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Abstract

The Facial Reduction Algorithm (FRA) of Borwein and Wolkowicz and
the Extended Dual System (EDS) of Ramana aim to better understand
duality, when a conic linear system

Ax ≤K b (P )

has no strictly feasible solution. We

• provide a simple proof of the correctness of a variant of FRA.

• show how it naturally leads to the validity of a family of extended
dual systems.

• Summarize, which subsets of K related to the system (P ) (as the
minimal cone and its dual) have an extended representation.

1 Introduction

Farkas’ lemma assuming a CQ Duality results for the conic linear system

Ax ≤K b (P )

1
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are usually derived assuming some constraint qualification (CQ). The most fre-
quently used CQ is strict feasibility, ie. assuming the existence of a x̄ with
Ax̄ <K b. Here K is a closed convex cone, A : X → Y a linear operator, with X
and Y being euclidean spaces. We write z ≤K y, and z <K y to mean that y − z
is in K, or in riK, respectively.

Let K∗ be the dual cone of K. A fundamental result that implies both strong
duality between a primal-dual pair of conic linear programs, and the existence of a
certificate of infeasibility of a conic linear system (again, assuming an appropriate
CQ) is

Theorem 1.1. (Farkas’ lemma) Suppose that (P ) is strictly feasible, c ∈ X,
c0 ∈ R. Then for all x feasible solutions of (P ) 〈c, x〉 ≤ c0 holds, iff there is a y
such that

y ≥K∗ 0, A∗y = c, 〈b, y〉 ≤ c0. (1.1)

�

Two approaches are known to derive strong duality results for conic linear
systems without assuming a CQ, and to better understand systems which are not
strictly feasible.

The Facial Reduction Algorithm Borwein and Wolkowicz in [2, 3] note that
(P ) is always equivalent to a strictly feasible system

Ax ≤Fmin
b,

where Fmin is a face of K, called the minimal cone of (P ). Therefore, as Fmin is
a closed convex cone, Theorem 1.1 holds without requiring a CQ, if we replace
y ≥K∗ 0 with

y ≥F ∗

min
0.

The technique of deriving duality results using the minimal cone is called facial
reduction. Furthermore, they provide an algorithm to construct a sequence of
faces K = F0 ⊇ · · · ⊇ Ft = Fmin for some t ≥ 0. We shall call their method a
Facial Reduction Algorithm (FRA).

An Extended Dual System For a semidefinite linear system, i.e. when K =
K∗ = Sn

+, Ramana in [15] has developed the approach of an Extended Dual System
(EDS). (The term used by him was an “Extended Lagrange-Slater Dual”; we feel
that our terminology is better suited for the treatment presented in this paper.)
Essentially, he has shown that there is a set ext(A, b, K∗), such that Theorem 1.1
holds without any CQ assumption if we replace y ≥K∗ 0 with

(y, w) ∈ ext(A, b, K∗) for some w. (1.2)
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Moreover, ext(A, b, K∗) is the set of feasible solutions of a conic linear system in
which the only “nontrivial” (ie. different from a direct product of copies of R,
and R+) cone is K = K∗.

Related Literature The resemblance between these results is not coincidental:
Ramana, Tuncel and Wolkowicz have shown in [14] that FRA and EDS are closely
related. Alternative interpretations of extended dual systems were given by Luo,
Sturm and Zhang in [10], and Kortanek and Zhang in [7]. An interesting, and
novel application of FRA was introduced by Sturm in [17]: deriving error bounds
for semidefinite systems that have no strictly feasible solution. Luo and Sturm
generalized this approach to mixed semidefinite, and second order conic systems;
see [9]. Facial reduction was used by several other authors to derive duality results
without a CQ assumption; see Lewis [8].

A Unified Treatment Our aim is to provide a unified and transparent deriva-
tion of FRA and EDS. Precisely, under the assumption that

F ∗ = K∗ + F⊥ for all faces F ofK, (1.3)

we

(1) give a proof of the correctness of a variant of FRA.

(2) show that it immediately implies that

F ∗

min = { y | (y, w1) ∈ ext1(A, b, K∗, T ) for some w1 }.

Here ext1(A, b, K∗, T ) is the feasible set of a conic linear system that de-
pends on A, b, K∗ and T , a closed convex cone which is related to K∗. In
other words, F ∗

min has an extended formulation.

