48.34 646
MISCO07 212 259 1415.00 2810 7353.01 20336
MODO008 6 319 290.93 307 197.35 2488
MODO010 146 2655 6532.08 6548 60.92 22
P0033 15 33 2520.57 3089 2.56 138
P0201 133 201 6875.00 7615 154.74 976
P0282 241 282 176867.50 258411 38.13 266
P0291 252 291 1705.13 5223.749 6.09 30
P0548 535 548 3142.88 8691 10572.45 12716
P2756 755 2756 2688.75 3124 4199.08 1490
PIPEX 25 48 773.75 788.263 15.33 734
SENTOY 25 60 —17839.27 7772 14.27 180
TSP43 143 1177 5611 5620 209.61 520

the different heuristics from the same nodes of the enu-
meration tree, preventing one of the heuristics to find the
optimal solution of a problem just because it is the only
heuristic that is run on a particular node.

In the appendix we present the comparisons between run-
ning OCTANE on the octahedron versus the expanded octa-
hedron, and in the full space of variables versus the space
of fractional variables. Here we present our computational
results with the version that was found the best—namely
enumerating the facets of Q* in the fractional space.

We say that a feasible solution x to (IP) is acceptable if
it is within 10% of the optimal solution; that is, if x* is the
optimal solution to (IP), then we require |cx* — cx|/|cx*| <
0.1. In all the results reported, we list only the acceptable
feasible solutions. Also, these solutions are listed only if
they improve (the gap) upon the previous solution found
by at least 0.01%.

In Tables 2 and 3 we summarize the computational
results with OCTANE using the expanded octahedron in
the space of fractional variables. Table 2 summarizes the
times and quality of the solutions found by OCTANE. We
first show the time taken by branch-and-cut (B&C Time)
and OCTANE (OCTANE Time), respectively. The column
“OCTANE First” shows the percentage deviation from opti-
mality of the first feasible solution found by OCTANE. The
next column, “Time to First,” shows the time used by B&C,
with the embedded OCTANE, until this first solution was
found. The next two columns contain analogous informa-
tion for the best solution found by OCTANE (“OCTANE
Best” and “Time to Best”).

In Table 3 we compare, for all problems in our test bed,
the number of nodes needed for branch-and-cut (B&C)
against the number of nodes (and their percentage of the

total number) needed for B&C plus OCTANE to find the
first and best solutions, respectively.

A short summary of our results is as follows. We com-
puted how much time it takes B&C plus OCTANE to
find a feasible solution within 10% of the optimum for
the problems in the test bed. Then we divided this time
with the time it takes B&C without the heuristic to solve
the problem to optimality. The outcome is that OCTANE
finds a 10%-optimal solution within 20% of the time for
9 instances and within 50% of the time for 15 instances,
out of the total of 23. The time taken by OCTANE as a
percentage of the total time required by branch-and-cut to
solve the problem to optimality is, on average, 17%.

We also experimented with OCTANE in a different
mode, namely allowing MIPO to take advantage of the
information provided by the heuristic for pruning the search
tree, etc. On the same set of 21 MIPLIB problems, we
found that the total running time of MIPO 4+ OCTANE in
this mode was smaller than the running time of MIPO with-
out the heuristic in 12 cases and larger in 9 cases. On the
average, there was an overall gain in the running time due
to OCTANE, but this gain was only on the order of 1%.
The explanation for this lies in the fact that when a best
first branching strategy is used, as is the case with MIPO,
having better upper bounds (in a minimization problem)
due to the use of a heuristic is of only limited help in prov-
ing the optimality of a solution. The main advantage of
the heuristic is not that it radically reduces total comput-
ing time—which is not the case—but that it provides good
solutions relatively early in the run.

With this in mind, we set out to run OCTANE on
some difficult problems whose solution to optimality would
require very long runs, to explore its usefulness in finding
good solutions in a reasonable time.

220 / Bavras, CERIA, DAWANDE, MARGOT, AND PATAKI

Table 2. Computational results with Q* in the fractional space—w.r.t. time.

