A Simple Derivation of a Facial Reduction Algorithm and Extended Dual Systems

Gábor Pataki gabor@unc.edu

Dept. of Statistics and OR University of North Carolina at Chapel Hill

Abstract

The Facial Reduction Algorithm (FRA) of Borwein and Wolkowicz and the Extended Dual System (EDS) of Ramana aim to better understand duality, when a conic linear system

$$Ax \leq_K b \tag{P}$$

has no strictly feasible solution. We

- provide a simple proof of the correctness of a variant of FRA.
- show how it naturally leads to the validity of a family of extended dual systems.
- Summarize, which subsets of K related to the system (P) (as the minimal cone and its dual) have an extended representation.

1 Introduction

Farkas' lemma assuming a CQ Duality results for the conic linear system

$$Ax \leq_K b \tag{P}$$

are usually derived assuming some constraint qualification (CQ). The most frequently used CQ is strict feasibility, i.e. assuming the existence of a \bar{x} with $A\bar{x} <_K b$. Here K is a closed convex cone, $A : X \to Y$ a linear operator, with X and Y being euclidean spaces. We write $z \leq_K y$, and $z <_K y$ to mean that y - zis in K, or in ri K, respectively.

Let K^* be the dual cone of K. A fundamental result that implies both strong duality between a primal-dual pair of conic linear programs, and the existence of a certificate of infeasibility of a conic linear system (again, assuming an appropriate CQ) is

Theorem 1.1. (Farkas' lemma) Suppose that (P) is strictly feasible, $c \in X$, $c_0 \in \mathbb{R}$. Then for all x feasible solutions of (P) $\langle c, x \rangle \leq c_0$ holds, iff there is a y such that

$$y \ge_{K^*} 0, \ A^* y = c, \ \langle b, y \rangle \le c_0.$$
 (1.1)

Two approaches are known to derive strong duality results for conic linear systems without assuming a CQ, and to better understand systems which are not strictly feasible.

The Facial Reduction Algorithm Borwein and Wolkowicz in [2, 3] note that (P) is always equivalent to a strictly feasible system

$$Ax \leq_{F_{\min}} b$$

where F_{\min} is a face of K, called the *minimal cone* of (P). Therefore, as F_{\min} is a closed convex cone, Theorem 1.1 holds without requiring a CQ, if we replace $y \geq_{K^*} 0$ with

$$y \geq_{F^*_{\min}} 0.$$

The technique of deriving duality results using the minimal cone is called *facial* reduction. Furthermore, they provide an algorithm to construct a sequence of faces $K = F_0 \supseteq \cdots \supseteq F_t = F_{\min}$ for some $t \ge 0$. We shall call their method a Facial Reduction Algorithm (FRA).

An Extended Dual System For a semidefinite linear system, i.e. when $K = K^* = S^n_+$, Ramana in [15] has developed the approach of an *Extended Dual System* (*EDS*). (The term used by him was an "Extended Lagrange-Slater Dual"; we feel that our terminology is better suited for the treatment presented in this paper.) Essentially, he has shown that there is a set $ext(A, b, K^*)$, such that Theorem 1.1 holds without any CQ assumption if we replace $y \geq_{K^*} 0$ with

$$(y, w) \in \text{ext}(A, b, K^*) \text{ for some } w.$$
 (1.2)

Moreover, $ext(A, b, K^*)$ is the set of feasible solutions of a conic linear system in which the only "nontrivial" (ie. different from a direct product of copies of \mathbb{R} , and \mathbb{R}_+) cone is $K = K^*$.

Related Literature The resemblance between these results is not coincidental: Ramana, Tuncel and Wolkowicz have shown in [14] that FRA and EDS are closely related. Alternative interpretations of extended dual systems were given by Luo, Sturm and Zhang in [10], and Kortanek and Zhang in [7]. An interesting, and novel application of FRA was introduced by Sturm in [17]: deriving error bounds for semidefinite systems that have no strictly feasible solution. Luo and Sturm generalized this approach to mixed semidefinite, and second order conic systems; see [9]. Facial reduction was used by several other authors to derive duality results without a CQ assumption; see Lewis [8].

A Unified Treatment Our aim is to provide a unified and transparent derivation of FRA and EDS. Precisely, under the assumption that

$$F^* = K^* + F^{\perp} \text{ for all faces } F \text{ of } K, \tag{1.3}$$

we

- (1) give a proof of the correctness of a variant of FRA.
- (2) show that it immediately implies that

 $F_{\min}^* = \{ y \mid (y, w^1) \in \text{ext}_1(A, b, K^*, T) \text{ for some } w^1 \}.$

Here $\operatorname{ext}_1(A, b, K^*, T)$ is the feasible set of a conic linear system that depends on A, b, K^* and T, a closed convex cone which is related to K^* . In other words, F_{\min}^* has an *extended formulation*.

(3) Prove that when $K = K^* = \mathcal{S}^n_+$, the dependence on T can be eliminated; a similarly described $\operatorname{ext}_2(A, b, K^*)$ can be found, so that

$$F_{\min}^* = \{ y \, | \, (y, w^2) \in \text{ext}_2(A, b, K^*) \text{ for some } w^2 \}.$$

(4) Survey other results on the representability (in the above sense) of F_{\min} and related sets: its dual cone, orthogonal complement, and complementary face.