(3) Prove that when K = K∗ = Sn
+, the dependence on T can be eliminated; a

similarly described ext2(A, b, K∗) can be found, so that

F ∗

min = { y | (y, w2) ∈ ext2(A, b, K∗) for some w2 }.

(4) Survey other results on the representability (in the above sense) of Fmin

and related sets: its dual cone, orthogonal complement, and complementary
face.

We note that assumption (1.3) is satisfied for most cones of interest; see Section
2. To keep the presentation simple, the only results that we will use is Theorem
1.1, and some elementary facts from convex analysis.
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Section 2 contains all necessary preliminaries. In Section 3 we derive a simple
variant of FRA; in Section 4 “translate” the algorithm into an EDS, and show
that for the semidefinite case, there is such a system expressed purely in terms
of K∗, thus recovering Ramana’s result. Section 5 presents variants of extended
dual systems, and Section 6 studies the representability of Fmin and its related
sets.

2 Preliminaries

Operators and matrices Linear operators are denoted by capital letters. If
A is a linear operator, then A∗ will stand for its adjoint. When a matrix is
considered to be an element of a euclidean space, not a linear operator, it is
denoted by a small letter.

Convex Sets The open line-segment between points y and z is denoted by
(y, z). Let C be a closed convex set. A convex subset F of C is called a face
of C, and this fact is denoted denoted by F E C, if x ∈ F, y, z ∈ C, x ∈
(y, z) implies y, z ∈ F . For x ∈ C we denote by face(x, C) the minimal face of C
that contains x, that is with the property x ∈ ri face(x, C).

For x ∈ C, the set of feasible directions, and the tangent space at x in C are
defined as

dir(x, C) = { y | x + ty ∈ C for some t > 0 },
tan(x, C) = cl dir(x, C) ∩ − cl dir(x, C)

= { y | dist(x ± ty, C) = o(t) }.

The equivalence of the alternative expressions for tan(x, C) follows e.g. from [6,
page 135].

Cones A convex set K is a cone, if µK ⊆ K holds for all µ ≥ 0. The dual of
the cone K is

K∗ = { z | 〈z, x〉 ≥ 0 for all x ∈ K }.

If F E K, and x̄ ∈ ri F is fixed, then the complementary (or conjugate) face of F
is defined alternatively as (the equivalence is straightforward)

F4 = { z ∈ K∗ | 〈z, x〉 = 0 for all x ∈ F }
= { z ∈ K∗ | 〈z, x̄〉 = 0 }

The complementary face of G E K∗ is defined analogously, and denoted by G4.
K is facially exposed, i.e. all faces of K arise as the intersection of K with a
supporting hyperplane, iff for all F E K, F44 = F , see ([4], Theorem 6.7). For
brevity, we write F4∗ for (F4)∗, and F4⊥ for (F4)⊥.
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A closed convex cone K is called nice, if

F ∗ = K∗ + F⊥ for all F E K

For the purposes of this work, it is enough to note that

• For the FRA to be applicable, the underlying cone must be nice.

• Nice cones are also easier to deal with in other areas of the “duality without
CQ” subject, see [13].

• Polyhedral, semidefinite, and second order cones are nice, see [12].

• Nice cones must be facially exposed, see [13].

If K is a cone, x ∈ K, then tan(x, K) can be conveniently expressed (see [12]) as

tan(x, K) = face(x, K)4⊥ (2.4)

We remark, that (2.4) holds for all closed convex cones, not only for nice ones
([11], [13]).

Example 2.1. (The nonnegative orthant) K = Rn
+ is self-dual with respect

to the usual inner product of Rn. If x̄ ∈ K = Rn
+, then

face(x̄, Rn
+) = { x ∈ Rn

+ | xi = 0 ∀ i s.t. x̄i = 0 },
face(x̄, Rn

+)4 = { x ∈ Rn
+ | xi = 0 ∀ i s.t. x̄i > 0 }.

(2.5)

Then (2.4) and (2.5) yield

tan(x̄, Rn
+) = { y ∈ Rn | yi = 0 ∀ i s.t. x̄i = 0 }. (2.6)

Example 2.2. (The semidefinite cone) The space of n by n symmetric, and
the cone of n by n symmetric, positive semidefinite matrices are denoted by Sn,
and Sn

+, respectively. The space Sn is equipped with the inner product

〈x, z〉 :=

n∑

i,j=1

xijzij,

and Sn
+ is self-dual with respect to it.

