ON THE GENERIC PROPERTIES OF
CONVEX OPTIMIZATION PROBLEMS
IN CONIC FORM

Gabor Pataki™ Levent Tuncelf

Research Report: CORR 97-16
September 1997 (revised: June 1999)

Department of Combinatorics and Optimization
Faculty of Mathematics
University of Waterloo
Waterloo, Ontario N2L 3G1

Canada

Abstract

We prove that strict complementarity, primal and dual nondegeneracy of optimal solutions
of convex optimization problems in conic form are generic properties. In this paper, we say
generic to mean that the set of data possessing the desired property (or properties) has the
same Hausdorff measure as the set of data that does not. Our proof is elementary and it
employs an important result due to Larman [7] on the boundary structure of convex bodies.

Keywords: Convex optimization, strict complementarity, nondegeneracy

AMS Subject Classification: 90C25, 90C05, 52A41, 47D20

*Department of IE/OR, Columbia University, New York, U.S.A. (e-mail: gabor@ieor.columbia.edu). Most of
this research was performed while this author was visiting the Department of Combinatorics and Optimization,
University of Waterloo (1995-1996 term), and supported in part by research grants from NSERC.

fDepartment of Combinatorics and Optimization, Faculty of Mathematics, University of Waterloo, Waterloo,
Ontario, N2L 3G1 Canada (e-mail: ltuncel@math.uwaterloo.ca). Research supported in part by research grants
from NSERC of Canada.



GENERIC PROPERTIES OF CONE PROGRAMS 2

1 Introduction

Nondegeneracy and strict complementarity of optimal solutions of optimization problems are
very important concepts. Many results in optimization, especially those regarding local con-
vergence properties of interior-point algorithms, have the underlying assumption that there
exists a strictly complementary pair of (primal-dual) optimal solutions (see, for instance, some
of the recent papers concerning the local convergence properties of interior-point methods on
semidefinite programming and related problems: Kojima, Shida and Shindoh [6], Luo, Sturm
and Zhang [10], and Potra and Sheng [13]). Even some global complexity results and condition
measures sometimes are formulated in terms of certain properties, and magnitudes of strictly

complementary solutions.

The purpose of this paper is to give a simple proof that strict complementarity, primal and
dual nondegeneracy of optimal solutions of convex optimization problems in conic form are
generic properties. In this paper, we say generic to mean that the set of data possessing the
desired property (or properties) has the same Hausdorff measure as the set of data that does
not. Our proof is rather elementary, however, it relies on an important result, due to Larman [7].
Our results generalize the corresponding theorems of Alizadeh-Haeberly-Overton [1] and Shapiro
[18] for semidefinite programming. The proofs by Alizadeh-Haeberly-Overton and Shapiro use
the notion of transversality from algebraic topology. Renegar [16] suggested a generalization of
these results to convex optimization problems which are semi-algebraic.! Qur results also apply

to convex optimization problems that cannot be expressed as semi-algebraic formulae.

!Renegar’s argument uses semi-algebraic geometry: One devises a semi-algebraic formula which is satisfied
precisely by data possessing the mentioned property. Thus the set of all data possessing the property is a semi-
algebraic set. One then proves that the interior of the set is empty. Semi-algebraic sets with empty interior are

always of measure zero.
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2 Notation, Definitions and Basic Results

We consider the primal-dual pair of convex optimization problems in the conic form:

(P) inf (c,z)

z € (L+bNK.

We define the dual of (P) as follows:

(D) inf (s,b)

s € (Lt +¢) n K¥,

where L C R™ is a subspace, L' is its orthogonal complement, b, c € R™ are given, and K C R"
is a pointed, closed, convex, solid (with non-empty interior) cone (for this formulation of a
primal-dual pair and its properties, see for instance, [11]). K™ is the dual of K under the given

inner-product. That is,
K* .= {seR": (s,z) > 0, Vz € K}.

So, for a fixed convex cone K and an inner product (-, -), the data points are defined to be the
triples (L, b, c). By a proper face of K, we mean a face of K that is neither empty nor equal to
K. We will further assume that cone K is facially exposed. (That is, every proper face of K
can be expressed as the intersection of K with one of its supporting hyperplanes.) Thus, from
now on, when we refer to a face of K we mean an exposed face of K. Since K is a pointed,
closed, convex, facially exposed, solid cone, so is its dual, K*. We say that the problem instance
defined by the data (L, b,c) is gap free if there exist feasible solutions Z and 5 for (P) and (D)
respectively, such that (5,Z) = 0. Note that our definition of gap free is equivalent to what
is usually referred to as “both primal and dual problems attain their optimum values and the

duality gap is zero.”