We note that assumption (1.3) is satisfied for most cones of interest; see Section 2. To keep the presentation simple, the *only* results that we will use is Theorem 1.1, and some elementary facts from convex analysis.

Section 2 contains all necessary preliminaries. In Section 3 we derive a simple variant of FRA; in Section 4 "translate" the algorithm into an EDS, and show that for the semidefinite case, there is such a system expressed purely in terms of K^* , thus recovering Ramana's result. Section 5 presents variants of extended dual systems, and Section 6 studies the representability of F_{\min} and its related sets.

2 Preliminaries

Operators and matrices Linear operators are denoted by capital letters. If A is a linear operator, then A^* will stand for its adjoint. When a matrix is considered to be an element of a euclidean space, not a linear operator, it is denoted by a small letter.

Convex Sets The open line-segment between points y and z is denoted by (y, z). Let C be a closed convex set. A convex subset F of C is called a *face* of C, and this fact is denoted denoted by $F \leq C$, if $x \in F$, $y, z \in C$, $x \in (y, z)$ implies $y, z \in F$. For $x \in C$ we denote by face(x, C) the minimal face of C that contains x, that is with the property $x \in riface(x, C)$.

For $x \in C$, the set of feasible directions, and the tangent space at x in C are defined as

$$dir(x, C) = \{ y \mid x + ty \in C \text{ for some } t > 0 \}, tan(x, C) = cl dir(x, C) \cap -cl dir(x, C) = \{ y \mid dist(x \pm ty, C) = o(t) \}.$$

The equivalence of the alternative expressions for tan(x, C) follows e.g. from [6, page 135].

Cones A convex set K is a *cone*, if $\mu K \subseteq K$ holds for all $\mu \ge 0$. The *dual* of the cone K is

$$K^* = \{ z \mid \langle z, x \rangle \ge 0 \text{ for all } x \in K \}.$$

If $F \leq K$, and $\bar{x} \in \operatorname{ri} F$ is fixed, then the *complementary* (or *conjugate*) face of F is defined alternatively as (the equivalence is straightforward)

$$F^{\triangle} = \{ z \in K^* \mid \langle z, x \rangle = 0 \text{ for all } x \in F \}$$
$$= \{ z \in K^* \mid \langle z, \bar{x} \rangle = 0 \}$$

The complementary face of $G \leq K^*$ is defined analogously, and denoted by G^{\triangle} . K is facially exposed, i.e. all faces of K arise as the intersection of K with a supporting hyperplane, iff for all $F \leq K$, $F^{\triangle \triangle} = F$, see ([4], Theorem 6.7). For brevity, we write $F^{\triangle *}$ for $(F^{\triangle})^*$, and $F^{\triangle \perp}$ for $(F^{\triangle})^{\perp}$. A closed convex cone K is called *nice*, if

$$F^* = K^* + F^{\perp}$$
 for all $F \trianglelefteq K$

For the purposes of this work, it is enough to note that

- For the FRA to be applicable, the underlying cone must be nice.
- Nice cones are also easier to deal with in other areas of the "duality without CQ" subject, see [13].
- Polyhedral, semidefinite, and second order cones are nice, see [12].
- Nice cones must be facially exposed, see [13].

If K is a cone, $x \in K$, then $\tan(x, K)$ can be conveniently expressed (see [12]) as

$$\tan(x, K) = \operatorname{face}(x, K)^{\Delta \perp}$$
(2.4)

We remark, that (2.4) holds for all closed convex cones, not only for nice ones ([11], [13]).

Example 2.1. (The nonnegative orthant) $K = \mathbb{R}^n_+$ is self-dual with respect to the usual inner product of \mathbb{R}^n . If $\bar{x} \in K = \mathbb{R}^n_+$, then

$$face(\bar{x}, \mathbb{R}^{n}_{+}) = \{ x \in \mathbb{R}^{n}_{+} | x_{i} = 0 \ \forall i \ s.t. \ \bar{x}_{i} = 0 \}, face(\bar{x}, \mathbb{R}^{n}_{+})^{\Delta} = \{ x \in \mathbb{R}^{n}_{+} | x_{i} = 0 \ \forall i \ s.t. \ \bar{x}_{i} > 0 \}.$$
(2.5)

Then (2.4) and (2.5) yield

$$\tan(\bar{x}, \mathbb{R}^{n}_{+}) = \{ y \in \mathbb{R}^{n} | y_{i} = 0 \ \forall i \ s.t. \ \bar{x}_{i} = 0 \}.$$
(2.6)

Example 2.2. (The semidefinite cone) The space of n by n symmetric, and the cone of n by n symmetric, positive semidefinite matrices are denoted by S^n , and S^n_+ , respectively. The space S^n is equipped with the inner product

$$\langle x, z \rangle := \sum_{i,j=1}^n x_{ij} z_{ij},$$

and \mathcal{S}^n_+ is self-dual with respect to it.

