Column Basis Reduction,

Decomposable Knapsack

and Cascade Problems

Slide 1

Gábor Pataki

Dept. of Statistics and Operations Research UNC, Chapel Hill

joint work with Bala Krishnamoorthy

Dept. of Mathematics, Washington State University

What is basis reduction?

Given integral matrix A, basis reduction (BR) computes a unimodular $U(\Leftrightarrow \det U = \pm 1)$ st. the columns of AU are "short" and "nearly" orthogonal.

Example

Slide 2

$$A = \begin{pmatrix} 289 & 18 \\ 466 & 29 \\ 273 & 17 \end{pmatrix}, \ U = \begin{pmatrix} 1 & -15 \\ -16 & 241 \end{pmatrix}, \ AU = \begin{pmatrix} 1 & 3 \\ 2 & -1 \\ 1 & 2 \end{pmatrix}.$$

Computing $AU \Leftrightarrow \text{doing } elementary \ column \ operations \ on \ A$:

• adding an integer multiple of a column to another; multiplying a column by -1; swapping columns.

Reformulating equality constrained

IP feasibility problems

Aardal, Hurkens, Lenstra (1998); Aardal, Bixby, Hurkens, Lenstra, Smeltink (1999); Aardal, Lenstra (2004); Louvaux, Wolsey (2003).

Slide 3

Slide 4

$$x \in \mathcal{Z}^n$$
 $Ax = d$ $\ell \le x \le u$
$$\downarrow \qquad \qquad \qquad \mathbf{Reformulation}$$
 $\lambda \in \mathcal{Z}^{n-m}$ $\ell \le B\lambda + x_d \le u$

Here

$$\{x \in \mathcal{Z}^n \mid Ax = d\} = \{x_d + B\lambda \mid \lambda \in \mathcal{Z}^{n-m}\}$$

- $[B, x_d]$ is
 - integral, columns are short and nearly orthogonal.
 - found by doing **basis reduction** on an enlarged matrix using two large constants N_1, N_2 .
- The reformulated problem of finding

$$\lambda \in \mathcal{Z}^{n-m}, \ \ell \le B\lambda + x_d \le b$$

proved experimentally much easier to solve for some problems, e.g. the Cornuejols-Dawande instances.

Questions

Slide 5

- 1. Why only equality constrained problems?
- 2. Why does it work?

Rest of talk

- 1. Column BR: simplified reformulation for arbitrary IPs. 2 variants: in range space and null space.
- 2. Computational study.
- 3. Analysis for a general problem class, called decomposable $knapsack\ problems.$

${\bf Range space\ reformulation}$

$$P = \{ x | \ell \le Ax \le b \}$$

$$\tilde{P} = \{ y | \ell \le (AU)y \le b \}$$

where U is unimodular.

There is 1-1 correspondence between

$$P \cap \mathcal{Z}^n$$
 and $\tilde{P} \cap \mathcal{Z}^n$

given by

$$Uy = x$$

We choose U so columns of AU are reduced. We can do the same if some of the " \leq " are actually "=".

Nullspace reformulation

If

$$A_1x = b_1$$

is a subset of the inequalities in $\ell \leq Ax \leq b$, then

$$\{x \in \mathcal{Z}^n \mid A_1 x = b_1\} = \{x_d + B_1 \lambda \mid \lambda \in \mathcal{Z}^{n-m}\}$$

 $[B_1, x_d]$ is found by a Hermite Normal Form (HNF) computation; columns are *not* in general short and orthogonal.

Substitute $B_1\lambda + x_d$ for x, and do the rangespace reformulation.

If all constraints are equalities, then essentially equivalent to the Aardal et al. reformulation.

Slide 9

- Such a simple reformulation actually works for essentially all hard IPs used to test "nontraditional" IP algorithms!
- We need a problem class on which we can *analyze* its action.

Branching on a constraint

Slide 10

Given polyhedron P, integral vector c,

- width $(c, P) = \max \{ cx \mid x \in P \} \min \{ cx \mid x \in P \}.$
- branching on cx means creating the branches $cx = \lceil \min \rceil$, $cx = \lceil \min \rceil + 1, \ldots, cx = \lfloor \max \rfloor$.
- \bullet If the interval [min, max] contains no integer, then P contains no integral point.

$$\mathbf{Example}:$$

$$106 \le 21x_1 + 19x_2 \le 113$$

$$x_1, x_2 \in \in [0, 6] \cap \mathcal{Z}$$

X

Hard for branching on x_i s.

Easy for branching on $x_1 + x_2$: max = 5.94, min = 5.04.

Slide 12

Slide 11

After reformulation: branching on y_2 proves infeasibility.