If x̄ ∈ K = K∗ = Sn
+, then

face(x̄,Sn
+) = { x ∈ Sn

+ | R(x) ⊆ R(x̄) },
face(x̄,Sn

+)4 = { x ∈ Sn
+ | R(x) ⊆ R(x̄)⊥ },

(2.7)

(Barker and Carlson, [1]; for a simple proof, see [12]).
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The expressions in (2.7) can be simplified, if we note that qT (face(x̄,Sn
+))q =

face(qT x̄q,Sn
+) for any full rank matrix q, therefore, we can assume x̄ = ( I 0

0 0 ). If
rank x̄ = r, then (2.4) and (2.7) lead to

tan(x̄,Sn
+) =

{(
a b

bT 0

)
| a ∈ Sr, b ∈ Rr×(n−r)

}
(2.8)

Example 2.3. (The second order cone) The second-order cone in Rn+1 is
defined as

K2,n+1 = { (x0, x) | x0 ≥‖x‖2 },
and it is self-dual with respect to the usual inner product in Rn+1.

Let F E K2,n+1. As K2,n+1 is the “lifting” of the unit ball of the norm ‖ ‖2,
all F faces different from { 0 } and K2,n+1 must satisfy

F = cone{ (‖x‖2, x)T }
F4 = cone{ (‖x‖2,−x)T }

(2.9)

for some x ∈ Rn.

For any two such faces determined by u, v ∈ Rn there is a linear map Q(u, v)
that sends (‖ u ‖2, u)T to (‖ v ‖2, v)T , and K2,n+1 to itself. Therefore, we can
assume that F is generated by x̄ = (n1/2, e)T . Then (2.4) and (2.9) imply

tan(x̄, K2,n+1) = { (y0, y) | n1/2y0 = eT y } (2.10)

Minimal cones Denote by Feas(P ) the feasible set of (P ) and assume that it
is nonempty. Let

x̄ ∈ ri Feas(P ), E := face(b − Ax̄, K).

Then for any y ∈ Feas(P ) there is z ∈ Feas(P ) with x̄ ∈ (y, z). Hence

ri E 3 b − Ax̄ ∈ (b − Ay, b − Az) ⇒ b − Ay, b − Az ∈ E,

and we obtain that (P ) is equivalent to

Ax ≤E b.

In other words E is the maximal face of K that contains a vector of the form
b − Ax in its relative interior. It is called the minimal cone of the system (P ),
corresponding to b − Ax, and denoted by mincone(b − Ax, (P )).
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In general, if S a closed convex cone, (Q) a conic linear system, with

Ai1u
i1 ≤S bi1 , . . . , Ai1u

ik ≤S bik

among its constraints, then

mincone( (bi1 − Ai1u
i1) + · · · + (bik − Aiku

ik), (Q))

will denote the maximal face of S that contains a vector (bi1 − Ai1u
i1) + · · · +

(bik − Aiku
ik) in its relative interior, with all uij ’s feasible for (Q).

Key assumptions and notation In the rest of the paper, unless otherwise
stated, we uphold the assumptions that

(P ) is feasible; K is nice, ie. F ∗ = K∗ + F⊥ for all F E K

and write

Fmin = mincone( b − Ax, (P ) )

3 A Facial Reduction Algorithm

Reducing certificates Fix an F face of K such that Fmin ⊆ F ⊆ K. The
feasible solutions of the following conic linear system

(u, v) ∈ K∗ × F⊥

A∗(u + v) = 0

〈b, u + v〉 = 0





(RED(F ))

will give a proof when Fmin is contained in a smaller face of K.

Theorem 3.1. (Borwein and Wolkowicz) Assume that (P ) is feasible. Then

(1) For all (u, v) feasible to (RED(F )),

Fmin ⊆ F ∩ {u}⊥ ⊆ F. (3.11)

(2) If Fmin ( F , then there exists (u, v) feasible to (RED(F )), such that the
second containment in (3.11) is strict.