B&C OCTANE OCTANE Time to OCTANE Time to
Problem Time Time First First Best Best
Name (sec) (sec) (% from opt) (sec) (% from opt) (sec)
BM23 6.14 2.24 0.00 0.65 0.00 0.00
GAP51 8.02 5.13 0.005 4.36 0.001 7.62
GAP61 149.26 21.32 0.00 19.85 0.00 19.85
GAP84 778.77 41.22 0.01 422 0.00 173.06
LI152LAV 4325.77 96.23 0.01 53.07 0.00 3631.16
LP4L 64.32 15.72 0.00 57.96 0.00 57.96
LSEU 12.39 2.39 0.03 6.03 0.00 10.12
MISCO1 12.47 2.11 0.06 2.57 0.06 2.57
MISCO03 48.34 3.86 0.08 2.81 0.00 14.68
MISCO07 7353.01 93.29 e ok ok ke
MODO008 197.35 16.43 0.0003 0.01 0.00 1.16
MODO010 60.92 6.52 0.0007 50.41 0.0007 50.41
P0033 2.56 0.63 0.001 1.12 0.00 3.01
P0201 154.74 8.97 0.00 146.21 0.00 146.21
P0282 38.13 6.71 0.002 26.16 0.0008 37.82
P0291 6.09 2.68 0.02 2.50 0.00 5.95
P0548 10572.45 948.23 0.01 3288.71 0.01 3288.71
P2756 4199.08 429.07 0.03 1572.84 0.00 4213.06
PIPEX 15.33 2.29 0.001 1.15 0.00 6.01
SENTOY 14.27 2.81 0.001 2.20 0.00 11.76
TSP43 209.61 6.07 0.0008 4.14 0.00 52.24
Table 3. Computational results with Q* in the fractional space—w.r.t. number of

nodes.
OCTANE OCTANE OCTANE OCTANE

Problem B&C First First Best Best
Name Nodes (# of nodes) (% of nodes) (# of nodes) (% of nodes)
BM23 512 0 0.00 0 0.00
GAP51 398 29 7.28 104 26.13
GAP61 1966 208 10.57 208 10.57
GAP84 5956 24 0.40 1016 17.05
L152LAV 4624 25 0.54 3704 80.10
LP4L 190 80 42.10 80 42.10
LSEU 468 96 20.51 192 41.02
MISCO1 358 17 4.74 17 4.74
MISCO03 646 6 0.92 120 18.57
MODO008 2488 0 0.00 0 0.00
MODO010 22 2 9.09 2 9.09
P0033 138 56 40.57 120 86.95
P0201 976 712 72.95 712 72.95
P0282 266 72 27.06 112 42.10
P0291 30 2 6.66 13 43.33
P0548 12716 1632 12.83 1632 12.83
P2756 1490 304 20.40 936 62.81
PIPEX 734 8 1.08 120 16.34
SENTOY 180 0 0.00 160 88.88
TSP43 520 0 0.00 152 29.23

Table 4. Characteristics of the more difficult problems.
Problem 0-1 Value of Value of
Name Constraints Variables LP Optimum IP Optimum
CAP6000 2176 6000 —2451537.325 —2451377
HARP2 112 2993 —74353341.502 —73899798
AIR04 823 8904 55535.436 56137
AIROS 426 7195 25877.609 26374
STEIN45 331 45 22 30

6.3. Computational Results on
More Difficult Problems

The problems we chose for this purpose are cap6000,
steind5, air04, air05, and harp2 from MIPLIB. With the
time limit set to 3 hours, these problems could not be
solved to optimality with the version of MIPO used in our
experiments. The characteristics of these problems are sum-
marized in Table 4.

We first ran OCTANE (enumerating the facets of Q* in
the space of fractional variables) with the setting used in
the previous experiments, i.e., enumerating at every node
for the first five levels of the branch-and-cut tree, and at
every eight nodes afterwards. This way, OCTANE found
acceptable feasible solutions only for cap6000 and stein45.