If $\bar{x} \in K = K^* = \mathcal{S}^n_+$, then

$$face(\bar{x}, \mathcal{S}^{n}_{+}) = \{ x \in \mathcal{S}^{n}_{+} | \mathcal{R}(x) \subseteq \mathcal{R}(\bar{x}) \}, face(\bar{x}, \mathcal{S}^{n}_{+})^{\triangle} = \{ x \in \mathcal{S}^{n}_{+} | \mathcal{R}(x) \subseteq \mathcal{R}(\bar{x})^{\perp} \},$$
(2.7)

(Barker and Carlson, [1]; for a simple proof, see [12]).

The expressions in (2.7) can be simplified, if we note that $q^T(\text{face}(\bar{x}, \mathcal{S}^n_+))q = \text{face}(q^T \bar{x}q, \mathcal{S}^n_+)$ for any full rank matrix q, therefore, we can assume $\bar{x} = \begin{pmatrix} I & 0 \\ 0 & 0 \end{pmatrix}$. If rank $\bar{x} = r$, then (2.4) and (2.7) lead to

$$\tan(\bar{x}, \mathcal{S}^{n}_{+}) = \left\{ \begin{pmatrix} a & b \\ b^{T} & 0 \end{pmatrix} \mid a \in \mathcal{S}^{r}, b \in \mathbb{R}^{r \times (n-r)} \right\}$$
(2.8)

Example 2.3. (The second order cone) The second-order cone in \mathbb{R}^{n+1} is defined as

$$K_{2,n+1} = \{ (x_0, x) \mid x_0 \ge \|x\|_2 \},\$$

and it is self-dual with respect to the usual inner product in \mathbb{R}^{n+1} .

Let $F \leq K_{2,n+1}$. As $K_{2,n+1}$ is the "lifting" of the unit ball of the norm $\| \|_2$, all F faces different from $\{0\}$ and $K_{2,n+1}$ must satisfy

$$F = \operatorname{cone} \{ (||x||_2, x)^T \}$$

$$F^{\Delta} = \operatorname{cone} \{ (||x||_2, -x)^T \}$$
(2.9)

for some $x \in \mathbb{R}^n$.

For any two such faces determined by $u, v \in \mathbb{R}^n$ there is a linear map Q(u, v) that sends $(|| u ||_2, u)^T$ to $(|| v ||_2, v)^T$, and $K_{2,n+1}$ to itself. Therefore, we can assume that F is generated by $\bar{x} = (n^{1/2}, e)^T$. Then (2.4) and (2.9) imply

$$\tan(\bar{x}, K_{2,n+1}) = \{ (y_0, y) \mid n^{1/2} y_0 = e^T y \}$$
(2.10)

Minimal cones Denote by Feas(P) the feasible set of (P) and assume that it is nonempty. Let

$$\bar{x} \in \operatorname{ri} \operatorname{Feas}(P), \quad E := \operatorname{face}(b - A\bar{x}, K).$$

Then for any $y \in \text{Feas}(P)$ there is $z \in \text{Feas}(P)$ with $\bar{x} \in (y, z)$. Hence

$$\operatorname{ri} E \ni b - A\bar{x} \in (b - Ay, b - Az) \Rightarrow b - Ay, b - Az \in E,$$

and we obtain that (P) is equivalent to

$$Ax \leq_E b.$$

In other words E is the maximal face of K that contains a vector of the form b - Ax in its relative interior. It is called the minimal cone of the system (P), corresponding to b - Ax, and denoted by mincone(b - Ax, (P)).

In general, if S a closed convex cone, (Q) a conic linear system, with

$$A_{i_1} u^{i_1} \leq_S b^{i_1}, \dots, A_{i_1} u^{i_k} \leq_S b^{i_k}$$

among its constraints, then

mincone(
$$(b^{i_1} - A_{i_1}u^{i_1}) + \dots + (b^{i_k} - A_{i_k}u^{i_k}), (Q)$$
)

will denote the maximal face of S that contains a vector $(b^{i_1} - A_{i_1}u^{i_1}) + \cdots + (b^{i_k} - A_{i_k}u^{i_k})$ in its relative interior, with all u^{i_j} 's feasible for (Q).

Key assumptions and notation In the rest of the paper, unless otherwise stated, we uphold the assumptions that

(P) is feasible; K is nice, ie.
$$F^* = K^* + F^{\perp}$$
 for all $F \leq K$

and write

$$F_{\min} = \min \operatorname{cone}(b - Ax, (P))$$

3 A Facial Reduction Algorithm

Reducing certificates Fix an F face of K such that $F_{\min} \subseteq F \subseteq K$. The feasible solutions of the following conic linear system

$$(u, v) \in K^* \times F^{\perp}$$

$$A^*(u+v) = 0$$

$$\langle b, u+v \rangle = 0$$

$$\left. \left(RED(F) \right) \right.$$

will give a proof when F_{\min} is contained in a smaller face of K.

Theorem 3.1. (Borwein and Wolkowicz) Assume that (P) is feasible. Then

(1) For all (u, v) feasible to (RED(F)),

$$F_{\min} \subseteq F \cap \{u\}^{\perp} \subseteq F. \tag{3.11}$$

(2) If $F_{\min} \subsetneq F$, then there exists (u, v) feasible to (RED(F)), such that the second containment in (3.11) is strict.

Proof of (1) Let x be a feasible solution of (P). Then

$$0 = \langle u + v, b - Ax \rangle = \langle u, b - Ax \rangle,$$

proving the first containment; the second is obvious.