Proof of (1) Let x be a feasible solution of (P ). Then

0 = 〈u + v, b − Ax〉 = 〈u, b − Ax〉,

proving the first containment; the second is obvious.
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Proof of (2) Fix f ∈ riF . Then Fmin 6= F , iff

Ax + ft ≤F b implies t ≤ 0. (3.12)

Since the conic system of (3.12) is strictly feasible (with some t sufficiently neg-
ative), this implication has a certificate, that is

∃ y ∈ F ∗ st. A∗y = 0, 〈b, y〉 ≤ 0, 〈f, y〉 = 1 ⇔
∃ (u + v) ∈ K∗ + F⊥ st. A∗(u + v) = 0, 〈b, u + v〉 ≤ 0, 〈f, u + v〉 = 1.

Next, note that 〈b, y〉 = 0 must hold, since 〈b, y〉 < 0 would prove the infeasibility
of (P ). Finally,

〈f, u + v〉 = 〈f, u〉 > 0 ⇒ F ∩ {u}⊥ ( F.

�

If the second containment in (3.11) is strict, we shall say that (u, v) reduces the
system Ax ≤F b, or it is a reducing certificate. Next, we state an algorithm
to construct Fmin; it is a simplified version of the one given by Borwein and
Wolkowicz [3].

Facial Reduction Algorithm (A, b, K)

Input: A, b, K.
Output: t ≥ 0, u0, . . . , ut ∈ K∗ with Fmin = K ∩ {u0 + · · ·+ ut}⊥.
Invariants: Fmin ⊆ Fi,

Fi = K ∩ {u0 + · · ·+ ui}⊥,
F⊥

i = tan(u0 + · · ·+ ui, K∗).

Initialization: Let (u0, v0) = (0, 0), F0 = K, i = 0.
while Fmin 6= Fi

Find (ui+1, vi+1) reducing Ax ≤Fi
b.

Let Fi+1 = Fi ∩ {ui+1}⊥, i = i + 1.
end while
Output t = i, u0, . . . , ut.

Theorem 3.2. The Facial Reduction Algorithm is finite, and correctly constructs
Fmin.

Proof It suffices to note the following 3 facts.

• By Lemma 3.1 a (ui+1, vi+1) that reduces Fi can be found exactly if Fmin 6=
Fi.



A Facial Reduction Algorithm and Extended Dual Systems 9

• All three invariants are trivially satisfied for i = 0. Now assume that they
are true for 0, . . . , i. Then

Fmin ⊆ Fi+1 = Fi ∩ {ui+1}⊥

= K ∩ {u0 + · · · + ui}⊥ ∩ {ui+1}⊥

= K ∩ {u0 + · · · + ui + ui+1}⊥.

(3.13)

The last equality follows, as all ui’s are in K∗. Therefore, the first two
invariants hold for i + 1. To prove that the last one does, using (3.13) we
obtain

F⊥

i =
(
K ∩ {u0 + · · · + ui}⊥

)⊥

= face(u0 + · · · + ui, K∗)4⊥

= tan(u0 + · · ·+ ui, K∗),

as required.

• Since Fi is reduced in every step, the number of steps until termination is
not more than

L(A, b, K) := min { dim(N (A∗) ∩ {b}⊥),

length of the longest chain of faces in K }. (3.14)

�

We shall call the collection of (ui, vi)’s found by the algorithm a facial reduction
sequence (FRS). By the expression for F⊥

i above, an FRS will look like

(u0, v0) = (0, 0)

(ui, vi) ∈ K∗ × tan(u0 + · · ·+ ui−1, K∗)

(i = 1 . . . , t)

ui + vi ∈ N (A∗) ∩ {b}⊥
(i = 1 . . . , t)





(3.15)

Example 3.3. With X = Rm, Y = Rn, K = K∗ = Rn
+ , (P ) is a linear inequality

system. For the instance



1 0 0

0 −1 1

0 1 0

0 0 −1

0 0 1







x1

x2

x3


 ≤




0

0

0

0

0




(3.16)

an FRS is

u1 =
(
0 0 0 1 1

)T

, u2 =
(
0 1 1 0 0

)T

, v2 =
(
0 0 0 0 −1

)T

,
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with the corresponding Fi faces being

F1 = R3
+ × {0}2, F2 = R1

+ × {0}4.