Next, we ran OCTANE at every node of the search tree.
The results are summarized in Table 5, where the column
headings are to be interpreted as in Table 2. The conclusion
of this experiment is:

e On more difficult problems OCTANE must be run
more frequently to find acceptable solutions.

e Nevertheless, with the exception of air05, it does find
such solutions early, with the total time spent on the enu-
meration not exceeding 17% of the total running time.

6.4. Comparison with Pivot-and-Complement

The Pivot-and-Complement heuristic developed by Balas
and Martin (1980) is one of the few available procedures
in the literature for generating feasible solutions to 0-1
programs. A later version of this heuristic, called Pivot-
and-Shift (Balas and Martin 1986), can also handle mixed
integer programs. We compared OCTANE with Pivot-and-
Shift as implemented by C.H. Martin. We had six variants
of Pivot-and-Shift at our disposal, and we ran all of them.

Table 5. Computational results on the more difficult
problems.
OCTANE OCTANE

B & C OCTANE to First Time OCTANE Time
Problem Time Time (% from First (% from to Best
Name (sec) (sec) opt) (sec) opt) (sec)
CAP6000 10,800* 1131 0.02 5.13 0.02 975
HARP2 10,800* 1267 0.01 2606 0.01 2606

AIR04 10,800 3723 0.02 3071 0.02 3071
AIRO5 10,800* 2680 0.10 7575 0.10 7575
STEIN45 10,800* 281 0.07 12 0.03 120

*Time limit exceeded.

BaLas, CERIA, DAWANDE, MARGOT, AND PAaTAKI / 221

In our experience versions 1-3 behave similarly to each
other, and so do versions 4-6. Therefore, when reporting
the results in a column titled P&S1-3 [P&S4-6] we always
report the best solution found by one of the versions 1-3
[4-6].

The results of the comparison are detailed in Tables 6
and 7. The entries in the column titled Gap (solution value)
contain the values of the ratio |cx* — cx|/|cx*| for the solu-
tions x found for each problem, in the order in which
they were found, with the corresponding solution value in
parenthesis. The next three columns, one for each of the
three heuristics compared (OCTANE, Pivot-and-Shift ver-
sions 1-3, and Pivot and Shift versions 4-6), contain the
node of the search tree at which the given heuristic found
the solution in question. A blank means that the solution in
question was not found by the given heuristic (it was found
by another one). For instance, consider problem LSEU.
Heuristic P&S4-6 finds a solution with relative gap 0.05
at node 12. OCTANE does not find a solution with exactly
this gap; it reaches the performance level of 0.05 at node
96 by finding a feasible solution with gap equal to 0.03.

The reason for comparing the number of nodes, rather
than the times, required to reach a specified gap is that the
Pivot-and-Shift code available to us is the implementation
of a stand-alone heuristic, complete with its own version
of the simplex method, which does not lend itself easily to
interfacing with MIPO; and the interface that we created is
time-wise inefficient, considerably slower than OCTANE.
In terms of nodes, Pivot-and-Shift performs clearly better
than OCTANE on four problems (MISCO1, GAP84, PO033,
and TSP43). OCTANE has better performance on eight of
the problems (BM23, GAP51, L152LAV, LP4L, MISC07,
MODO008, MODO10, and P0548), and the results are similar
on the other problems (or very different for the two sets of
variants of Pivot-and-Shift; problem P2756 is a case point).
This shows that OCTANE is competitive with Pivot-and-
Shift, even if the CPU time requirements, much larger for
Pivot-and-Shift for the reason shown, are not taken into
account.

6.5. Conclusions

Our computational experiments show that OCTANE is an
efficient heuristic for 0-1 programs.

e OCTANE can be successfully embedded within a
branch-and-cut procedure.

e OCTANE is an efficient and robust heuristic for pure
0-1 programs. One of its main advantages is that it works
well on a variety of problems with different structures.

o Comparisons with the Pivot-and-Shift heuristics show
that OCTANE is a competitive alternative to Pivot-and-
Shift.

e For some problems, OCTANE and the Pivot-and-Shift
heuristics complement each other. Using both heuristics at
different places in the enumeration tree could be an inter-
esting hybrid strategy.

