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Abstract. We consider optimization problems expressed as a linear pro-
gram with a cone constraint. Cone-LP’s subsume ordinary linear pro-
grams, and semidefinite programs. We study the notions of basic solu-
tions, nondegeneracy, and feasible directions, and propose a generaliza-
tion of the simplex method for a large class including LP’s and SDP’s.
One key feature of our approach is considering feasible directions as a
sum of two directions. In LP, these correspond to variables leaving and
entering the basis, respectively. The resulting algorithm for SDP inherits
several important properties of the LP-simplex method. In particular,
the linesearch can be done in the current face of the cone, similarly to
LP, where the linesearch must determine only the variable leaving the
basis.

1 Introduction

Consider the optimization problem

Min cx
st. reK (P)
Az =b

where K is a closed cone in RF , A € R™** b e R™, c € R*. (P)is called a lin-
ear program over @ cone, or a cone-LP. It models a large variety of optimization
problems; in fact, every convex programming problem can be cast in this form,
see ([14], pg. 103). Cone-LP’s have been introduced in the fifties as a natural
generalization of linear programs; probably the first paper studying duality is
due to Duffin [7]. Two interesting special cases are:

— When K = Ri (P) is an ordinary linear program (LP).

—~ When k = n(n +1)/2, K = {z € R* : the symmetric matrix formed of z
is positive semidefinite} , we get a semidefinite program (SDP), a problem,
that received a lot of attention recently, see e.g. [14], [2], [10].

As shown by Nesterov and Nemirovskii [14], cone-LP’s can be solved in polyno-
mial time by interior-point methods, provided K is equipped with an efficiently
computable self-concordant barrier function. The semidefinite cone does have
this property; in recent years, several interior-point methods for SDP have been



proposed [2], [11], [22]. Tt is a natural question, (and one, that could be asked 40
years ago, when Duffin’s paper appeared) whether one could generalize the sim-
plex method for solving a reasonably large class of cone-LP’s. As the structure
of the semidefinite cone has been thoroughly studied, (see e.g. [4]) SDP seems
to be a natural candidate. Such a generalization is obviously of interest from a
theoretical viewpoint.

Also, semidefinite programming is quickly becoming a tool to solve practical
problems, see e.g. [18], [22]. For large-scale problems, the cost of interior-point
methods is frequently prohibitive. Since the primal and dual matrix iterates
are (by the nature of the algorithm) full rank, one must perform costly, full
factorizations at every step. A simplex-type method in which the iterates are
low rank, may be able to avoid this drawback. In fact, active set methods for
solving eigenvalue-optimization problems (a subclass of SDP) have been used
with a reasonable amount of success [6], [15]. However, these methods did not
rely on the notions of basic solution, nondegeneracy and extreme rays of the
cone of feasible directions, as the simplex method for LP.

Surprisingly, the literature on generalizations of the simplex method for cone-
LP’s is scant. The only comprehensive work we are aware of is the book of An-
derson and Nash [3]; they describe simplex-type methods for several classes of
cone-LP’s, however, their treatment does not work for finite-dimensional, non-
polyhedral cones, such as the semidefinite cone. First, let us clarify, which are
the main features of the simplex method, that one wishes to carry over. Given
a basic feasible solution, the simplex method

1. Constructs a complementary dual solution.

2. If this solution is feasible to the dual problem, (i.e. the slack is nonnegative)
it declares optimality.

3. If not, it finds a negative component, and constructs an improving extreme
ray of the cone of feasible directions.

4. After a linesearch in this direction, it arrives at a new basic solution.

Also, we are allowed to distinguish basic solutions to be “nondegenerate”, and
“degenerate”, and at first assume that our basic solutions encountered during
the algorithm are nondegenerate, provided nondegeneracy is a generic property
( that is, the set of degenerate solutions is of measure zero in an appropriate
model ). We can then deal with the degenerate case separately (let’s say, using
a perturbation argument ).