Later, we will remove the assumption that K (and hence K*) is facially exposed, see Remark

4.1.
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In the rest of this section, we give a brief summary of the definitions of basic, nondegenerate
and strictly complementary solutions, and of their properties. To make our paper self-contained,

we also provide several proofs. The results quoted here appear in [12].

Definition 2.1 The extreme points of the primal and dual feasible solution sets are called pri-

mal, and dual basic feasible solutions, respectively.

Throughout this paper, for a pointed closed convex cone K, int(K') denotes the interior of K,
0K denotes the boundary of K except the unique extreme point {0}. For each non-empty face
F of K, lin (F) denotes the linear hull of F, ri (F') denotes the relative interior of F, rel0(F)

denotes the relative boundary of F, and F2 denotes the conjugate of face F and is defined as
F® = {se K*: (s,2) = 0, Yz € F}.

The conjugate face of a face G of K* is defined analogously, and also denoted by G*. If F is a
face of K, then F2% is the smallest exposed face of K that contains F ([2], page 43). Therefore,
a face F is exposed iff FA2 = F.

Theorem 2.1 Let z be a feasible solution of (P) and F be the smallest face of K containing .

Then ¢ is a basic feasible solution if and only if

LNlin (F) = {0}.

Proof. z is basic iff
LNn{y: 2 +ty € K forsomet >0} = {0}. (1)

F, the smallest face of K that contains z is characterized by @ € ri (F). By elementary convex
analysis, the second set on the left hand side of (1) is exactly lin (F'), thus our claim follows.

a

Definition 2.2 A pair of feasible primal-dual solutions (z, s) is strictly complementary, if

(SC)z cri F and s € 1i F&
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for some face F of K. If (0,s) is feasible for s € int(K*) or (z,0) is feasible for z € int(K)

then the corresponding pair is also called strictly complementary.

Definition 2.3 Let z be a feasible solution of (P) and F be the smallest face of K that contains
z. We say that

z is nondegenerate if L1 Nlin (F2) = {0}.

Notice, that the above definition of nondegeneracy can be formally obtained from the char-
acterization of a basic feasible solution in Theorem 2.1 by replacing L by Lt and F by F%;
extremity and nondegeneracy are complementary notions. As in the fundamentals of linear

programming problems, we obtain

Theorem 2.2 Let z be a feasible solution of (P). Then the following hold.
1. If # is nondegenerate, then an arbitrary complementary solution of (D) must be basic.
Therefore, if there is a complementary dual solution, it must be unique.

2. Suppose that s is a dual solution and (z,s) satisfies (SC). Then s is basic if and only if ©

is nondegenerate.

Proof. Let s be a complementary solution of (D), and G the smallest face of K* that contains

s. By Theorem 2.1 s is basic, iff
Lt nlin (G) = {0}. (2)

Since (s,z) =0, and z € ri (F), we get s € F2. Then ri GN F2 # ), so by Theorem 18.1 in
[14] G C FA. Therefore 1. is proved.

If (SC) holds, then G Nri F~ # 0 (as it contains s), so again by Theorem 18.1 in [14]
G = F*. Hence 2. follows as well. O

These definitions and theorems are applicable to all convex optimization problems in conic

form. When we take K to be the cone of n X n symmetric positive semidefinite matrices over the
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reals, the above definitions and theorems specialize to Semidefinite Programming problems. In
this special case, the above definitions and theorems coincide with the corresponding definitions

and theorems of Alizadeh-Haeberly-Overton [1].

3 Hausdorff measure, Hausdorff dimension and Larman’s The-

orem

The foundations of Hausdorff measures can be traced back to the proposal of outer measures
in Carathéodory’s work around 1915. A useful way of thinking about Hausdorff measures is to

think of them as a coverability measure of sets.
For any non-empty subset U of RY, the diameter of U is
diam (U) :=sup{||z —y||: =,y € U}.
Let S C R% A countable (or finite) collection of sets of diameter at most &, say {U;} is called a

é-cover of S, if
S C U U; and 0 < diam (U;) <4, Vi.

=1

Let t > 0 be a real number. Then the t-dimensional Hausdorff measure of S is defined as
HY(S) == () hm inf {Z diam (U;)/2)" : {U;} is a é-cover of S} )

where
/2

r(z+1)

The concept of Hausdorff measure is quite rich. In general, many different functions, other than

v(t) ==

the t-power function in the above definition, give rise to interesting Hausdorff measures (see

[15]).

When t € Z,4, v(t) is the Euclidean volume of the Euclidean unit ball in R If S is a
d-dimensional polytope then H d(S ) is also equal to the Euclidean volume of S.

For a fixed set S, there exists unique ¢(.S) > 0 such that

H'(S)=+oo forallt <t(S) and H(S)=0 for all t > ¢(S).



GENERIC PROPERTIES OF CONE PROGRAMS 7

t(S) is called the Hausdorff dimension of S. Moreover, if S is Lebesgue measurable with respect
to d-dimensional Lebesgue measure (d € Z,,) then H%(S) coincides with the Lebesgue d-

measure of S.

