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A primal-dual pair of conic LP

sup 〈c, x〉 inf 〈b, y〉

(P ) s.t. Ax ≤K b s.t. A∗y = c (D)

y ≥K∗ 0

Here

•K : closed convex cone;

•K∗ = {y|〈y, x〉 ≥ 0, ∀x ∈ K} dual cone of K;

• s ≤K t⇔ t− s ∈ K;



A primal-dual pair of conic LP

sup 〈c, x〉 inf 〈b, y〉

(P ) s.t. Ax ≤K b s.t. A∗y = c (D)

y ≥K∗ 0

•Weak duality is easy: 〈c, x〉 ≤ 〈b, y〉.

•But: positive gaps, nonattainment can happen.

• ‘”Usual” Farkas’ lemma for say (D) only works, if

dist({y|A∗y = c},K∗}) > 0

• (This is called strong infeasibility)

• infeasible, but not strongly = weakly infeasible
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Plan: Exact duals and certificates of infeasibility,
which

• are “almost” as simple as the usual dual and
Farkas’ lemma;

• yield basic results in convex analysis;

• yield practical algorithms to generate instances.

• Remark: paper deals with duals of (P ) and of
(D) as well;

• Here we look at (weak) infeasibility of (D)

• Main idea: weakly infeasible = infeasible + not
strongly infeasible.



Tool 1: Facial Reduction Cone

FRk(K)={(y1, . . . , yk) : yi ∈ (K ∩ y⊥1 ∩ . . . ∩ y
⊥
i−1)∗, ∀i}.

Convex cone (!) which is almost as good as K∗:

•
(
(y1, z1), . . . , (yk, zk)

)
∈ FRk(K × C)⇔(

y1, . . . , yk
)
∈ FRk(K) and

(
z1, . . . , zk

)
∈ FRk(C)

(k = 1 case : (K × C)∗ = K∗ × C∗)



Tool 2: elementary reformulation

sup 〈c, x〉 inf 〈b, y〉

(P ) s.t. Ax ≤K b s.t. A∗y = c (D)

y ≥K∗ 0

• Do elementary row operations on the (D) con-
straints

〈ai, y〉 = ci (i = 1, . . . ,m)

• b← b+Aµ, µ ∈ Rm.

• If K = K∗ also allow

ai← Tai ∀i, b← Tb, whereT ∈ Aut(K)



Theorem: (D) infeasible ⇔ it has an elem.
reformulation:

〈a′i, y〉 = 0 (i = 1, . . . , k)

〈a′k+1, y〉 = −1

...

y ≥K∗ 0

(Dref)

where k ≥ 0, (a′1, . . . , a
′
k+1) ∈ FRk+1(K∗).

Reminder:

(a′1, . . . , a
′
k+1) ∈ FRk+1(K∗) ⇔

a′i ∈ (K∗ ∩ a′⊥1 ∩ . . . ∩ a
′⊥
i−1)∗ ∀i



Theorem: (D) infeasible ⇔ it has a reformulation:

〈a′i, y〉 = 0 (i = 1, . . . , k)

〈a′k+1, y〉 = −1

...

y ≥K∗ 0

(Dref)

where k ≥ 0, (a′1, . . . , a
′
k+1) ∈ FRk+1(K∗).

→ “Row echelon form” of conic LPs
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Theorem: (D) infeasible ⇔ it has a reformulation:

〈a′i, y〉 = 0 (i = 1, . . . , k)

〈a′k+1, y〉 = −1

...

y ≥K∗ 0

(Dref)

where k ≥ 0, (a′1, . . . , a
′
k+1) ∈ FRk+1(K∗).

Proof of “⇐ ” : Suppose y feasible in (Dref)

⇒ y ∈ K∗ ∩ a′⊥1 ∩ · · · ∩ a
′⊥
k



Theorem: (D) infeasible ⇔ it has a reformulation:

〈a′i, y〉 = 0 (i = 1, . . . , k)

〈a′k+1, y〉 = −1

...

y ≥K∗ 0

(Dref)

where k ≥ 0, (a′1, . . . , a
′
k+1) ∈ FRk+1(K∗).

Proof of “⇐ ” : Suppose y feasible in (Dref)

⇒ y ∈ K∗ ∩ a′⊥1 ∩ · · · ∩ a
′⊥
k

⇒ 〈a′k+1, y〉 ≥ 0.



Theorem: (D) infeasible ⇔ it has a reformulation:

〈a′i, y〉 = 0 (i = 1, . . . , k)

〈a′k+1, y〉 = −1

...

y ≥K∗ 0

(Dref)

where k ≥ 0, (a′1, . . . , a
′
k+1) ∈ FRk+1(K∗).