Therefore, when looking for an appropriate generalization, one must answer
these questions:

1. How to characterize basic solutions?

2. How to define nondegeneracy, and show that it is indeed a generic property?

3. How to characterize directions emanating at a current solution, which are in
a sense extreme?

In this paper we show, how to address these issues. In particular, we define
nondegeneracy of a solution by giving a common generalization of a definition



of Shapiro [21], and Alizadeh et. al. [1] for SDP, and the usual definition for
LP. Of the above three questions, the last seems the least natural. If K is not
polyhedral, the cone of feasible directions in (P) at a current solution Z is usually
not even closed, much less does it have extreme rays. There is a simple way to
overcome this difficulty. We decompose every feasible direction into the sum of
two directions. The first corresponds to moving in the current face of K, until
we hit its boundary (corresponding to a variable leaving the basis in LP). The
second component takes us to a higher dimensional face of K (corresponding to
a variable entering the basis in LP).

The rest of the paper is structured as follows. In Section 2 we introduce the
necessary notation and review preliminaries. In Section 3 we derive our results
on the geometry of cone-LP’s: we study basic solutions, complementarity and
nondegeneracy, and feasible directions. In Section 4 we present two algorithms:
the first is a purification algorithm (using the terminology of [3]) to construct a
basic feasible solution. Finally, we present our simplex-type method. Most proofs
in the paper are either simplified, or omitted; full proofs appear in the full-length
version.

In our study we consider general cone-LP’s. All our results hold when spe-
cialized to LP and SDP; for LP, they are well-known. We use the properties of
the semidefinite cone, only when necessary. The reason for this is twofold: First,
a large part of our results hold for more general cone-LP’s. We also want to
extract the simple geometric properties of the positive orthant that make the
simplex method so successful in solving linear programs.

2 Preliminaries

We shall heavily use tools from convex analysis. The standard reference is the
book of Rockafellar [17] (a more introductory level text is [5]). In the following
we let K to be a closed cone in R¥. We call the set

K*={y:yx >0forallz € K}

the polar cone of K. If K is closed, so is K* and K** = K. We assume that K is
facially exposed, that is, every face of K is the intersection of K with a supporting
hyperplane. Then there is a natural correspondence between the faces of K and
K*. For F' a face of K, the conjugate face of F'is

FA ={yc K*:yze=0forallz € F}

Applying conjugacy twice gives back the original face, i.e. &% = F'. The faces
of K and K* form a lattice, under the operations V and A where F'V G is the
smallest face containing both F' and G and F' A GG is the intersection of F' and
G. The relative interior of a convex set S is denoted by r1 S.

The positive orthant in n-space is denoted by R”™. The set of n by n symmetric
matrices is denoted by 8"

The nullspace and rangespace of a matrix A are denoted by N(A) and R(A).
The cone of n by n symmetric, positive semidefinite matrices is denoted by 8%



For simplicity, the elements of 8% are denoted by small letters; however, for z €
S} we still write N(z) and R(z) for the null- and rangespaces. These two cones
are self-polar, i.e. K* = K. For the positive orthant, trivially, faces are in one-
to-one correspondence with subsets of indices corresponding to 0 components of
the vectors in the face, and the conjugate face is associated with the complement
subset.

In the semidefinite cone the faces are in one-to-one correspondence with the
subspaces of R™. Precisely, F' is a face of 8} if and only if

F=F(L) = {z:ze 8 ,R(z)C L}
for some subspace L of R" (see e.g. [4]). For F(L) we have

i F(L)= {z:z€ S ,R(z)=L}
lin F(L)= {&:2¢€ 8" ,R(x)C L}

Let » = dim L. Then the rank of matrices in F'(L) is at most r, and the dimension
of F((L) is
t(r):=r(r+1)/2

( t(r) is the r’th “triangular number” ). Also, the conjugate face corresponds to
the subspace orthogonal to L, i.e.

F& = FP(LY)

Note that in 8% , the dimensions of faces can take only n distinct values, while
the dimension of 8} is ¢(n). Also, dim F 4+ dim F& = t(r) + t(n — r) # t(n) =
dim K, except in the trivial cases r = 0 and r = n. These two phenomena (the
missing dimensions and the linear hull of the conjugate faces not spanning the
whole space) are present in all nonpolyhedral cones.