2-level decomposable knapsack problems

The example is an instance of

$$(KP_2)$$
 $\beta' \le a x \le \beta$, $0 \le x \le u$, $x \in \mathbb{Z}^n$,

Slide 13

where

- a = pM + r, with $p \in \mathcal{Z}_{+}^{n}$, $r \in \mathcal{Z}^{n}$; M large;
- β , β' chosen, so KP_2 is LP-feasible, IP-infeasibility proven by branching on px.
- In the example, (21, 19) = (1, 1) * 20 + (1, -1).

What does the reformulation do on these?

Slide 14

Recall general reformulation:

$$P = \{x \mid \ell \le Ax \le b\} \Leftrightarrow \tilde{P} = \{y \mid \ell \le (AU)y \le b\}$$

Basis reduction in range space

We choose U unimodular, s.t.

$$\begin{pmatrix} pM+r\\ I \end{pmatrix} U$$
 is reduced.

Slide 15

Theorem: M suff. large \Rightarrow

$$pU = (\overbrace{0 \dots 0}^{n-1} \alpha)$$
 for some $\alpha \in \mathbb{Z} \setminus \{0\}$.

Corollary:

$$Uy = x \Rightarrow pUy = px \Rightarrow \alpha y_n = px$$

 \Rightarrow branching on y_n proves infeasibility.

"Sufficiently large" means:

- If LLL (Lenstra, Lenstra, Lovasz) reduction is used, $M>2^{n+1}\;\|\,p\,\|\,\|\,r\,\|^2.$
- If KZ (Korkhine-Zolotarev) reduction is used, $M > \sqrt{n} \|p\| \|r\|^2.$

Basis reduction in null space

Slide 17

Can be used if $\beta = \beta' \rightarrow$ reformulation has n-1 variables.

We can similarly prove: M suff. large \Rightarrow branching on y_{n-1} in reformulation \equiv branching on px in original problem.

A classic example of a decomposable knapsack problem: Jeroslow's problem

 $2(x_1 + \ldots + x_n) = n$ $x_i \in \{0, 1\}^n$

Slide 18

where n is odd. In B&B branching on the x_i no node is pruned above level n/2. If we branch on $x_1 + \dots x_n$, we solve it at the root.

Here p = e, r = 0, M = 2.

Other examples:

- 1. $p=e, r=(2^0,\ldots,2^{n-1}), u=e, M=2^{n+\ell+1}$: Todd's problem from Chvátal "Hard knapsack problems" (1983).
- 2. p = e, r = (1, ..., n), u = e, M = n(n+1): Avis' problem from same paper.
- 3. A modification of (1): Gu, Nemhauser (2001).
- 4. $p \geq 0, r$ arbitrary, $u = +\infty, \beta = \beta'$: Aardal-Lenstra Frobenius problems.

Out of these: (1) and (2) take $2^{n/2}$ nodes for ordinary B&B; in (4) has a $\beta = \text{const}^*M^2$ for which problem is infeasible.

Algorithms that find thin directions to branch on

- H. W. Lenstra (1983); Kannan (1987); Eisenbrand (2004): polytime algorithms for IP in fixed dimensions. Implementation: Gao, Zhang (2002); Modification and implementation: Mehrotra, Li (2004).
- Generalized BR: Lovasz, Scarf (1990); Implementation: Cook, Rutherford, Scarf, Shallcross (1993); Modification and implementation: Mehrotra, Li (2004).

Slide 19

When thinner \neq better

$$5660 \le 520x_1 + 725x_2 + 1156x_3 + 1574x_4 + 1794x_5 + 1829x_6$$
$$+2023x_7 + 2221x_8 + 2267x_9 + 2465x_{10} + 2496x_{11} \le 5661$$
$$x_i \in \{0, 1\} \ (i = 1, \dots, 11).$$
(1)

Slide 21

- \bullet IP-infeasible, and 'reasonably" hard for B&B .
- If Q = LP relaxation, then $\min_{c \text{ integral }} \text{width}(c, Q) = 1 0$, attained at e_i .
- $\exists p_1 \text{ integral: } \text{width}(p_1, Q) = 25.34 24.30 \Rightarrow \text{constraint}$ $p_1 x = 25 \text{ can be added to LP.}$
- If Q' = new LP relaxation, then $\exists p_2 \text{ integral:}$ width $(p_2, Q') = 14.93 - 14.02 \Rightarrow \text{proves IP-infeasibility.}$

- So, a direction with width = 1.04 beats all directions with width 1!
- Such problems are called *cascade* problems: branching on a good direction has a "cascade" effect.
- There are more extreme examples, with width in good direction ≈ 1.5 .

t+1-level decomposable knapsack problems

• For $a = p_1 M_1 + p_2 M_2 + \ldots + p_t M_t + r$, with $M_1 > M_2 > \ldots > M_t$ and suitable β, β'

$$(KP_{t+1})$$
 $\beta' \le a x \le \beta$, $0 \le x \le u$, $x \in \mathbb{Z}^n$

Slide 23

Slide 24

Problem is

- easy, if branching on p_1x , p_2x , ..., p_tx .
- hard, if branching on x_j variables, if parameters suitably chosen.
- cascade problems can be constructed this way.