The notions of Hausdorff measure and Hausdorff dimension are very useful in quantifying
sets of Lebesgue measure zero which are nevertheless “substantial.” That is, since the Hausdorff
dimension can be a real number, it can distinguish, for instance, among various sets all of which
may have Lebesgue d-measure 0, and Lebesgue (d — 1)-measure +co. So, in this sense, Hausdorff
measure is more precise than the Lebesgue measure. These properties are used extensively
together with Fubini’s Theorem in the next section. In this paper, dim(S) denotes the Hausdorff

dimension of S as defined above.

Our proof is based on certain properties of the boundaries of convex sets. An excellent
introduction to the boundary structure of convex sets is given in the early chapters of the book
by Schneider [17]. For an excellent introduction to Hausdorff measures, see Rogers’ book [15].

We employ an important theorem due to Larman [7]:

Theorem 3.1 Let W be the union of the relative boundaries of those proper faces of a
d-dimensional compact convez set S which have dimension at least one. Then W has Hausdorff

dimension less than (d — 1).

For example, if S is a 3-dimensional cube, then W is its skeleton, which has zero 2-dimensional
Hausdorff measure. (At this point, it should be clear to the reader that the consequences of the

above theorem for polytopes are rather trivial.) If S is a sphere, then W is empty.

Larman and many others used the notion of a cap of a compact convex set to measure certain
subsets of the boundary of the convex compact set. A cap of the compact convex solid set S
in R% is a d-dimensional subset of S that can be written as the intersection of S with a closed
halfspace in R% In Larman’s proof, the extreme points of S are covered by certain caps and
then it is shown that the union of these caps has finite measure with respect to the (d — 1)-
dimensional Hausdorff measure. Larman then analyzes the higher dimensional faces of S (which
must contain line segments) using some new technical lemmas and some other technical results

of [3, 8, 9].
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4 Main Results

We denote the set of all proper faces of K, excluding the trivial face {0}, by F(K). For a convex
compact set S, F(S) denotes all proper faces of S. We define

V = {(m,s)é@K@@K*: e € 1i (F),s €ri (F®) for someFG]-"(K)}

and

V = {(m,s)eaK@aK*: zeFsecF® forsomeFE]—"(K)}.

We obtain the following key result as a consequence of Theorem 3.1.

Corollary 4.1 The set V\V has zero dim(V)-dimensional Hausdorff measure.

Proof. Let § € int(K™*). The set
K' = {zeK: (5z)=1}

is a convex compact set of dimension (n — 1) (see, e.g., [4]). The boundary structure of K’
completely represents that of K (except for the extreme point 0 of K). The correspondence is:
F' is a proper face of K' iff

F'=Fn{z: (,z) =1}

for some face F' € F(K). We apply Theorem 3.1 to K’ to conclude that the set
{z € K': z € reld(F') for some F' € F(K'), dim(F’) > 0}
has Hausdorff dimension less than (n — 2). Therefore, the sets

{z € K: z €reld(F) for some F € F(K), dim(F) > 1} and

{z € K: 2 €reld(F) for some F € F(K)} (3)

have Hausdorff dimension less than (n—1). Note that the above two sets differ only in the union
of relative boundaries of those faces of K which have dimension 1. These faces are the extreme

rays, and the union of their relative boundaries is {0}.
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Similarly, the set
{s € K*: s €relg(F) for some F € F(K™)} (4)
has Hausdorff dimension less than (n — 1).

Next, we observe that
V\V C {(:L',s) €V : zcreld(F),s € F© for some F € T(K)}
U {(:r:,s) €V: zc F® screld(F) for some F € ,’F(K*)}. (5)

Now, note that the projection of the first set in the right hand side of (5), onto the space of
K is exactly the set described by (3); similarly, the projection of the second set in the right
hand side of (5), onto the space of K* is precisely the set described by (4). We also note that
the corresponding projections of V onto K and K* are 9K and 9(K*) respectively. Clearly,
dim(0K) and dim(3(K*)) are both at least (n — 1). Now, we apply Fubini’s Theorem (the
version of it described as Theorem A in page 147 of Halmos’ book [5]). We conclude,

dim <{(m,s) €V: zcreld(F),s € F* for some F € T(K)}) < dim(V)

and

dim ({(m,s)EV: z € F®,s € 1eld(F) for someFET(K*)}) < dim(V).

Since the union of the last two sets covers V\V, we arrive at dim(V\V) < dim(V). o

Next, we relate the sets V and V to that set of data points for which the corresponding

optimization problems (P) and (D) have interesting properties. To this end, we define
C = VU({0}®int(K™)) U (int(K) & {0}),

C = VU({0}e K*)U(K & {0}).