In the following we shall also consider the the dual of (P) defined as

Mazx yb
st. z€K* (D)
Aly+z=c

It is easy to see, that taking the dual of (D) again we obtain (P). Weak
duality between (P) and (D) is easy to prove; to obtain strong duality, when
K is not polyhedral, one needs additional assumptions, see e.g. [2], [23], [19] for
the case of SDP. We assume in the rest of the paper, that strong duality holds
between (P) and (D).

3 Geometry

3.1 Basic solutions

In this subsection we define basic feasible solutions for cone-LP’s, and derive
several equivalent characterizations. Consider the dual pair of cone-LP’s



Min cx Max yb
(P) st. z€K (D) st. ze K*
Az =b Aly+z=c¢

We denote by Feas(P) and Feas(D) the feasible sets of (P) and (D), respectively.

Definition 3.1 We call the extreme points of Feas(P) and Feas(D) primal, and
dual basic feasible solutions, (bfs’s), resp.

Theorem 3.2 Let & € Feas(P), F' the smallest face of K containing z. Then
the following statements are equivalent.

1. & 15 a basic feasible solution.
2. N(A)nlin F = {0}.
3. Z=Fn{z: Az = b} and for all F' proper faces of F, F'0{z : Az = b} = ).

Moreover, if & is a bfs, then
4. dim F' < m.
O

When specialized to linear programs, 3. states that z is a bfs if and only if
the submatrix of A corresponding to nonzero components has of z has linearly
independent columns. Also, 4. characterizes a bfs as a solution with minimal
support.

Similarly, one can obtain a characterization of dual basic feasible solutions,

as (D) is also a cone-LP (the cone is R™ x K* and the constraint-matrix is
(A', 1) ). For brevity, we state only the results corresponding to 2. and 4. above.

Theorem 3.3 Let (y,Z) be a bfs of (D), G the smallest face of K* that contains
z. Then (y,z) is a basic feasible solution if and only if

1. R(A")Nlin G = {0}.
Moreover, if (y,z) is a bfs, then
2. dim G <k—m.
O

In the case of LP, in the last statement of Theorems 3.2 and 3.3 we get
dim F < m and dim G < k — m, resp., i.e. we recover the well-known bound on
the number of nonzeros in basic feasible solutions.

In semidefinite programming the bounds on dim /' and dim G yield a bound
on the rank of extreme matrices.

Corollary 3.4 Let K = S} .

1. Let & be a basic solution of (P), rank & = r. Then r satisfies t(r) < m.



2. Let (y,z) be a basic solution of (D), rank z = s. Then s satisfies t(s) <
t(n) —m.

O

Again, notice that in the last statements of Theorems 3.2 and 3.3 we cannot
expect equality in general, if K is not polyhedral. The reason is, that not all
possible numbers in {0, 1, ..., k} appear as the dimension of some face in K.

3.2 Complementarity and nondegeneracy

This section is motivated by the recent papers of Shapiro [21] and Alizadeh et. al.
[1], where they define the notion of strict complementarity and nondegeneracy for
SDP’s and study their properties. We present a simple, common generalization
of their definition and the corresponding definitions for LP, and show that most
results corresponding to linear programs hold in this more general setting.

Let « and (y,z) be feasible solutions of (P) and (D), respectively. Since
cx = (yA + z)x = yb+ za, x and (y, z) are both optimal, if and only if zz = 0.
Therefore, z and z must lie in conjugate faces of K and K* respectively. We
introduce the following

Definition 3.5 The pair z and (y, z) is strictly complementary, if
(SC)z €ri F and z€1i & O

In LP, strict complementarity requires that the sum of the number of nonzeros
in the primal and dual slacks be equal to n. In SDP, it requires that the sum
of the ranks of the primal and dual slack matrices be n. Contrary to the case of
LP, in general cone-LP’s a strictly complementary solution-pair may not always
exist. A counterexample for SDP is given in ([1]).