222 /| Bavras, CERIA, DAWANDE, MARGOT, AND PATAKI

Table 6. Comparison between OCTANE and Pivot- Table 7. Comparison between OCTANE and Pivot-
and-Shift 1. and-Shift 2.
Problem Gap OCTANE P&S 1-3 P&S 4-6 Problem Gap OCTANE P&S 1-3 P&S 4-6
Name (Solution Value) Nodes Nodes Nodes Name (Solution Value) Nodes Nodes Nodes
BM23 0.03 (35) 0 0 MODO010 0.001 (6553) 2 +++ +++
OPT (34) 0 26 26 MOD008 0.003 (308) 0 0
GAP51 0.01(557) 2 0 OPT (307) 0 1 7
0.007 (559) 1 P0033 0.08 (3347) 56 0 0
8324 (556631) % é 7525 g OPT (3089) 192 12 12
(563) P0201 0.08 (8245) 3
GAP61 0.03(739) 0 0.06 (8055) 48
0.02 (743) 0 14 0.05 (7955) 11
0.01(751) 28 o) 0.04 (7925) 128 22
0.009 (754) 27 0.01(7715) 704 704
e onen
004 (758) PO282 0.08(278004) 21
0.001 (760) 208
OPT (761) 432 648 15 0.07(276088) 56
0.008 (260374) 72
GAP84 0.008 (1108) 0 0.005 (259814) 72
0.006 (1110) 48 9 0.003 (258184) 72
0.005 (1111) 23 0.002 (258873) 144
%3%2 (111111 75) 016 51% 136 0.001 (258723) 112 144
(1117) B P0291 0.02 (5350) 2 2 2
L152LAV 0.01(4781) 25 ++ ++ 0.00 (5223.75) 13 13
0.006 (4749) 28 ++ ++ OPT (5223.0) 13
ot gg (‘2‘;? 372‘0‘ t t POS48 0.006(8744) 1632 +++ +++
(2967) tAh At P2756 0.08(3376) o+ 0
LSEU 0.05 (1170) 12 0.07 (3340)
0.03 (1157) 96 0.03 (3227) 304
0.02(1145) 28 0.02(3192) 680
0.01(1136) 32 32 0.01(3163) 856
OPT (1120) 192 - - OPT (3124) 936
MISCO1 0.06 (595.0) 17 17 17 PIPEX 0.002 (789.9) 8
0.02 (574.7) - 216 216 OPT 112 112
MISCO03 0.08 (3640) 6 2 2 SENTOY 0.01(—7700) 0
OPT (3360) 120 120 120 0.002 (—7758) 0 30
MISCO7 0.03 (2895) 7504 +++ +++ 0.001 (—7761) 72 10
OPT (=7772) 160
TSP43 0.003 (5636) 2 0
APPENDIX 0.001 (5625) 0 0
In this appendix we present the detailed results on the basis OPT (5620) 152 20 2

of which we decided to run OCTANE in the subspace of
fractional variables (as opposed to the full space), using the
expanded octahedron Q* (as opposed to K*).

For each problem, we report the details of the acceptable
feasible solutions as a 4-tuple

(NODE, VALUE, TIME, GAP),

where

e NODE indicates the node at which the solution was
found.

e VALUE indicates the objective function value of the
solution.

e TIME indicates the time at which the solution was
found.

e GAP indicates the normalized “gap” for the solution
by giving its relative deviation from the optimum. If x is
the heuristic solution and x* is the optimal solution, the
normalized gap is |cx* — cx|/|cx*|.

Tables A.1 and A.2 contain the computational results for
OCTANE, both for the octahedron and the expanded octa-
hedron, in different spaces of enumeration (“Full Space”
and “Fractional Space”). The column “TTime” contains the
total time used by the heuristic throughout the entire run.