F2 is the minimal cone of (3.16).
Example 3.4. With X = Rm, Y = Sn, K = K∗ = Sn

+ , (P ) is a semidefinite
system. For the instance




1 0 0

0 0 0

0 0 0


x1 +




0 1 0

1 0 0

0 0 0


x2 +




0 0 1

0 1 0

1 0 0


x3 �




0 0 0

0 0 0

0 0 0


 (3.17)

an FRS is

u1 =




0 0 0

0 0 0

0 0 1


 , u2 =




0 0 0

0 2 0

0 0 0


 , v2 =




0 0 −1

0 0 0

− 1 0 0


 .

The corresponding Fi faces are

F1 = face







1 0 0

0 1 0

0 0 0


 , S3

+


 , F2 = face







1 0 0

0 0 0

0 0 0


 , S3

+


 .

F2 is the minimal cone of (3.17).

Example 3.5. With X = Rm, Y = (Rn+1)r, and K = K∗ = (K2,n+1)
r , (P ) is a

conic system over a direct product of second order cones. Consider the instance
[(√

n

e

) (
0

0

)]
x1 +

[(
0

a

) (√
n

e

)]
x2 ≤K

[(
0

0

) (
0

0

)]
(3.18)

where a ∈ Rn is such that 〈a, e〉 = 0, ‖a‖2
2= 2n. Now an FRS is

u1 =

[(√
n

−e

) (√
n

−e

)]
, u2 =

[(
0

0

) (√
n

e

)]
, v2 =

[(
0

−a

) (
0

0

)]

The corresponding Fi faces are

F1 = face

([(√
n

e

) (√
n

e

)]
, K

)
, F2 = face

([(√
n

e

) (
0

0

)]
, K

)
,

with F2 equal to the minimal cone of (3.18).
Remark 3.6. Note that for (3.16) there is an FRS of length 1, namely

u1 =
(
0 0 0 1 1

)T

.

In fact, this is true for any linear inequality system. If K = K∗ = Rn, take an
FRS (ûi, v̂i)t

i=0 satisfying (3.15) and set

ũ1 = û1, . . . , ũt = (ût + v̂t) + αt−1ũ
t−1

for sufficiently large α1, . . . , αt−1. Then

ũ1, . . . , ũt ∈ K∗, face(ũt, K∗) = face(û1 + · · · + ût, K∗)

Hence the correctness of FRA also leads to the existence of a strictly complemen-
tary solution pair for a primal-dual pair of linear programs.
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4 The Simplest Extended Dual System

To turn the algorithm for constructing Fmin into an extended formulation of F ∗

min,
first notice that the set

{ (u, v) | u ∈ K∗, v ∈ tan(u, K∗) }

is a closed convex cone. For brevity, let L = L(A, b, K). By the previous remark,
the structure

(u0, v0) = 0

(ui, vi) ∈ K∗ × tan(u0 + · · ·+ ui−1, K∗)

(i = 1 . . . , L + 1)

ui + vi ∈ N (A∗) ∩ {b}⊥
(i = 1 . . . , L)





(EXT )

is a conic linear system. Note that the different range for i in the 2 constraints
(from 1 to L + 1 and from 1 to L) is not accidental.

Theorem 4.1. (Representing F
∗

min
) The following hold.

F4

min = mincone( u0 + · · · + uL, (EXT ) ) (4.19)

F⊥

min = { vL+1 | (ui, vi)L+1
i=0 is feasible for (EXT ) } (4.20)

F ∗

min = { uL+1 + vL+1 | (ui, vi)L+1
i=0 is feasible for (EXT ) } (4.21)

Proof By Theorem 3.1 for all (ui, vi)L+1
i=0 that are feasible for (EXT )

Fmin ⊆ K ∩ {u0 + · · ·+ uL}⊥ = face(u0 + · · ·+ uL, K∗)4,

therefore

F4

min ⊇ face(u0 + · · ·+ uL, K∗)44 = face(u0 + · · ·+ uL, K∗), and

F⊥

min ⊇ face(u0 + · · ·+ uL, K∗)4⊥ = tan(u0 + · · · + uL, K∗)

hold. By Theorem 3.2 equality holds for some feasible (ui, vi)R+1
i=0 , thus both

(4.19) and (4.20) follow. The statement of (4.21) is implied by (4.20) and F ∗

min =
K∗ + F⊥

min. �

As an immediate corollary we obtain

Theorem 4.2. (Farkas’ lemma without a CQ) Suppose that (P ) is feasible,
c ∈ X, c0 ∈ R. Then for all x feasible solutions of (P ) 〈c, x〉 ≤ c0 holds, iff there
is (ui, vi)L+1

i=0 such that

(ui, vi)L+1
i=0 ∈ Feas(EXT ), A∗(uL+1 + vL+1) = c, 〈b, uL+1 + vL+1〉 ≤ c0.

