Exact duals and short certificates of infeasibility and weak infeasibility in conic linear programming

Gábor Pataki

Department of Statistics and Operations Research UNC Chapel Hill

joint work with Minghui Liu Shinji Mizuno's birthday conference

A primal-dual pair of conic LP

 $\sup \ \langle c,x
angle \qquad ext{inf} \ \langle b,y
angle \ (P) \ s.t. \ Ax \ \leq_K b \ s.t. \ A^*y \ = \ c \ (D) \ y \ \geq_{K^*} 0$

Here

- *K* : closed convex cone;
- $K^* = \{y | \langle y, x \rangle \ge 0, \forall x \in K\}$ dual cone of K;
- $s \leq_K t \Leftrightarrow t s \in K;$

A primal-dual pair of conic LP

 $\sup \ \langle c,x
angle \qquad ext{inf} \ \langle b,y
angle \ (P) \ s.t. \ Ax \ \leq_K b \ s.t. \ A^*y \ = \ c \ (D) \ y \ \geq_{K^*} 0$

- Weak duality is easy: $\langle c, x \rangle \leq \langle b, y \rangle$.
- But: positive gaps, nonattainment can happen.
- "Usual" Farkas' lemma for say (D) only works, if $dist(\{y|A^*y=c\},K^*\}) > 0$
- (This is called strong infeasibility)
- infeasible, but not strongly = weakly infeasible

Literature:

- Ramana 1995 exact extended SDP dual
- Ramana, Tuncel, Wolkowicz, 1997
- Klep, Schweighofer 2013
- Waki, Muramatsu 2013: variant of facial reduction of
- Borwein, Wolkowicz 1981
- P 2011 Bad semidefinite programs: they all look the same
- P, 2013 simplifed facial reduction, and generalization of Ramana's dual
- Liu, P, 2014 elementary reformulations of SDPs

- Lourenco et al 2013 analysis of weakly infeasible SDPs
- Waki 2012 how to generate weakly infeasible SDPs from poly opt
- Permenter, Parrilo, 2014 partial facial reduction
- Faulk, P, Tran-Dinh, 2016 simple facial reduction

Plan: Exact duals and certificates of infeasibility, which

• are "almost" as simple as the usual dual and Farkas' lemma;

- yield basic results in convex analysis;
- yield practical algorithms to generate instances.

• Remark: paper deals with duals of (P) and of (D) as well;

• Here we look at (weak) infeasibility of (D)

• Main idea: weakly infeasible = infeasible + not strongly infeasible.

Tool 1: Facial Reduction Cone

 $FR_k(K) = \{(y_1, \dots, y_k) : y_i \in (K \cap y_1^{\perp} \cap \dots \cap y_{i-1}^{\perp})^*, \forall i\}.$ Convex cone (!) which is almost as good as K^* :

• $((y_1, z_1), \dots, (y_k, z_k)) \in FR_k(K \times C) \Leftrightarrow$ $(y_1, \dots, y_k) \in FR_k(K) \text{ and } (z_1, \dots, z_k) \in FR_k(C)$

 $(k = 1 \, case : (K \times C)^* = K^* \times C^*)$

Tool 2: elementary reformulation

 $\sup \ \langle c,x
angle \qquad ext{inf} \ \langle b,y
angle \ (P) \ s.t. \ Ax \ \leq_K b \ s.t. \ A^*y \ = \ c \ (D) \ y \ \geq_{K^*} 0$

• Do elementary row operations on the (D) constraints

$$\langle a_i,y
angle=c_i\,(i=1,\ldots,m)$$

- $b \leftarrow b + A\mu, \ \mu \in \mathbb{R}^m.$
- If $K = K^*$ also allow

 $a_i \leftarrow Ta_i \,\forall i, \, b \leftarrow Tb, \, \text{where} \, T \in Aut(K)$

$$(a'_1,\ldots,a'_{k+1})\in FR_{k+1}(K^*)\Leftrightarrow a'_i\in (K^*\cap a'^{\perp}_1\cap\ldots\cap a'^{\perp}_{i-1})^*orall i$$

$$egin{aligned} &\langle a'_i,y
angle &=& 0\,(i=1,\ldots,k)\ &\langle a'_{k+1},y
angle &=& -1\ &&&& \ && \ &&& \ &&& \ &&& \ && \ &&& \ && \$$

Proof of " \Leftarrow " : Suppose *y* feasible in (D_{ref})