When using the rangespace reformulation: compute U so that

$$\begin{pmatrix} \sum_{i=1}^{t} p_i M_i + r \\ I \end{pmatrix} U \text{ is reduced.}$$

Theorem: If separation between $M_1 > M_2 > \ldots > M_t$ is suitably large, then

$$\begin{pmatrix} p_1 \\ p_2 \\ \vdots \\ p_t \end{pmatrix} U = \begin{pmatrix} 0 & 0 \dots & 0 & 0 & 0 & * \\ 0 & 0 \dots & 0 & 0 & * & * \\ \vdots & & & & & \\ 0 & 0 \dots & * & \dots & * & * \end{pmatrix}$$

Remark: When computing U, we do not know the decomposition!!

12

Corollary: Branching on $y_n, y_{n-1}, \dots, y_{n-t}$ in reformulation \Leftrightarrow branching on p_1x, p_2x, \dots, p_tx in original problem.

Analogous result for nullspace reformulation.

- That is, column BR
 - takes the *unknown* "dominant" branching combinations;
 - transforms them into individual variables;
 - lines them up in reverse order of significance!

Computational results

- BR: by NTL library of Victor Shoup.
- IP solver: CPLEX 9.0.
- Machine: 3.2 GHz Linux PC.
- We adapted column BR to deal with optimization problems.
- We report: time and B&B nodes taken by CPLEX 9.0 after reformulation.
- We do not report: time taken without reformulation (even in the simplest case, it is a few hundred thousand B&B nodes; usually it is $+\infty$).

Slide 25

To solve

$$\begin{array}{cccc}
\max & cx \\
st. & Ax & \leq & b \\
& x & \in & \mathcal{Z}^n
\end{array}$$

Slide 27

we replace A with AU, c with cU, where U makes

$$\begin{pmatrix} c \\ A \end{pmatrix} U$$

reduced.

Maximization versions of integer subset sum

$$\begin{array}{cccc}
\max & ax \\
st. & ax & \leq & \beta \\
& x & \in & \mathcal{Z}^n_+.
\end{array} \tag{2}$$

Slide 28

First four instances from Cornuéjols, Urbaniak, Weismantel, Wolsey (1998). Last (shown below) from Wolsey: Integer Programming (1999).

(12228, 36679, 36682, 48908, 61139, 73365); 89716837

Number of B&B nodes after column BR: 5, 0, 9, 0, 10.

Feasibility versions of same instances

For (a, β) , $\beta_a :=$ optimal value. Then check the feasibility of

$$\begin{array}{rcl}
ax & = & \beta_a \\
x & \in & \mathcal{Z}_+^n,
\end{array} \tag{3}$$

Slide 29

using 1) range space reformulation, 2) nullspace reformulation. Number of B&B nodes is between 0 and 10 for all 5 instances, for both choices.

Same happens, if rhs is chosen as $\beta_a + \gcd(a)$.

Marketshare problems (Cornuéjols, Dawande)

We need to find

$$x \in \{0, 1\}^n, Ax = d,$$

where m = 6 or m = 7, n = 10(m - 1). A, d are generated to make the problem difficult.

	range space		null space	
	# BB	CPU	# BB	CPU
ms1	288597	175.30	51887	32.80
ms2	220803	165.40	52920	43.70

Relaxed marketshare problems

Same data, but we want to find

 $x \in \{0,1\}^n, d-1 \le Ax \le d.$

After column BR

• markshare1: 85,466 nodes, 53 seconds; markshare2: 250,368 nodes, 211 seconds.

${\bf Cascade 2}$

The "big brother" of the 11-variable instance.

- n = 100 variables, $a_j \le 14,000, \beta, \beta' \le 100,000.$
- Original problem does not solve by CPLEX after enumerating 2 billion B&B nodes.
- Easy, if we branch on p_1x , then p_2x .
- Reformulation solves at rootnode.

Slide 32

Caveats

Slide 33

- There are hard IPs for which the reformulation does *not* work :-(
- The reformulation uncovers the hidden "dominant" directions in the polyhedron but in some hard problems, these may not exist, if the problem is symmetric.

Conclusions and further work

- A general, and very simple reformulation technique for arbitrary IPs.
- \bullet A fairly general class of IPs that are provably hard for ordinary B&B .

- Analysis: the provably hard problems turn into provably easy ones: the reformulation "uncovers" the hidden, dominant directions.
- The cascade problems: thinner \neq better!
- Works well in on most small, hard IPs from the literature.