�
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Naturally, we would prefer to express F ∗

min using a conic system in terms of
copies of K∗. This is indeed possible for the case of a semidefinite system, ie.
when X = Rm, Y = Sn, K = K∗ = Sn

+: we must appropriately substite for the
“v ∈ tan(u, K∗)” constraint in (EXT ). Consider

(u0, v0) = (0, 0)

vi − wi − (wi)T = 0
(

u0 + · · · + ui−1 wi

(wi)T βiI

)
� 0, ui ∈ psdn, vi ∈ Sn, wi ∈ Rn×n, βi ∈ R

(i = 1 . . . , L + 1)

ui + vi ∈ N (A∗) ∩ {b}⊥
(i = 1 . . . , L})

with L = min{n(n + 1)/2 − m − 1, n }





(EXT -SDP )

Corollary 4.3. Suppose X = Rm, Y = Sn, K = K∗ = Sn
+. Then

F4

min = mincone( u0 + · · ·+ uL, (EXT -SDP ) )

F⊥

min = { vL+1 | (ui, vi)L+1
i=0 is feasible for (EXT -SDP ) }

F ∗

min = { uL+1 + vL+1 | (ui, vi)L+1
i=0 is feasible for (EXT -SDP ) }

Moreover, let c ∈ X, c0 ∈ R. Then for all x feasible solutions of (P ) 〈c, x〉 ≤ c0

holds, iff there is (ui, vi)L+1
i=0 such that

(ui, vi)L+1
i=0 ∈ Feas(EXT -SDP ), A∗(uL+1 + vL+1) = c, 〈b, uL+1 + vL+1〉 ≤ c0.

Proof Immediate by noting (cf. (2.8))

tan(u,Sn
+) =

{
w + wT

∣∣∣
(

u w

wT βI

)
� 0 for some w ∈ Rn×n, and β ∈ R

}
.

�

5 Equivalent Extended Dual Systems

So far we have shown that the correctness of (a variant of) FRA immediately
leads to the correctness of an EDS. Ramana’s original system in [15] is somewhat
different from (EXT -SDP ) though. Here we exhibit several equivalent ED sys-
tems, one of them being his original. The disaggregated extended dual system
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is
(u0, v0) = 0

(ui, vi) ∈ K∗ × tan(ui−1, K∗)

(i = 1 . . . , L + 1)

ui + vi ∈ N (A∗) ∩ {b}⊥
(i = 1 . . . , L)





(D-EXT )

Theorem 5.1. Define

Gi = mincone( u0 + · · · + ui, (EXT ) ),

Hi = mincone( ui, (D-EXT ) ),

Ji = mincone( ui, (D-EXT ) ).

Then
Gi = Hi = Ji (5.22)

F4

min = mincone( u0 + · · ·+ uL, (D-EXT ) )

F⊥

min = { vL+1 | (ui, vi)L+1
i=0 is feasible for (D-EXT ) }

F ∗

min = { uL+1 + vL+1 | (ui, vi)L+1
i=0 is feasible for (D-EXT ) }

(5.23)

Furthermore, suppose that a set-valued operator

tan′ : K∗ → 2R

is given, with the property

∀v ∈ tan(u, K∗) αvv ∈ tan′(u, K∗) for some αv ≥ 0

Then (5.22) holds, if in (EXT ) and (D-EXT ) tan is replaced with tan′.

Proof In (5.22) the inclusions ⊇ are trivial. To see Gi ⊆ Ji, let (ûi, v̂i)L+1
i=0 be

feasible for (EXT ). Then (ũi, ṽi)L+1
i=0 defined as

(ũi, ṽi) = (û0, v̂0) + · · ·+ (ûi, v̂i) (i = 0 . . . , L + 1)

is feasible for (D-EXT ). Thus (5.23) follows as well.