The tables clearly show that using the fractional space is
better than using the full space. Despite the fact that less
feasible points are found when using the fractional space,
the quality of the points is similar. The time at which points
of similar quality are found is usually smaller with the frac-
tional space, although there are a few exceptions (LP4L,
LSEU, P0033, P0291, and TSP43). On GAPxx, L152LAYV,
MISCO1, MODO010, P0282, and P0548, the fractional space
clearly dominates the full space. The total CPU time is also
overwhelmingly in favor of the fractional space.

Comparing the results obtained with the octahedron and
the expanded octahedron in the fractional space, we note

BaLas, CERIA, DAWANDE, MARGOT, AND PaTakl / 223

Table A.1. K™ in full space versus the space of fractional variables.
K*
Full Space Fractional Space
Problem
Name Solution TTime Solution TTime
BM23 (2,34,0.02,0.00) 5.16 (0,34,0.42,0.00) 1.93
GAP51 (152,561,20.67,0.003) 13.41 (29,560,3.51,0.005) 4.41
GAP61 (656, 759, 115.53, 0.002) (208,760,15.32,0.001)
(696, 761, 124.65,0.00) 46.38 (448,761,38.03,0.00) 12.27
GAP84 (624,1115,172.57,0.001) (2008,1117,399.49,0.00) 28.11
(1272,1116,494.46,0.0008)
(1856,1117,620.30,0.00) 98.29
LP4L (4,2967,1.03,0.00) 55.43 (80,2967,52.83,0.00) 11.86
LSEU (5,1169, 0.06,0.04) (96,1157,5.59,0.03)
(7,1148,0.09,0.02) (192,1120,9.92 ,0.00) 1.96
(32,1120,0.62,0.00) 6.85
MISCO1 (200,574.5,16.37,0.02) 4.53 (104, 595.0,6.72,0.06) 1.81
MISCO03 (40,3640,10.34,0.08) 11.23 (6,3640,2.54,0.08)
(120,3360,13.75,0.00) 3.08
MISCO7 ook 171.40 HkkE 54.12
MODO008 (0,310, 0.00, 0.009) (0,308,0.01,0.0003)
(7, 307, 0.22, 0.00) 37.30 (1,307,0.86,0.00) 12.31
MODO010 (15,7083,114.36,0.08) 62.37 (2,6553,50.13,0.0007) 5.97
P0033 (3,3089,0.03,0.00) 1.49 (17,3095,0.81,0.001)
(96,3089,2.73,0.00) 0.66
P0201 (264,7975,63.65,0.04) (712,7615,142.81,0.00) 5.36
(720,7615,180.24,0.00) 20.12
P0282 (72,264009,49.81,0.02) (72,259184,24.89,0.002)
(128,263902,72.08,0.02) (112,258643,36.58,0.0008) 5.96
(208,262550,91.03,0.01)
(440,259436,149.98,0.003) 22.32
P0291 (2,5350,0.06,0.02) (2,5350.1,2.14,0.02)
(7,5311,0.17,0.01) 6.80 (13,5223.7,5.51,0.00) 2.23
P0548 +++ +++ (1632,8744,3201.53,0.01) 764.13
P2756 (232,3174,1773.01) (304,3227,1533.17,0.03)
(560,3134,3951.09,0.003) (320, 3175,1580.28,0.01)
(632,3125,4357.93,0.00) 1370.24 (856,3163,3840.73,0.01)
(936,3124,4144.06,0.00) 322.97
PIPEX (144,788.3,10.83,0.00) 6.28 (208,788.3,7.42,0.00) 2.10
SENTOY (0,—7761,1.87,0.001) (0,—7758,2.18,0.001)
(160,—7772,12.16,0.00) 3.20 (160,—7772,11.85,0.00) 2.72
TSP43 (0,5967,0.02,0.06) (3,5633,5.48,0.0005)
(1,5625,0.15,0.0008) (144,5627,47.38,0.001)
(3,5620,0.30,0.00) 92.66 (432,5620,166.73,0.00) 6.14