Proof of (2) Fix $f \in \operatorname{ri} F$. Then $F_{\min} \neq F$, iff

$$Ax + ft \leq_F b \quad \text{implies} \quad t \leq 0. \tag{3.12}$$

Since the conic system of (3.12) is strictly feasible (with some t sufficiently negative), this implication has a certificate, that is

$$\begin{array}{ll} \exists \, y \in F^* & \text{st.} & A^*y = 0, \quad \langle b, y \rangle \leq 0, \quad \langle f, y \rangle = 1 \Leftrightarrow \\ \exists \, (u+v) \in K^* + F^\perp & \text{st.} & A^*(u+v) = 0, \quad \langle b, u+v \rangle \leq 0, \quad \langle f, u+v \rangle = 1. \end{array}$$

Next, note that $\langle b, y \rangle = 0$ must hold, since $\langle b, y \rangle < 0$ would prove the infeasibility of (P). Finally,

$$\langle f, u + v \rangle = \langle f, u \rangle > 0 \implies F \cap \{u\}^{\perp} \subsetneq F.$$

If the second containment in (3.11) is strict, we shall say that (u, v) reduces the system $Ax \leq_F b$, or it is a reducing certificate. Next, we state an algorithm to construct F_{\min} ; it is a simplified version of the one given by Borwein and Wolkowicz [3].

FACIAL REDUCTION ALGORITHM (A, b, K)Input: A, b, K. Output: $t \ge 0, u^0, \dots, u^t \in K^*$ with $F_{\min} = K \cap \{u^0 + \dots + u^t\}^{\perp}$. Invariants: $F_{\min} \subseteq F_i$, $F_i = K \cap \{u^0 + \dots + u^i\}^{\perp}$, $F_i^{\perp} = \tan(u^0 + \dots + u^i, K^*)$. Initialization: Let $(u^0, v^0) = (0, 0)$, $F_0 = K$, i = 0. while $F_{\min} \neq F_i$ Find (u^{i+1}, v^{i+1}) reducing $Ax \le_{F_i} b$. Let $F_{i+1} = F_i \cap \{u^{i+1}\}^{\perp}$, i = i + 1. end while Output $t = i, u^0, \dots, u^t$.

Theorem 3.2. The Facial Reduction Algorithm is finite, and correctly constructs F_{\min} .

Proof It suffices to note the following 3 facts.

• By Lemma 3.1 a (u^{i+1}, v^{i+1}) that reduces F_i can be found exactly if $F_{\min} \neq F_i$.

• All three invariants are trivially satisfied for i = 0. Now assume that they are true for $0, \ldots, i$. Then

$$F_{\min} \subseteq F_{i+1} = F_i \cap \{u^{i+1}\}^{\perp} = K \cap \{u^0 + \dots + u^i\}^{\perp} \cap \{u^{i+1}\}^{\perp} = K \cap \{u^0 + \dots + u^i + u^{i+1}\}^{\perp}.$$
(3.13)

The last equality follows, as all u^i 's are in K^* . Therefore, the first two invariants hold for i + 1. To prove that the last one does, using (3.13) we obtain

$$F_i^{\perp} = \left(K \cap \{u^0 + \dots + u^i\}^{\perp}\right)^{\perp}$$

= face $(u^0 + \dots + u^i, K^*)^{\Delta \perp}$
= tan $(u^0 + \dots + u^i, K^*),$

as required.

• Since F_i is reduced in every step, the number of steps until termination is not more than

$$L(A, b, K) := \min \{ \dim(\mathcal{N}(A^*) \cap \{b\}^{\perp}),$$

length of the longest chain of faces in $K \}.$ (3.14)

We shall call the collection of (u^i, v^i) 's found by the algorithm a *facial reduction* sequence (FRS). By the expression for F_i^{\perp} above, an FRS will look like

$$\begin{array}{l}
(u^{0}, v^{0}) = (0, 0) \\
(u^{i}, v^{i}) \in K^{*} \times \tan(u^{0} + \dots + u^{i-1}, K^{*}) \\
(i = 1 \dots, t) \\
u^{i} + v^{i} \in \mathcal{N}(A^{*}) \cap \{b\}^{\perp} \\
(i = 1 \dots, t)
\end{array}$$
(3.15)

Example 3.3. With $X = \mathbb{R}^m$, $Y = \mathbb{R}^n$, $K = K^* = \mathbb{R}^n_+$, (P) is a linear inequality system. For the instance

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \le \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$
(3.16)

an FRS is

$$u^{1} = \begin{pmatrix} 0 & 0 & 0 & 1 & 1 \end{pmatrix}^{T}, u^{2} = \begin{pmatrix} 0 & 1 & 1 & 0 & 0 \end{pmatrix}^{T}, v^{2} = \begin{pmatrix} 0 & 0 & 0 & 0 & -1 \end{pmatrix}^{T},$$

with the corresponding F_i faces being

$$F_1 = \mathbb{R}^3_+ \times \{0\}^2, F_2 = \mathbb{R}^1_+ \times \{0\}^4.$$

 F_2 is the minimal cone of (3.16).