Definition 3.6 Let z be feasible for (P), F' the smallest face of K that contains
z. We say that

(PND) z is nondegenerate if R(A?) Nlin F& = {0}

Notice, that the above definition of nondegeneracy can be formally obtained from
the characterization of a bfs in 3. of Theorem 3.2 by replacing N(A) by R(A?)
and F' by F2; extremity and nondegeneracy are complementary notions. In
linear programs, the above definition requires the submatrix of A corresponding
to nonzero components of z to have linearly independent rows. Nondegeneracy
of a dual feasible solution can be defined in a similar manner. Exactly as in LP,
we get

Theorem 3.7 Let x and (y, z) be optimal solutions of (P) and (D), resp.

1. If # is nondegenerate, then (y, z) is basic.
2. Suppose that x and (y, z) satisfy (SC). Then x is basic if and only if (y, z)
1s nondegenerate.



O
As it is well-known, nondegeneracy is a generic property in LP’s, i.e. arandom
vertex of a randomly generated polyhedron is nondegenerate with probability
one. As recently shown in [1], a similar property is true for SDP’s: a randomly
chosen extreme point of a random SDP is nondegenerate with probability one.
If z is a nondegenerate basic solution, then

dimF <m

dimF2 <k-—m (3.3)

In the case of LP, these two bounds imply dim F' = m , i.e., as known, the number
of nonzeros in a nondegenerate basic solution must be ezactly m. If K = S} |
(3.3) gives upper and lower bounds on the rank of z (observed also in [1]). If
rank z = r, then (3.3) is equivalent to

t(r)y<m

tthn—r)<t(n)—m (3.4)

These bounds allow a range of possible values of . For example, n = 10, m = 15
implies 2 < r < 5.

In linear programs with a special structure, an upper bound on the number of
the nonzeros frequently yields combinatorial results. Similarly, using the upper
bound on the extreme ranks in structured SDP’s one obtains interesting corol-
laries, that we may group together under the name semidefinite combinatorics.
Several examples (detailed in the full-length paper) are

1. A lower bound on the multiplicity of critical eigenvalues in eigenvalue-optimization,
see [16].

2. A lower bound on the number of tight constraints in quadratic programs,
where both the constraints and the objective function are convex.

3. The polynomial-time solvability of (possibly nonconvex) quadratic programs
with few constraints.

4. An upper bound on the dimension of optimal orthonormal representations
in the 8; and 8; formulations in the Lovasz theta-function.

3.3 Feasible directions

Consider the primal problem

Min cx
st. zeK (P)
Az =b

For F', a face of K define the set
Dp={(f,9): f€lin F,ge K,A(f+g) =0}

The following simple lemma is crucial.



Lemma 3.8 Let z be a feasible solution to (P), and F the smallest face of K
that contains . Then d is a feasible direction for x if and only if d = f + g for
some (f,9) € Dp.

Proof (If) Suppose d = f+g for some (f,g) € Dp. Since f €lin F, a+af € F
for some a > 0, and clearly (z + af) + ag € K.
(Only if) Suppose z + ad = g € K for some a > 0. Then d = %g + %(—x),

and clearly %g €K, L(—z)€lin F. |

o

Remark 3.9 When K =R, in the decomposition of d f corresponds to mov-
ing in the current face of the positive orthant, while g corresponds to a direction
that moves into a higher dimensional face. The cone of feasible directions in the
usual sense is a projection of Dp. When K is polyhedral, so is Dp, and also its
projection. This is no longer true, when K is not polyhedral. In fact, as shown
recently by Ramana et. al. [19], when K = S} and F is a face, the set

{f+g:f€lin Fge K}

is never closed ! (Of course, its intersection with the constraints A(f+g¢) = 0 may
be closed; however, this result shows, that an approach considering directions
in the projected cone is hopeless in general.) However, as we shall see, when
designing a simplex method, it suffices to consider the (f,¢g) pairs in Dp, there
is no need to project.

Theorem 3.10 Let z and F be as in Lemma 3.8. Then the following hold.