Now, we are ready to define the data points.
D(L) := {(L,:E—I-U,E—I-'v) : (2,5)eC,uecL,ve LL}.

Proposition 4.1 For each subspace {0} C L C R™, D(L) is the set of all instances (L,b,c)

which are gap free.
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Proof. Let (L,b,c) € D(L). Then by the definition of D(L), there exist aface F of K and z € F,
5 € F2 such that Z and 5 are feasible solutions of (P) and (D) respectively. By the definition
of the conjugate face, (5,Z) = 0. Thus, the instance (L, b, c) is gap free. Conversely, suppose
that the given triple (L, b, c) is gap free. Then there exist # € (L+b)NK and § € (L1 +c)NK*
such that (5,2) = 0. If & ¢ OK then all feasible solutions of (P) are optimal. So, without
loss of generality, we can assume & € K. Let F € F(K) such that 2 € ri (F) (the remaining
case F' = {0} is trivial, since in this case, all feasible solutions of (D) are optimal). Now, all
optimal solutions s of (D) must satisfy (s, 2) = 0. Thus, § € F2. Since # and § are feasible in

respective problems, we also have b = & + u and ¢ = § + v for some u € L, v € L*. Therefore,

(L,b,¢) € D(L). O

Next, we define a subset of D(L).
D(L) := {(L,:E+u,§—|—v) : (2,5 eC,uel,ve LL}.

Proposition 4.2 For each subspace {0} C L C R"™ D(L) is the set of all gap free instances
(L, b, c) such that the corresponding pair (P) and (D) has strictly complementary pair of solu-

tions.

Proof. Similar to the proof of Proposition 4.1. a

Using Corollary 4.1, we arrive at the following fact.

Proposition 4.3 For each subspace {0} C L C R", the set D(L)\D(L) has zero

dim(D(L))-dimensional Hausdorff measure.

Now, we are ready to define

(]
I
-
EI
=
=

{0}CLCR"
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By Proposition 4.1, D is the set of all data points (excluding the trivial choices for L) such that
the underlying problems (P) and (D) have zero duality gap. Similarly, we define

D= |J DU (7)

{0}CLCRn
By Proposition 4.2, D is the set of all data points (excluding the trivial choices for L) such
that the underlying problem pairs (P) and (D) are gap free and have strictly complementary

solutions.

To get the final result, we invoke Fubini’s Theorem. In our setting, for every fixed choice of
L the set of instances violating strict complementarity has measure zero; thus, Fubini’s theorem

implies the following theorem.
Theorem 4.1 The set D\D has zero dim(D)-dimensional Hausdorff measure.

Since we have K and K™ as solid cones in R", in the cases L = {0} and L = R", strict
complementarity always holds. So combining Propositions 4.1, 4.2 and Theorem 4.1, we conclude
that strict complementarity is one of the generic properties of these convex optimization problems

in conic form.

A remarkable result due to Ewald, Larman and Rogers (see [3], or Theorem 2.3.1 in [17])
implies that for fixed L and b, the set of all ¢, ||c|[s = 1, for which (P) has multiple optimal
solutions has zero (d — 1)-dimensional Hausdorff measure (here d is the dimension of the feasible
region of (P)). Note that all allowable ¢’s, in this context, have positive (d — 1)-dimensional
Hausdorff measure (the surface area of the d—hypersphere). Thus, for every fixed pair (L, b),
the uniqueness of the optimal solution (under the restriction of existence) holds everywhere in
the sense of Hausdorff measure. Again applying Fubini’s Theorem, we conclude that the primal

uniqueness is generic. Similarly, the dual uniqueness is generic.

Now, we apply part 2 of Theorem 2.2. Let (z, s) be a feasible pair satisfying (SC). Since z is
unique almost everywhere, it is basic almost everywhere (whenever there is an optimal solution,
there exists one that is also an extreme point of the feasible region). We conclude that s is
nondegenerate almost everywhere. The same arguments, starting with the statement that s is
unique almost everywhere, establish that the primal nondegeneracy is generic. We proved the

following:
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Theorem 4.2 Strict complementarity, primal and dual nondegeneracy of optimal solutions are

generic properties of convexr optimization problems in conic form.

Remark 4.1 Note that every proper face of K that is not exposed, lies on the boundary of some
proper exposed face of K. Thus, the arguments above go through for convexr cones with faces

that are not exposed.

Remark 4.2 Note that in computing D and D in equations (6), (7) we can restrict the union

to those subspaces L with dimension m. That is, we define

Dm = |J DI, Dm:= |J DWU.

L:dim(L)=m L:dim(L)=m

The same arguments as above imply that D,,\D,, has zero D,,-dimensional Hausdor{f measure
and that strict complementarity, primal and dual nondegeneracy are generic properties in this

context as well.
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