Example 3.4. With $X = \mathbb{R}^m$, $Y = \mathcal{S}^n$, $K = K^* = \mathcal{S}^n_+$, (P) is a semidefinite system. For the instance

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} x_1 + \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} x_2 + \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix} x_3 \preceq \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
(3.17)

an FRS is

$$u^{1} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \ u^{2} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \ v^{2} = \begin{pmatrix} 0 & 0 & -1 \\ 0 & 0 & 0 \\ -1 & 0 & 0 \end{pmatrix}.$$

The corresponding F_i faces are

$$F_{1} = \text{face}\left(\begin{pmatrix} 1 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & 0 \end{pmatrix}, \, \mathcal{S}_{+}^{3}\right), \, F_{2} = \text{face}\left(\begin{pmatrix} 1 & 0 & 0\\ 0 & 0 & 0\\ 0 & 0 & 0 \end{pmatrix}, \, \mathcal{S}_{+}^{3}\right)$$

 F_2 is the minimal cone of (3.17).

Example 3.5. With $X = \mathbb{R}^m$, $Y = (\mathbb{R}^{n+1})^r$, and $K = K^* = (K_{2,n+1})^r$, (P) is a conic system over a direct product of second order cones. Consider the instance

$$\begin{bmatrix} \begin{pmatrix} \sqrt{n} \\ e \end{pmatrix} \begin{pmatrix} 0 \\ 0 \end{pmatrix} \end{bmatrix} x_1 + \begin{bmatrix} \begin{pmatrix} 0 \\ a \end{pmatrix} \begin{pmatrix} \sqrt{n} \\ e \end{pmatrix} \end{bmatrix} x_2 \leq_K \begin{bmatrix} \begin{pmatrix} 0 \\ 0 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \end{pmatrix} \end{bmatrix}$$
(3.18)

where $a \in \mathbb{R}^n$ is such that $\langle a, e \rangle = 0$, $||a||_2^2 = 2n$. Now an FRS is

$$u^{1} = \left[\begin{pmatrix} \sqrt{n} \\ -e \end{pmatrix} \begin{pmatrix} \sqrt{n} \\ -e \end{pmatrix} \right], \ u^{2} = \left[\begin{pmatrix} 0 \\ 0 \end{pmatrix} \begin{pmatrix} \sqrt{n} \\ e \end{pmatrix} \right], v^{2} = \left[\begin{pmatrix} 0 \\ -a \end{pmatrix} \begin{pmatrix} 0 \\ 0 \end{pmatrix} \right]$$

The corresponding F_i faces are

$$F_1 = \text{face}\left(\left[\begin{pmatrix}\sqrt{n}\\e\end{pmatrix}\begin{pmatrix}\sqrt{n}\\e\end{pmatrix}\right], K\right), F_2 = \text{face}\left(\left[\begin{pmatrix}\sqrt{n}\\e\end{pmatrix}\begin{pmatrix}0\\0\end{pmatrix}\right], K\right),$$

with F_2 equal to the minimal cone of (3.18).

Remark 3.6. Note that for (3.16) there is an FRS of length 1, namely

$$u^1 = \begin{pmatrix} 0 & 0 & 0 & 1 & 1 \end{pmatrix}^T.$$

In fact, this is true for any linear inequality system. If $K = K^* = \mathbb{R}^n$, take an FRS $(\hat{u}^i, \hat{v}^i)_{i=0}^t$ satisfying (3.15) and set

$$\widetilde{u}^1 = \widehat{u}^1, \dots, \widetilde{u}^t = (\widehat{u}^t + \widehat{v}^t) + \alpha_{t-1}\widetilde{u}^{t-1}$$

for sufficiently large $\alpha_1, \ldots, \alpha_{t-1}$. Then

$$\widetilde{u}^1, \dots, \widetilde{u}^t \in K^*, \text{ face}(\widetilde{u}^t, K^*) = \text{face}(\widehat{u}^1 + \dots + \widehat{u}^t, K^*)$$

Hence the correctness of FRA also leads to the existence of a strictly complementary solution pair for a primal-dual pair of linear programs.

4 The Simplest Extended Dual System

To turn the algorithm for constructing F_{\min} into an extended formulation of F_{\min}^* , first notice that the set

$$\{(u, v) | u \in K^*, v \in \tan(u, K^*)\}$$

is a closed convex cone. For brevity, let L = L(A, b, K). By the previous remark, the structure

$$\begin{aligned} & (u^{0}, v^{0}) = 0 \\ & (u^{i}, v^{i}) \in K^{*} \times \tan(u^{0} + \dots + u^{i-1}, K^{*}) \\ & (i = 1 \dots, L + 1) \\ & u^{i} + v^{i} \in \mathcal{N}(A^{*}) \cap \{b\}^{\perp} \\ & (i = 1 \dots, L) \end{aligned}$$
 (EXT)

is a conic linear system. Note that the different range for i in the 2 constraints (from 1 to L + 1 and from 1 to L) is not accidental.