1. If x is a bfs, then Dp has extreme rays.
2. Let (f,g9) € Dp, and G the smallest face of K that contains g. Let

o =max{a:z+a(f+g) € K}

Then FVG contains the feasible segment [z, z+a*(f+g)] and it is « minimal
face of K with this property.
3. Assume that K satisfies the following property.
Property 1 Let F' and G be faces of K. Assume y €lin F\ F,g € G,
y+g€ K. Then FAG # 0.
Let (f,g) be an extreme ray of Dp, and define o* as above. Then

o =max{a:z+af € F}

Proof of 1 Dp is clearly closed. To show that it has extreme rays, it suffices
to prove that Dp N (=Dp) = {0}. For simplicity, assume K N (—K) = {0},
and let (f,g) € Dp N (=Dp). Then g € K N (—K) hence g = 0. Therefore
f €lin FNN(A), and since z is basic, f = 0.

O

Remark 3.11 Property 1 looks somewhat artificial, hence it is worth checking
its validity, when K = 8% . Suppose that I’ = (L) and G = F(J), where L
and J are subspaces of R™. The condition y € lin F'\ F is satisfied if and only
if R(y) C L, but y is not psd. As y + ¢ is psd, the rangespace of g must have a
nontrivial intersection with R(y).



Remark 3.12 Suppose (f,g) is an extreme ray of Dp. It is natural to ask,
whether ¢ must be an extreme ray of K. The answer is no in general. Suppose
that G is the smallest face of K that contains g, and let us calculate an upper
bound on dim G. Similarly to Theorem 3.2 we obtain

dimG <m-—dimF +1 (3.6)

(as Dp is defined by (k — dim F' 4+ m constraints, the number of unconstrained
variables is k, and (f, g) must be in a face of dimension 1 of Dp ). First, let us
consider the case of LP. Here dim F' is equal to the number of nonzero compo-
nents of z. If dim F' = m, i.e. z is nondegenerate, then we can move away from
z by increasing the value of only one nonbasic variable (this may eventually de-
crease the value of a basic variable to zero). If # is degenerate, i.e. dimF' < m,
then we may have to increase the values of m — dim F' 4 1 variables from zero to
a positive value in order to move away from z. In SDP, as explained earlier, we
cannot expect m = dim F', even in the nondegenerate case. For instance, con-
sider an SDP with m = n. Such semidefinite programs do arise in practice, e.g.
the max-cut relaxation SDP, whose feasible set has been termed the elliptope
and studied in depth by Laurent and Poljak [13]. Then, if a basic solution z is
nondegenerate, and of rank r, then r must satisfy

t(r)<n,tin—r)<tn)—n=1<tr)<n

Thus t(r) — n can be of order n, hence the best upper bound we can give on
the rank of g in an extreme ray (f,g) is of order V2n. Therefore, in SDP’s we
cannot expect to be able to move away from the current solution by increasing
the rank by 1, i.e. “bringing a one-dimensional subspace into the basis”.

4 Algorithms

The following assumption will remain in force throughout the rest of the paper.

Assumption 4.1 1. Gwen x € K one can find generators for lin F' and
lin F2, where F is the smallest face of K that contains .

2. The separation problem is solvable for the polar cone K*. Namely, given
z €R® we can either
(a) Assert z€ K* OR
(b) Assert z & K*, and find v € K, satisfying vz < 0.

Assumption 4.1 obviously holds for the positive orthant. For &7 | 1. can be
done in polynomial time by determining the rangespace of a positive semidefinite
matrix. Separation for S} , (recall, that S% is self-polar) can also be done in
polynomial time as described e.g. in [9].

Remark 4.2 For simplicity, we shall assume, that all computations are done in
exact arithmetic.



4.1 Finding a basic feasible solution

Theorem 4.3 The following algorithm finds a basic feasible solution of (P) in
finitely many iterations.

Algorithm 1.
Input: A, b, ¢, z € K satisfying Az = b.
Output: z € K satisfying Az = b and cz < cz.
1. Let F' be the smallest face of K that contains z.
2. Find f #0s.t
Af=0

felin F (4.7)
If no such f exists, set £ = z and STOP.
3. Ifef >0, set f = —f. Determine
o* = mar « (4.8)

st rx4+afeF
4. Set = 4+ o* f, and go to 1.