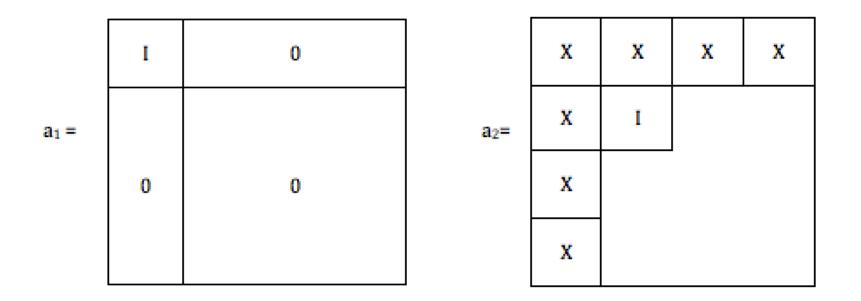
$$egin{aligned} &\langle a_i',y
angle &=& 0\ (i=1,\ldots,k)\ &\langle a_{k+1}',y
angle &=& -1\ && (D_{\mathrm{ref}})\ && & & & & & \ && & & & \ && & & & \ && & & & \ && & & \ && & & \ && & & \ && & & \ && & & \ && & & \ && & & \ && & & \ && & \ && & & \ && \ && & \ && \ && & \ &$$

where $k \ge 0, \, (a'_1, \ldots, a'_{k+1}) \in FR_{k+1}(K^*).$

 \rightarrow Can generate all infeasible instances for SDP, and SOCP as:

generate instances as above, then reformulate

In SDP, we can assume the a'_i to look like



...

Example

Theorem: (D) is not strongly infeasible \Leftrightarrow there is

 $(y_1,\ldots,y_{\ell+1})\in FR_{\ell+1}(K) ext{ where } \ell\geq 0$

such that

$$egin{array}{ll} A^*y_j &= 0\,(j=1,\ldots,\ell) \ A^*y_{\ell+1} &= c. \end{array}$$

• Special case: if $\ell = 0$, then (D) is feasible. $(FR_1(K) = K^*)$

Weakly infeasible = infeasible + not strongly infeasible

 \rightarrow Many nice corollaries.

Connection to convex analysis

• Classic question: when is the linear image of a closed convex cone closed?

- **Rephrased:** when is A^*K^* closed?
- Rockafellar; Bauschke-Borwein (1999); Borwein-Moors (2009-10)
- Pataki 2007: some nec., some suff. conditions
- \rightarrow exact characterization, when $K = K^* = \text{psd cone}$
- Origin of "Bad semidefinite programs" paper.

Connection to this work

• A^*K^* is not closed $\Leftrightarrow \exists c \text{ s.t.}$

$$\begin{array}{rcl} A^*y &=& c \\ & & \\ y &\geq_{K^*} 0 \end{array} \tag{D}$$

is weakly infeasible.

Connection to this work

• A^*K^* is not closed $\Leftrightarrow \exists c \text{ s.t.}$

 $\begin{array}{rcl} A^*y &=& c \\ & y &\geq_{K^*} 0 \end{array} \tag{D}$

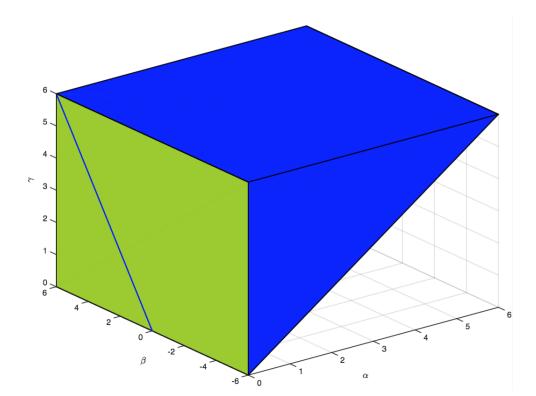
is weakly infeasible.

More precisely: $front(A^*K^*) := cl(A^*K^*) \setminus A^*K^*$ $= \{ c \mid (D) \text{ is weakly infeasible } \}$ $front(A^*K^*) \text{ is the frontier of } A^*K^*$

Example

 $A^*y = (y_{11}, y_{22} + 2y_{13}, y_{11} + y_{22})$

where y is a symmetric 3×3 matrix



 $A^* \mathbb{S}^3_+$ is blue, frontier is green $\forall c \in \text{front}(A^* \mathbb{S}^3_+)$ we can prove (D) is weakly infeasible.

Theorem A^*K^* is not closed $\Leftrightarrow \exists k \ge 1, \ell \ge 1$ s.t.

- $ullet \exists (a_1,\ldots,a_{k+1})\in FR_{k+1}(K^*) \;\; ext{s.t.} \;\;\;\; a_i\in R(A) \; orall i;$
- $\exists \ (y_1,\ldots,y_{\ell+1})\in FR_{\ell+1}(K) \ ext{ s.t. } y_j\in N(A^*) \ orall j\leq \ell$
- s.t.

$$\langle a_i, y_{\ell+1}
angle \ = \left\{ egin{array}{c} 0 \ ext{if} \ i \leq k \ -1 \ ext{if} \ i = k+1. \end{array}
ight.$$

• Easy to see how it subsumes earlier conditions, e.g. P 2007

Theorem A^*K^* is not closed $\Leftrightarrow \exists k \ge 1, \ell \ge 1$ s.t.

