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What is basis reduction ?.

Given integral matrix A, basis reduction (BR) computes a
unimodular U(< det U = 1) st. the columns of AU are “short”

and “nearly” orthogonal.

Example
289 18 1 3
1 —15
—16 241
273 17 1 2

Computing AU < doing elementary column operations on A:

e adding an integer multiple of a column to another; multiplying

/

a column by —1; swapping columns.
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/ Reformulating equality constrained'

IP feasibility problems'

Aardal, Hurkens, Lenstra (1998); Aardal, Bixby, Hurkens, Lenstra,
Smeltink (1999); Aardal, Lenstra (2004); Louvaux, Wolsey (2003).

r ez
Ax =d
I <z<uy
1 Reformulation
Aeznmm
< BA+zg4<u

\_
4 ™

Here

-

{zeZ"|Ax=d} = {xq+BA|AeZ" ™}

e [B, x4l is
— integral, columns are short and nearly orthogonal.

— found by doing basis reduction on an enlarged matrix
using two large constants Ny, Ns.

e The reformulated problem of finding
AeZ"M U< BA+x4<Db

proved experimentally much easier to solve for some problems,
e.g. the Cornuejols-Dawande instances.

N /
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Questions I

1. Why only equality constrained problems?
2. Why does it work?

\_

-

-

Rest of talk'

1. Column BR: simplified reformulation for arbitrary IPs. 2
variants: in range space and null space.

2. Computational study.

3. Analysis for a general problem class, called decomposable
knapsack problems.

_
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Rangespace reformulation I

P = {z]t< Az <b}

P = {y|t<(AU)y <b}

where U is unimodular.

There is 1-1 correspondence between
PNZ"and PN 2"
given by
Uy = «x

We choose U so columns of AU are reduced. We can do the same

w__»

some of the “<” are actually

~

if

/

-

Nullspace reformulation I

If
All’ = bl
is a subset of the inequalities in ¢ < Ax < b, then

{xEZ”|A1x:b1} = {$d+B1)\‘)\€Zn_m}

[B1, x4 is found by a Hermite Normal Form (HNF) computation;
columns are not in general short and orthogonal.

Substitute B1 A + x4 for x, and do the rangespace reformulation.

If all constraints are equalities, then essentially equivalent to the
Aardal et al. reformulation.

\_

~

/
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e Such a simple reformulation actually works for essentially all
hard IPs used to test “nontraditional” IP algorithms!

e We need a problem class on which we can analyze its action.

\_
4 ™

Branching on a constraint'

Given polyhedron P, integral vector c,

-

e width(c, P) =max{cx|x € P} —min{cz|z € P}.

e branching on cx means creating the branches cx = [min],

cx = [min] + 1, ..., cx = |[max].

e If the interval [min, max| contains no integer, then P contains

no integral point.

N /
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106 < 21zq + 1929

x1,T2 €

< 113

€ [0,6] N Z

Hard for branching on x;s.

Qasy for branching on x + zo: max = 5.94, min = 5.04.

~

-

_

M

A

Y1

-38

-35

After reformulation: branching on y- proves infeasibility.




2-level decomposable knapsack problems'

The example is an instance of

(KPy)) ' <ax <pB, 0<z<u, zeZ",
Slide 13

where
e a=pM +r,withpe Z¥ r e Z"; M large;

e 3, 3 chosen, so KP, is LP-feasible, IP-infeasibility proven by
branching on pzx.

e In the example, (21,19) = (1,1) * 20 + (1, —1).

N\ /
4 N

What does the reformulation do on these?'

Slide 14 Recall general reformulation:

P={z|l<Az<b}e P={y|t< (AU)y < b}
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Basis reduction in range space'

We choose U unimodular, s.t.

pM +r
I

U is reduced.

Theorem: M suff. large =
n—1

——
pU=(0...0 a) forsomeaec Z\{0}.

Corollary:

Uy=x = pUy = pxr = ay,= pz

= branching on y,, proves infeasibility.

\_

~

-

-

“Sufficiently large” means:

e If LLL (Lenstra, Lenstra, Lovasz) reduction is used,
M > 2" pl[[|r 2.

o If KZ (Korkhine-Zolotarev) reduction is used,
M > /n||p|ll|r].

_
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Basis reduction in null space'

Can be used if 3 = 3 — reformulation has n — 1 variables.

We can similarly prove: M suff. large = branching on y,,_1 in
reformulation =branching on px in original problem.

N /
4 N

A classic example of a decomposable knapsack problem:

Jeroslow’s problem
2014+ ...+x,) = n
x; € {0, 1 }n

where n is odd. In B&B branching on the z; no node is pruned
above level n/2. If we branch on x; + ...x,, we solve it at the root.

Here p=e,r=0, M = 2.

N /
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Other examples:

Lp=e r=(2°...,2"1), u=re, M = 2"+ : Todd’s problem
from Chvéatal “Hard knapsack problems” (1983).

2.p=er=(,...,n),u=e, M =n(n+1): Avis’ problem from
same paper.

3. A modification of (1): Gu, Nemhauser (2001).

4. p > 0, r arbitrary, u = +oo, § = ' : Aardal-Lenstra Frobenius
problems.

Out of these: (1) and (2) take 2"/2 nodes for ordinary B&B ; in (4)
has a 3 = const*M? for which problem is infeasible.