Theorem 4.1. (Representing F_{\min}^*) The following hold.

$$F_{\min}^{\Delta} = \min \operatorname{cone}(u^0 + \dots + u^L, (EXT))$$
(4.19)

$$F_{\min}^{\perp} = \{ v^{L+1} | (u^{i}, v^{i})_{i=0}^{L+1} \text{ is feasible for } (EXT) \}$$
(4.20)

$$F_{\min}^{*} = \{ u^{L+1} + v^{L+1} | (u^{i}, v^{i})_{i=0}^{L+1} \text{ is feasible for } (EXT) \}$$
(4.21)

Proof By Theorem 3.1 for all $(u^i, v^i)_{i=0}^{L+1}$ that are feasible for (EXT)

$$F_{\min} \subseteq K \cap \{u^0 + \dots + u^L\}^{\perp} = \text{face}(u^0 + \dots + u^L, K^*)^{\triangle},$$

therefore

$$F_{\min}^{\Delta} \supseteq \operatorname{face}(u^0 + \dots + u^L, K^*)^{\Delta \Delta} = \operatorname{face}(u^0 + \dots + u^L, K^*), \text{ and}$$

$$F_{\min}^{\perp} \supseteq \operatorname{face}(u^0 + \dots + u^L, K^*)^{\Delta \perp} = \operatorname{tan}(u^0 + \dots + u^L, K^*)$$

hold. By Theorem 3.2 equality holds for some feasible $(u^i, v^i)_{i=0}^{R+1}$, thus both (4.19) and (4.20) follow. The statement of (4.21) is implied by (4.20) and $F_{\min}^* = K^* + F_{\min}^{\perp}$.

As an immediate corollary we obtain

Theorem 4.2. (Farkas' lemma without a CQ) Suppose that (P) is feasible, $c \in X, c_0 \in \mathbb{R}$. Then for all x feasible solutions of (P) $\langle c, x \rangle \leq c_0$ holds, iff there is $(u^i, v^i)_{i=0}^{L+1}$ such that

$$(u^i, v^i)_{i=0}^{L+1} \in \text{Feas}(EXT), \ A^*(u^{L+1} + v^{L+1}) = c, \quad \langle b, u^{L+1} + v^{L+1} \rangle \le c_0.$$

Naturally, we would prefer to express F_{\min}^* using a conic system in terms of copies of K^* . This is indeed possible for the case of a semidefinite system, i.e. when $X = \mathbb{R}^m$, $Y = S^n$, $K = K^* = S_+^n$: we must appropriately substite for the " $v \in \tan(u, K^*)$ " constraint in (EXT). Consider

$$\begin{array}{l} (u^{0}, v^{0}) = (0, 0) \\ v^{i} - w^{i} - (w^{i})^{T} = 0 \\ \begin{pmatrix} u^{0} + \dots + u^{i-1} & w^{i} \\ (w^{i})^{T} & \beta_{i}I \end{pmatrix} \succeq 0, \ u^{i} \in psdn, v^{i} \in \mathcal{S}^{n}, \ w^{i} \in \mathbb{R}^{n \times n}, \ \beta_{i} \in \mathbb{R} \\ & (i = 1 \dots, L+1) \\ u^{i} + v^{i} \in \mathcal{N}(A^{*}) \cap \{b\}^{\perp} \\ & (i = 1 \dots, L\}) \\ & \text{with } L = \min\{n(n+1)/2 - m - 1, n\} \end{array} \right\}$$

$$(EXT-SDP)$$

Corollary 4.3. Suppose $X = \mathbb{R}^m$, $Y = \mathcal{S}^n$, $K = K^* = \mathcal{S}^n_+$. Then

$$F_{\min}^{\triangle} = \min \operatorname{cone}(u^{0} + \dots + u^{L}, (EXT\text{-}SDP))$$

$$F_{\min}^{\perp} = \{ v^{L+1} \mid (u^{i}, v^{i})_{i=0}^{L+1} \text{ is feasible for } (EXT\text{-}SDP) \}$$

$$F_{\min}^{*} = \{ u^{L+1} + v^{L+1} \mid (u^{i}, v^{i})_{i=0}^{L+1} \text{ is feasible for } (EXT\text{-}SDP) \}$$

Moreover, let $c \in X$, $c_0 \in \mathbb{R}$. Then for all x feasible solutions of $(P) \langle c, x \rangle \leq c_0$ holds, iff there is $(u^i, v^i)_{i=0}^{L+1}$ such that

$$(u^i, v^i)_{i=0}^{L+1} \in \text{Feas}(EXT\text{-}SDP), \ A^*(u^{L+1} + v^{L+1}) = c, \ \langle b, u^{L+1} + v^{L+1} \rangle \le c_0.$$

Proof Immediate by noting (cf. (2.8))

$$\tan(u, \mathcal{S}^n_+) = \left\{ w + w^T \mid \begin{pmatrix} u & w \\ w^T & \beta I \end{pmatrix} \succeq 0 \text{ for some } w \in \mathbb{R}^{n \times n}, \text{ and } \beta \in \mathbb{R} \right\}.$$

5 Equivalent Extended Dual Systems

So far we have shown that the correctness of (a variant of) FRA immediately leads to the correctness of an EDS. Ramana's original system in [15] is somewhat different from (EXT-SDP) though. Here we exhibit several equivalent ED systems, one of them being his original. The disaggregated extended dual system is

$$\begin{aligned} & (u^{0}, v^{0}) = 0 \\ & (u^{i}, v^{i}) \in K^{*} \times \tan(u^{i-1}, K^{*}) \\ & (i = 1 \dots, L+1) \\ & u^{i} + v^{i} \in \mathcal{N}(A^{*}) \cap \{b\}^{\perp} \\ & (i = 1 \dots, L) \end{aligned}$$
 (D-EXT)