Take (ũi, ṽi)L+1
i=0 feasible for (EXT ). Then there is αi (i = 1, . . . , L + 1) such that

(αiũ
i, αiṽ

i)L+1
i=0 is feasible, if in (EXT ) we replace “tan” with “tan′”. Hence this

replacement does not affect mincone( u0 + · · ·+ uL, (D-EXT ) ). The proof is the
same for (D-EXT ). �
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For the semidefinite case, we can thus recover Ramana’s original system

(u0, v0) = (0, 0)

vi − wi − (wi)T = 0
(

ui−1 wi

(wi)T I

)
� 0, ui ∈ Sn

+, vi ∈ Sn, wi ∈ Rn×n

(i = 1 . . . , L + 1)

ui + vi ∈ N (A∗) ∩ {b}⊥
(i = 1 . . . , L)

with L = min{n(n + 1)/2 − m − 1, n }





(RAM)

and the essence of his result as

Corollary 5.2. Suppose X = Rm, Y = Sn, K = K∗ = Sn
+. Then

F4

min = mincone( u0 + · · ·+ uL, (RAM) )

F⊥

min = { vL+1 | (ui, vi)L+1
i=0 is feasible for (RAM) }

F ∗

min = { uL+1 + vL+1 | (ui, vi)L+1
i=0 is feasible for (RAM) }

Moreover, let c ∈ X, c0 ∈ R. Then for all x feasible solutions of (P ) 〈c, x〉 ≤ c0

holds, iff there is (ui, vi)L+1
i=0 such that

(ui, vi)L+1
i=0 is feasible for (RAM), A∗(uL+1 +vL+1) = c, 〈b, uL+1 +vL+1〉 ≤ c0.

Proof The system (RAM) is just (D-EXT ), with

tan′(u,Sn
+) =

{
w + wT

∣∣∣
(

u w

wT I

)
� 0 for some w ∈ Rn×n

}
.

�

6 Representation of the minimal cone, and its

relatives

We have seen that Fmin, the minimal cone of the conic linear system

Ax ≤K b (P )

has the following useful properties:

(i) The sets F⊥

min and F ∗

min have an extended formulation; that is, they are the
projection of some conic linear systems in a higher dimensional space. The
only nontrivial conic constraints in these systems are of the form u ≥K∗ 0,
and v ∈ tan(u, K∗).
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(ii) When K = K∗ is the semidefinite cone, there is a representation in terms
of only K = K∗ itself.

Several related questions arise naturally.

(1) For what other related sets is there a representation as described in (i) and
(ii) ? In particular, is there one for Fmin itself, and F4

min ?

(2) How “long” does such a representation have to be ? For F⊥

min, and F ∗

min, is
there one specified with less data, than in (4.20) and (4.21) ?

This section will provide partial answers and some conjectures. First, note that
when a fixed s̄ ∈ ri Fmin is given, then obviously

Fmin = { s | 0 ≤K s ≤K αs̄ for some α ≥ 0 }.

It is not hard to see that Fmin can be represented without the explicit knowledge
of s̄, since

Fmin = { s | 0 ≤K s ≤K αb − Ax for some x, and α ≥ 0 } (6.24)

This result was obtained by Freund [5], based on the article by himself, Roundy
and Todd [16]; of course, (6.24) holds without any assumption on K.

If K is nice, then by (4.19) we obtain

F4

min = { u | 0 ≤K∗ u ≤K∗ (u0 + . . . uL)

for some (ui, vi)L+1
i=0 feasible for (EXT ) }

Again, the substitution for the “tan” constraint can be used when K = K∗ = Sn
+.

This gives a partial answer to (1) above; it still remains to be seen, whether there
are more compact extended formulations for F4

min, F
⊥

min, F
∗

min.

As to (2), it would be interesting to see, for what other nice cones is there an
extended formulation for the set

{ (u, v) | u ∈ K∗, v ∈ tan(u, K∗) }

in terms of K∗ (or for the variant with “tan′” replacing “tan”). By Theorem 4.1
conic linear systems over such cones would also have Ramana-type (ie. expressed
only in terms of K∗) extended dual systems.
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