N /
4 N

Algorithms that find thin directions to branch on'

e H. W. Lenstra (1983); Kannan (1987); Eisenbrand (2004):
polytime algorithms for IP in fixed dimensions.
Implementation: Gao, Zhang (2002); Modification and
implementation: Mehrotra, Li (2004).

e Generalized BR: Lovasz, Scarf (1990); Implementation: Cook,
Rutherford, Scarf, Shallcross (1993); Modification and
implementation: Mehrotra, Li (2004).

N /
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When thinner # better'

5660 < 5201 + 725x5 + 115623 4+ 15744 + 179425 + 182926
+2023z7 4 222125 + 22679 + 2465110 + 249621, < 5661
z; €{0,1} (i=1,...,11).

[P-infeasible, and ‘reasonably” hard for B&B .
If @ = LP relaxation, then min,integral width(c, Q) =1 —0,
attained at e;.

dp; integral: width(p;, @) = 25.34 — 24.30 = constraint
p1x = 25 can be added to LP.

If Q" = new LP relaxation, then 3 py integral:
width(ps, Q') = 14.93 — 14.02 = proves [P-infeasibility.

~

~

So, a direction with width = 1.04 beats all directions with
width 1!

Such problems are called cascade problems: branching on a
good direction has a “cascade” effect.

There are more extreme examples, with width in good
direction ~ 1.5.

11
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t 4+ 1-level decomposable knapsack problems'

e For a =p My +p2Ms + ...+ pe My + r, with
M; > My > ... > M; and suitable 3, 3’

(KPt+1> ﬁlgaazgﬁ, OSCESU, xezn

Problem is
e cagsy, if branching on p1x, pox, ..., pix.

e hard, if branching on z; variables, if parameters suitably
chosen.

e cascade problems can be constructed this way.

N /
4 N

When using the rangespace reformulation: compute U so that

¢
=1 DiM; + :
2i=1 P U is reduced.

1
Theorem: If separation between M; > My > ... > M; is suitably
large, then
P1 0O 0... 0 0 O =
D2 0O 0... 0 0 =« =
U =
D¢ 0 0... = * %

Remark: When computing U, we do not know the decomposition!!

N /
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Corollary: Branching on 4, ¥n_1,...,Yn_¢ in reformulation
< branching on pix, pox, ..., p;x in original problem.
Analogous result for nullspace reformulation.

That is, column BR
— takes the unknown “dominant” branching combinations;
— transforms them into individual variables;

— lines them up in reverse order of significance!

-

~

Computational results I

BR: by NTL library of Victor Shoup.

IP solver: CPLEX 9.0.

Machine: 3.2 GHz Linux PC.

We adapted column BR to deal with optimization problems.

We report: time and B&B nodes taken by CPLEX 9.0 after
reformulation.

We do not report: time taken without reformulation (even in
the simplest case, it is a few hundred thousand B&B nodes;

usually it is +00).

/
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To solve
max cx
st. Ar < b
x € 2"

we replace A with AU, ¢ with cU, where U makes

Cc

A

U

N /
4 N

Maximization versions of integer subset sum

max azr
st. ar < (3 (2)
r € ZI.

First four instances from Cornuéjols, Urbaniak, Weismantel,
Wolsey (1998). Last (shown below) from Wolsey: Integer

Programming (1999).
(12228, 36679, 36682, 48908, 61139, 73365); 89716837

Number of B&B nodes after column BR: 5, 0, 9, 0, 10.

N /
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Feasibility versions of same instances

For (a,3), B. := optimal value. Then check the feasibility of

ar = faq

x € Z,

(3)

using 1) rangespace reformulation, 2) nullspace reformulation.
Number of B&B nodes is between 0 and 10 for all 5 instances, for
both choices.

Same happens, if rhs is chosen as (3, + ged(a).

N /
4 N

Marketshare problems (Cornuéjols, Dawande)

We need to find

xe{0,1}", Az =d,

where m =6 or m =7, n=10(m — 1). A,d are generated to make
the problem difficult.

range space null space

#BB CPU | #BB CPU
msl | 288597 175.30 | 51887  32.80
ms2 | 220803 165.40 | 52920 43.70

15
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Relaxed marketshare problems
Same data, but we want to find

xe{0,1}" d—1< Az <d.
After column BR

e marksharel: 85,466 nodes, 53 seconds; markshare2: 250, 368
nodes, 211 seconds.

\_
4 ™

Cascade?2 '

The “big brother” of the 11-variable instance.

-

e n = 100 variables, a; < 14,000, 3, 5" < 100, 000.

e Original problem does not solve by CPLEX after enumerating
2 billion B&B nodes.

e Easy, if we branch on pyz, then pox.

e Reformulation solves at rootnode.

N /
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There are hard IPs for which the reformulation does not work
=(
The reformulation uncovers the hidden “dominant” directions

in the polyhedron - but in some hard problems, these may not
exist, if the problem is symmetric.

/

~

~

Conclusions and further work'

A general, and very simple reformulation technique for
arbitrary IPs.

A fairly general class of IPs that are provably hard for ordinary
B&B .

Analysis: the provably hard problems turn into provably easy
ones: the reformulation “uncovers” the hidden, dominant

directions.
The cascade problems: thinner # better!

Works well in on most small, hard IPs from the literature.

/
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