Theorem 5.1. Define

$$G_i = \min \operatorname{cone}(u^0 + \dots + u^i, (EXT)),$$

$$H_i = \min \operatorname{cone}(u^i, (D - EXT)),$$

$$J_i = \min \operatorname{cone}(u^i, (D - EXT)).$$

Then

$$G_i = H_i = J_i \tag{5.22}$$

$$F_{\min}^{\Delta} = \min \operatorname{cone}(u^{0} + \dots + u^{L}, (D - EXT))$$

$$F_{\min}^{\perp} = \{ v^{L+1} | (u^{i}, v^{i})_{i=0}^{L+1} \text{ is feasible for } (D - EXT) \}$$

$$F_{\min}^{*} = \{ u^{L+1} + v^{L+1} | (u^{i}, v^{i})_{i=0}^{L+1} \text{ is feasible for } (D - EXT) \}$$
(5.23)

Furthermore, suppose that a set-valued operator

$$\tan': K^* \to 2^{\mathbb{R}}$$

is given, with the property

$$\forall v \in \tan(u, K^*) \ \alpha_v v \in \tan'(u, K^*) \ for \ some \ \alpha_v \ge 0$$

Then (5.22) holds, if in (EXT) and (D-EXT) tan is replaced with tan'.

Proof In (5.22) the inclusions \supseteq are trivial. To see $G_i \subseteq J_i$, let $(\widehat{u}^i, \widehat{v}^i)_{i=0}^{L+1}$ be feasible for (EXT). Then $(\widetilde{u}^i, \widetilde{v}^i)_{i=0}^{L+1}$ defined as

$$(\widetilde{u}^i, \widetilde{v}^i) = (\widehat{u}^0, \widehat{v}^0) + \dots + (\widehat{u}^i, \widehat{v}^i) \quad (i = 0 \dots, L+1)$$

is feasible for (D-EXT). Thus (5.23) follows as well.

Take $(\tilde{u}^i, \tilde{v}^i)_{i=0}^{L+1}$ feasible for (EXT). Then there is $\alpha_i (i = 1, \ldots, L+1)$ such that $(\alpha_i \tilde{u}^i, \alpha_i \tilde{v}^i)_{i=0}^{L+1}$ is feasible, if in (EXT) we replace "tan" with "tan". Hence this replacement does not affect mincone $(u^0 + \cdots + u^L, (D-EXT))$. The proof is the same for (D-EXT).

For the semidefinite case, we can thus recover Ramana's original system

$$\begin{aligned} & (u^{0}, v^{0}) = (0, 0) \\ v^{i} - w^{i} - (w^{i})^{T} &= 0 \\ & \begin{pmatrix} u^{i-1} & w^{i} \\ (w^{i})^{T} & I \end{pmatrix} \succeq 0, \ u^{i} \in \mathcal{S}_{+}^{n}, v^{i} \in \mathcal{S}^{n}, \ w^{i} \in \mathbb{R}^{n \times n} \\ & (i = 1 \dots, L + 1) \\ & u^{i} + v^{i} \in \mathcal{N}(A^{*}) \cap \{b\}^{\perp} \\ & (i = 1 \dots, L) \\ & \text{with } L = \min\{n(n+1)/2 - m - 1, n\} \end{aligned}$$

$$(RAM)$$

and the essence of his result as

Corollary 5.2. Suppose $X = \mathbb{R}^m$, $Y = \mathcal{S}^n$, $K = K^* = \mathcal{S}^n_+$. Then

$$\begin{split} F_{\min}^{\Delta} &= \min \text{cone}(\,u^0 + \dots + u^L, \,(RAM)\,) \\ F_{\min}^{\perp} &= \,\{\,v^{L+1} \,|\, (u^i, v^i)_{i=0}^{L+1} \,\text{ is feasible for }(RAM)\,\} \\ F_{\min}^* &= \,\{\,u^{L+1} + v^{L+1} \,|\, (u^i, v^i)_{i=0}^{L+1} \,\text{ is feasible for }(RAM)\,\} \end{split}$$

Moreover, let $c \in X$, $c_0 \in \mathbb{R}$. Then for all x feasible solutions of $(P) \langle c, x \rangle \leq c_0$ holds, iff there is $(u^i, v^i)_{i=0}^{L+1}$ such that

 $(u^i, v^i)_{i=0}^{L+1}$ is feasible for (RAM), $A^*(u^{L+1} + v^{L+1}) = c$, $\langle b, u^{L+1} + v^{L+1} \rangle \leq c_0$.

Proof The system (RAM) is just (D-EXT), with

$$\tan'(u, \mathcal{S}^n_+) = \left\{ w + w^T \mid \begin{pmatrix} u & w \\ w^T & I \end{pmatrix} \succeq 0 \quad \text{for some } w \in \mathbb{R}^{n \times n} \right\}.$$

6 Representation of the minimal cone, and its relatives

We have seen that F_{\min} , the minimal cone of the conic linear system

$$Ax \leq_K b \tag{P}$$

has the following useful properties:

(i) The sets F_{\min}^{\perp} and F_{\min}^{*} have an extended formulation; that is, they are the projection of some conic linear systems in a higher dimensional space. The only nontrivial conic constraints in these systems are of the form $u \geq_{K^*} 0$, and $v \in \tan(u, K^*)$.