***No feasible solution found.
**+*+Time limit exceeded.

that, as expected, the total time for the expanded octa-
hedron is larger than the time for the octahedron. The
worst ratio of these times is obtained on GAP61 and
MISCO7, where it approaches 2—very far from the theo-
retical worst case of n. If we look at the node at which
the optimal (or best) solution is found, however, we find
that the expanded octahedron is never worse than the
octahedron. In terms of the time at which the solution

is found, the problems may be roughly divided in two
groups. The first one contains the problems for which both
heuristics find identical solutions at identical nodes (BM23,
LP4L, LSEU, MISC03, MISCO07, MODO10, P0201, P0282,
P0291, P0548, P2756, and SENTOY) where the expanded
octahedron is slightly slower than the octahedron. On the
other problems, however, the latter is clearly superior to
the former.

224 /| BavLas, CERIA, DAWANDE, MARGOT, AND PATAKI

Table A.2. Q* in full space versus the space of fractional variables.
Q*
Full Space Fractional Space
Problem
Name Solution TTime Solution TTime
BM23 (2,34,0.03,0.00) 5.83 (0,34,0.65,0.00) 2.24
GAP51 (0,559,0.89,0.01) (29,560,4.36,0.005)
(7,560,3.27,0.005) (104,562,7.62,0.001) 5.13
(16,563,8.11,0.00) 20.12
GAP61 (152,755,31.40,0.007) (208,761,19.85,0.00) 21.32
(360,759,61.91,0.002)
(432,760,83.21,0.001)
(448,761,84.01,0.00) 80.65
GAP84 (48,1111,20.16,0.01) (24,1110,4.22,0.01)
(1024,1112,233.68,0.004) (672,1116,102.11,0.00)
(1080,1117,249.85,0.00) 217.90 (1016,1117,173.06,0.00) 41.22
L152LAV +++ +++ (25,4781,53.07,0.01)
(28.4749,55.72,0.01)
(3704,4722,3631.16,0.00) 96.23
LP4L (4,2967,2.91,0.00) 191.36 (80,2967,57.96,0.00) 15.72
LSEU (5,1169, 0.08,0.04) (96,1157,6.03,0.03)
(7,1148,0.02,0.11) (192,1120,10.12 ,0.00) 2.39
(32,1120,0.68,0.00) 11.01
MISCO1 (17,595.5,3.21,0.06) 5.10 (17,595.5,2.57,0.06) 2.11
MISCO03 (6,3640,3.66,0.08) (6,3640,2.81,0.08)
(120,3360,24.79,0.00) 20.68 (120,3360,14.68,0.00) 3.86
MISCO07 ok 379.33 Ak 93.29
MODO008 (0,310,0.00,0.0003) (0,308,0.01,0.0003)
(7,307,0.62,0.00) 206.71 (0,307,1.16,0.00) 16.43
MODO010 (15,7083,894.18,0.08) 912.73 (2,6553,50.41,0.0007) 6.52
P0033 (3,3089,0.03,0.00) 1.89 (56,3095,1.12,0.001)
(120,3089,3.01,0.00) 0.63
P0201 (264,7975,67.47,0.04) (712,7615,146.21,0.00) 8.97
(720,7615,185.37,0.00) 25.37
P0282 (72,264009,50.66,0.02) (72,259184,26.16,0.002)
(128,263902,73.13,0.02) 27.96 (112,258643,37.82,0.0008) 6.71
(208,262550,92.39,0.01)
(440,259436,150.85,0.003)
P0291 (2,5350.1,0.07,0.02) (2,5350.1,2.50,0.02)
(7,5311,0.19,0.01) 8.40 (13,5223.7,5.95,0.00) 2.68
P0548 +++ +++ (1632,8744,3288.71,0.01) 948.23
P2756 (232,3174,4090.17,0.01) (304,3227,1572.84,0.03)
(560,3134,6240.08,0.003) (680,3192,3528.40,0.02)
(632,3125,6643.44,0.00) 3675.05 (856,3163,3901.25,0.01)
(936,3124,4213.06,0.00) 429.07
PIPEX (8,789.9,1.24,0.001) (8,789.9,1.15,0.001)
(22,788.3,3.36,0.00) 8.14 (120,788.3,6.01,0.00) 2.29
SENTOY (0,—7761,1.94,0.001) (0,—7758,2.20,0.001)
(160,—7772,12.81,0.00) 4.12 (160,—7772,11.76,0.00) 2.81
TSP43 (0,5625,0.02,0.008) (0,5625,4.14,0.00)
(3,5620,0.37,0.00) 123.35 (152,5620,52.24,0.00) 6.07