→ Can generate all infeasible instances for SDP,
and SOCP as:
generate instances as above, then reformulate



In SDP, we can assume the a′i to look like



Example


1 0 0

0 0 0

0 0 0

 • y = 0


0 0 1

0 1 0

1 0 0

 • y = −1

y � 0



Theorem: (D) is not strongly infeasible ⇔ there is

(y1, . . . , y`+1) ∈ FR`+1(K) where ` ≥ 0

such that

A∗yj = 0 (j = 1, . . . , `)

A∗y`+1 = c.

• Special case: if ` = 0, then (D) is feasible.

(FR1(K) = K∗)



Weakly infeasible = infeasible + not strongly
infeasible

→ Many nice corollaries.



Connection to convex analysis

• Classic question: when is the linear image of a closed convex
cone closed?

• Rephrased: when is A∗K∗ closed?

• Rockafellar; Bauschke-Borwein (1999);
Borwein-Moors (2009-10)

• Pataki 2007: some nec., some suff. conditions

• → exact characterization, when K = K∗ = psd cone

• Origin of “Bad semidefinite programs” paper.



Connection to this work

• A∗K∗ is not closed ⇔ ∃c s.t.

A∗y = c

y ≥K∗ 0
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Connection to this work

• A∗K∗ is not closed ⇔ ∃c s.t.

A∗y = c

y ≥K∗ 0
(D)

is weakly infeasible.

More precisely:
front(A∗K∗) := cl(A∗K∗) \A∗K∗

= { c | (D) is weakly infeasible }
front(A∗K∗) is the frontier of A∗K∗



Example

A∗y = (y11, y22 + 2y13, y11 + y22)

where y is a symmetric 3× 3 matrix

A∗S3
+ is blue, frontier is green

∀c ∈ front(A∗S3
+) we can prove (D) is weakly infeasible.



Theorem A∗K∗ is not closed ⇔ ∃k ≥ 1, ` ≥ 1 s.t.

• ∃(a1, . . . , ak+1) ∈ FRk+1(K
∗) s.t. ai ∈ R(A)∀i;

• ∃ (y1, . . . , y`+1) ∈ FR`+1(K) s.t. yj ∈ N(A∗)∀j ≤ `
• s.t.

〈ai, y`+1〉 =

 0 if i ≤ k

−1 if i = k + 1.

• Easy to see how it subsumes earlier conditions, e.g. P 2007



Theorem A∗K∗ is not closed ⇔ ∃k ≥ 1, ` ≥ 1 s.t.

• ∃(a1, . . . , ak+1) ∈ FRk+1(K
∗) s.t. ai ∈ R(A)∀i;

• ∃ (y1, . . . , y`+1) ∈ FR`+1(K) s.t. yj ∈ N(A∗)∀j ≤ `
• s.t.

〈ai, y`+1〉 =

 0 if i ≤ k

−1 if i = k + 1.

• Characterizes when K∗ + F⊥ is not closed, where F is a
face of K : take A s.t. Null(A∗) = F⊥

• Cone K is nice if K∗ + F⊥ is closed ∀F faces of K.

• Previous work by Chua-Tuncel; Pataki;
Roschina; Roschina-Tuncel



Connection to computational SDP

• Want to generate challenging infeasible, and weakly infea-
sible SDPs

• Infeasible SDPs: Find A, c s.t. (D) is infeasible in row
echelon form.

• Also, the a′i look like:



Connection to computational SDP

• Previous work by Waki: generate weakly infeasible instances
from Lasserre relaxation for poly opt



Connection to computational SDP: our work

• We find weakly infeasible instances, as:

• Find A, c s.t. (D) infeasible in row echelon form.

• Find (y1, . . . , y`+1) ∈ FR`+1(Sn+) s.t.

A∗yj = 0 (j = 1, . . . , `)

A∗y`+1 = c.

(to prove it is not strongly infeasible)

• Difficult in general: bilinear system of equations



Connection to computational SDP

Easy if:



Computational testing

• Clean instances: the ai are as shown before

• Messy instances: we applied random row operations and a
rotation

• PP + SEDUMI =
Permenter, Parrilo partial facial reduction + Sedumi

• “Innocent looking” instances: small numbers, small condi-
tion number of constraint matrix.

• n=10; m=10; or m=20

• we can manually verify infeasibility in exact arithmetic.



Computational testing

We report # of successes out of 100



Conclusion: Exact duals and certificates of
infeasibility, which

• are “almost” as simple as the usual dual and Farkas’ lemma;

• yield basic results in convex analysis;

• yield practical algorithms to generate instances.

• Key point: weakly infeasible = infeasible + not strongly
infeasible

• Remark: More material in paper: duals of (P ) and of (D)
as well;



Happy birthday! Thank you!