(ii) When $K = K^*$ is the semidefinite cone, there is a representation in terms of only $K = K^*$ itself.

Several related questions arise naturally.

- (1) For what other related sets is there a representation as described in (i) and (ii) ? In particular, is there one for F_{\min} itself, and F_{\min}^{Δ} ?
- (2) How "long" does such a representation have to be ? For F_{\min}^{\perp} , and F_{\min}^{*} , is there one specified with less data, than in (4.20) and (4.21) ?

This section will provide partial answers and some conjectures. First, note that when a fixed $\bar{s} \in \operatorname{ri} F_{\min}$ is given, then obviously

$$F_{\min} = \{ s \mid 0 \leq_K s \leq_K \alpha \bar{s} \text{ for some } \alpha \geq 0 \}.$$

It is not hard to see that F_{\min} can be represented without the explicit knowledge of \bar{s} , since

$$F_{\min} = \{ s \mid 0 \le_K s \le_K \alpha b - Ax \text{ for some } x, \text{ and } \alpha \ge 0 \}$$
(6.24)

This result was obtained by Freund [5], based on the article by himself, Roundy and Todd [16]; of course, (6.24) holds without any assumption on K.

If K is nice, then by (4.19) we obtain

$$F_{\min}^{\Delta} = \{ u \mid 0 \leq_{K^*} u \leq_{K^*} (u^0 + \dots u^L)$$

for some $(u^i, v^i)_{i=0}^{L+1}$ feasible for $(EXT) \}$

Again, the substitution for the "tan" constraint can be used when $K = K^* = S^n_+$. This gives a partial answer to (1) above; it still remains to be seen, whether there are more compact extended formulations for $F^{\Delta}_{\min}, F^{\perp}_{\min}, F^*_{\min}$.

As to (2), it would be interesting to see, for what other nice cones is there an extended formulation for the set

$$\{(u, v) \mid u \in K^*, v \in \tan(u, K^*)\}$$

in terms of K^* (or for the variant with "tan" replacing "tan"). By Theorem 4.1 conic linear systems over such cones would also have Ramana-type (ie. expressed only in terms of K^*) extended dual systems.

Acknowledgement The author gratefully acknowledges the support of NSF Grant DMS 95-27124.

References

- G.P. BARKER and D. CARLSON. Cones of diagonally dominant matrices. Pacific J. of Math., 57:15–32, 1975.
- J.M. BORWEIN and H. WOLKOWICZ. Regularizing the abstract convex program. Journal of Mathematical Analysis and Applications, 83:495–530, 1981.
- [3] J.M. BORWEIN and H. WOLKOWICZ. Characterizations of optimality without constraint qualification for the abstract convex program. *Mathematical Programming Study*, 19:77–100, 1982.
- [4] A. BRONDSTED. An Introduction to Convex Polytopes. Springer Verlag, Berlin, 1983.
- [5] R.M. FREUND. Talk given at the University of Waterloo, 1994.
- [6] J.B. HIRIART-URRUTY and C. LEMARECHAL. Convex Analysis and Minimization Algorithms. Springer-Verlag, 1993.
- [7] K.O. KORTANEK and Q. ZHANG. Prefect duality in semi-infinite and semidefinite programming. Technical report, Department of Management Sciences The University of Iowa, 1998.
- [8] A. S. LEWIS. Facial reduction in partially finite convex programming. Math. Programming, 65(1):123–138, 1994.
- Z-Q. LUO and J.F. STURM. Error analysis. In Handbook of Semidefinite Programming, pages 163–194. Kluwer Academic Publishers, 2000.
- [10] Z-Q. LUO, J.F. STURM, and S. ZHANG. Duality results for conic convex programming. Technical Report Report 9719/A, April, Erasmus University Rotterdam, Econometric Institute EUR, P.O. Box 1738, 3000 DR, The Netherlands, 1997.
- [11] R.D.C. MONTEIRO. Personal communication, 2000.
- [12] G. PATAKI. The geometry of semidefinite programming. In *Handbook of Semidefinite Programming*, pages 29–66. Kluwer Academic Publishers, 2000.
- [13] G. PATAKI. Weakest constraint qualification revisited. Technical Report forthcoming, Dept. of IE/OR, Columbia University, 2000.
- [14] M. RAMANA, L. TUNCEL, and H. WOLKOWICZ. Strong duality for semidefinite programming. SIAM Journal on Optimization, 7(3):641–662, 1997.

- [15] M.V. RAMANA. An exact duality theory for semidefinite programming and its complexity implications. *Mathematical Programming*, 77:129–162, 1997.
- [16] R. ROUNDY R.M. FREUND and M. J. TODD. Identifying the set of alwaysactive constraints in a system of linear inequalities by a single linear program. Technical report, MIT, Cambridge, MA, 1985.
- [17] J.F. Sturm. Error bounds for linear matrix inequalities. Technical report, Communications Research Laboratory, McMaster University, Hamilton, Canada, 1998.