**No feasible solution found.
t+*Time limit exceeded.

ACKNOWLEDGMENT

This research was in part supported by the National Sci-
ence Foundation through grants DMI-9424348 and DMS-
9509581 and by the Office of Naval Research through
contract N00014-89-J-1063.

REFERENCES

Avis, D., K. Fukuda. 1991. A pivoting algorithm for convex
hulls and vertex enumeration of arrangements and polyhe-
dra. Proc. 7th ACM Symposium on Comput. Geometry, North
Conway, NH, 98-104.

Balas, E. 1971. Intersection cuts - a new type of cutting planes
for integer programming. Oper. Res. 19 19-39.

—. 1972. Ranking the facets of the octahedron. Discrete Math.
2(1) 1-15.

— . 1972. Integer programming and convex analysis: intersec-
tion cuts from outer polars. Math. Programming 2 330-382.

—, J. Bowman, E. Glover, D. Sommer. 1971. An intersec-
tion cut from the dual of the unit hypercube. Oper. Res. 19
40-44.

——, C. Martin. 1980. Pivot and complement—a heuristic for
0-1 programming. Management Sci. 26(1) 224-234.

. 1986. Pivot and shift—a heuristic for mixed integer
programming. GSIA, Carnegie Mellon University.

—, A. Zoltners. 1975. Intersection cuts from outer polars of
truncated cubes. Naval Res. Logist. Quart. 22 977-996.
——, S. Ceria, G. Cornuéjols. 1996. Mixed 0-1 programming by
lift-and-project in a branch-and-cut framework. Management

Sci. 42 1229-1246.

s

BaLas, CErRiIA, DAWANDE, MARGOT, AND PaTAKI / 225

Beasley, J. E. OR-Library. 1990. Distributing test problems by
electronic mail. J. Oper. Res. Soc. 41(11) 1069-1072.

Bixby, R. E., E. A. Boyd, R. R. Indovina. 1992. MIPLIB:
a test set of mixed integer programming problems. SIAM
News 16.

Burdet, C. A. 1972. Enumerative inequalities in integer program-
ming. Math. Programming 2 32-64.

Faaland, B. H., F. S. Hillier. 1979. Interior path methods for
heuristic integer programming procedures. Oper. Res. 27
1069-1087.

Glover, F. 1972. Cut search methods in integer programming.
Math. Programming 3 86—100.

—. 1968. A note on linear programming and integer feasibility.

Oper. Res. 16 1212-1216.

. 1977. Heuristics for integer programming using surrogate

constraints. Decision Sci. 9 156-166.

, M. Laguna. 1997. Tabu Search. Kluwer Academic Publish-

ers, New York.

Hoffman, K., M. Padberg. 1993. Solving airline crew schedul-
ing problems by branch-and-cut. Management Sci. 39
657-682.

Ibaraki, T., T. Ohashi, H. Mine. 1974. A heuristic algorithm for
mixed integer programming problems. Math. Programming
Study 2 115-136.

Padberg, M., G. Rinaldi. 1991. A branch-and-cut algorithm for
the resolution of large-scale symmetric traveling salesman
problems. STAM Rev. 33 60—100.

Tarjan, R. E. 1983. Data structures and network algorithms. SIAM,
Philadelphia, PA.