- ullet $\exists (a_1,\ldots,a_{k+1})\in FR_{k+1}(K^*) \hspace{0.2cm} ext{s.t.} \hspace{0.2cm} a_i\in R(A) \hspace{0.1cm} orall i;$
- $\exists \ (y_1,\ldots,y_{\ell+1})\in FR_{\ell+1}(K) \ ext{ s.t. } y_j\in N(A^*) \ \forall j\leq \ell$

• s.t.

$$\langle a_i,y_{\ell+1}
angle \ = \left\{egin{array}{c} 0 \ ext{if}\ i\leq k \ -1 \ ext{if}\ i=k+1. \end{array}
ight.$$

• Characterizes when $K^* + F^{\perp}$ is not closed, where F is a face of K: take A s.t. $\text{Null}(A^*) = F^{\perp}$

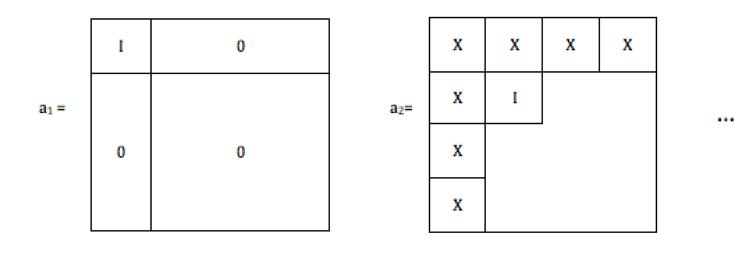
- Cone K is nice if $K^* + F^{\perp}$ is closed $\forall F$ faces of K.
- Previous work by Chua-Tuncel; Pataki; Roschina; Roschina-Tuncel

Connection to computational SDP

• Want to generate challenging infeasible, and weakly infeasible SDPs

• Infeasible SDPs: Find A, c s.t. (D) is infeasible in row echelon form.

• Also, the a'_i look like:



Connection to computational SDP

• Previous work by Waki: generate weakly infeasible instances from Lasserre relaxation for poly opt

Connection to computational SDP: our work

- We find weakly infeasible instances, as:
- Find A, c s.t. (D) infeasible in row echelon form.
- Find $(y_1,\ldots,y_{\ell+1})\in FR_{\ell+1}(\mathbb{S}^n_+)$ s.t.

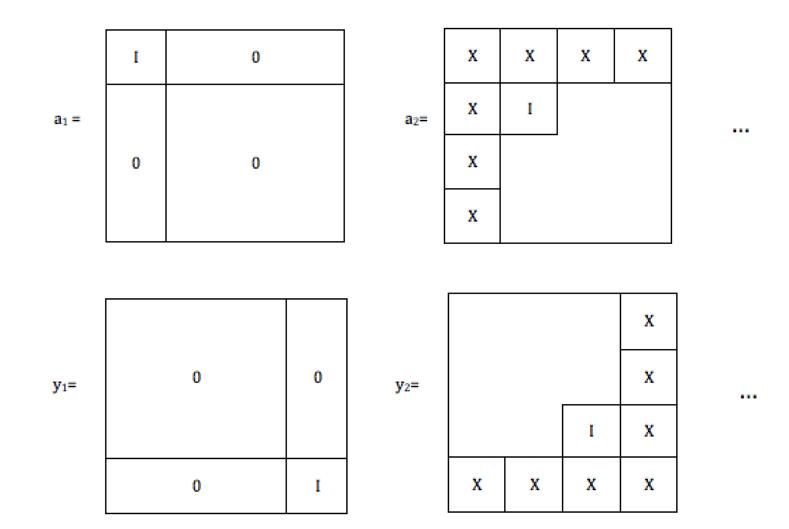
$$egin{array}{ll} A^*y_j &= 0\,(j=1,\ldots,\ell) \ A^*y_{\ell+1} &= c. \end{array}$$

(to prove it is not strongly infeasible)

• Difficult in general: bilinear system of equations

Connection to computational SDP

Easy if:



Computational testing

• Clean instances: the a_i are as shown before

• Messy instances: we applied random row operations and a rotation

• PP + SEDUMI =

Permenter, Parrilo partial facial reduction + Sedumi

• "Innocent looking" instances: small numbers, small condition number of constraint matrix.

- n=10; m=10; or m=20
- we can manually verify infeasibility in exact arithmetic.

Computational testing

	Infeasible		Weakly Infeasible	
	Clean	Messy	Clean	Messy
SEDUMI	87	27	0	0
SDPT3	10	5	0	0
MOSEK	63	17	0	0
PP+SEDUMI	100	27	100	0

Table 1: Result for instances with n = 10, m = 10

	Infeasible		Weakly Infeasible	
	Clean	Messy	Clean	Messy
SEDUMI	100	100	1	0
SDPT3	100	96	0	0
MOSEK	100	100	11	0
PP+SEDUMI	100	100	0	0

Table 2: Result for instances with n = 10, m = 20

We report # of successes out of 100

Conclusion: Exact duals and certificates of infeasibility, which

- are "almost" as simple as the usual dual and Farkas' lemma;
- yield basic results in convex analysis;
- yield practical algorithms to generate instances.

• Key point: weakly infeasible = infeasible + not strongly infeasible

• Remark: More material in paper: duals of (P) and of (D) as well;

Happy birthday! Thank you!