Proof The correctness of Algorithm 1. follows from Theorem 3.2. Since the
dimension of the smallest face containing the current z strictly decreases in
every iteration, finiteness is obvious. a

4.2 A Simplex-type Method

In this section we first state our simplex procedure. We assume, that we are
given z, a basic, nondegenerate solution of (P).
First, we need the following lemma.

Lemma 4.4 Let x be a feasible solution to (P), and F the smallest face of K
that contains x. Then d is in the closure of feasible directions for x if and only
ifd = f+g for some f € (lin F2)L g € K. Morcover, if g is in the relative
interior of K, then d is a feasible direction.

O

Remark 4.5 Since in a general cone-LP lin F and lin F'# together do not span
the whole space, the cone of feasible directions is not closed in general. Adding
a g €ri K to f amounts to perturbing f towards the interior of K.

Algorithm Simplex
Input: A, b, ¢, K, x € K st. Az =b.

1. Construct a complementary dual solution. Let F' be the smallest
face of K containing x, F'* is the conjugate of F'. Construct subspaces
Mp, Mp satisfying

i. N(A)® (lin F+ Mp) = {0}
ii. R(A) @ (lin F2 + Mp) = {0}



Find (y, 2) s.t.
z €lin F& + Mp

eyt (4.9)

2. Check optimality. If z € K* STOP; z and (y, z) are optimal. Else,
find g € K s.t. zg < 0.

3. Find improving direction. Construct (f,h), an extreme ray of Dp
s.t. zh < 0.

4. Line-search. Determine

*

o = mar «

st x+afel (4.10)

Replace z by z + o*(f + h) and goto 1.

The difference, as opposed to the LP-simplex method is, that we cannot
obtain an extreme ray of Dp in one step. We can proceed as follows.
First, perturb ¢ found in Step 2. to obtain g; € 11 K, zg; < 0. Solve the
system
f€E€lin F® Mp,
A(f+491)=0

Notice, that in this system the number of variables is the same as the number
of constraints. This would not be true, if we replaced lin /' @& Mp by lin F'. By
Lemmad4.4 f+4g; is a feasible direction, therefore we can find 1 = z+e(f+91) €
K for some small € > 0. Then (21 — #,21) € Dp, although it is in general not
an extreme ray. However, we can use an algorithm similar to Algorithm 1. to
convert it into one.

The main difference between our approach and the LP-simplex method is,
that we may not get an extreme ray of Dp in one step. It can be shown, that
in the case of SDP, one does not have to choose g1 to be in ri K, that is of full
rank. The rank of g1 needed to get (f, g1) € Dr depends on the dimension of the
subspace Mp. The smaller the dimension of Mp, the smaller the rank of g; needs
to be. If dim Mp = 0, g1 can be chosen to be equal to g, and no purification is
needed to get an extreme ray of Dp.

We conjecture that when the current solution # is basic, and (f,¢) is an
extreme ray of Dp, then the new solution will also be basic, at least in the case
of SDP. So far, we haven’t been able to prove this conjecture. What we can state
is an upper bound on the rank of the new solution. Clearly the rank of the new
solution is at most rank x + rank A — 1, and both the rank of  and h can be
bounded from above, as z is basic, and (f, k) is an extreme ray of Dp.

(4.11)

5 Conclusion

In this work we presented a generalization of the simplex method for a class
of cone-LP’s, including semidefinite programs. The main structural results we
needed to derive, were



— A characterization of basic solutions.
— Defining nondegeneracy, and deriving some properties of nondegenerate so-

lutions, (building on the results of [21], [1]).

— Characterizing extreme feasible directions in an appropriate higher dimen-

sional space.

These structural results are of some independent interest.
It seems that the success of a simplex-type method for solving SDP’s will depend
on two issues.

— Its convergence properties.
— An efficient implementation. The advantage of our method, as opposed to an

interior-point algorithm is, that our matrices, since they are basic solutions,
are low rank. Also, when we move along an extreme ray of Dp the rangespace
of the current iterate does not change by much. Therefore, it may be possible
to design an efficient update scheme analogous to the update scheme of the
revised simplex method for LP.

These 1ssues will be dealt with in the full version of this article.
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