Combinatorial characterizations in semidefinite programming duality

Gábor Pataki
Department of Statistics and Operations Research UNC Chapel Hill
Partly joint work with Minghui Liu
Talk at Danish Technical University

A pair of Semidefinite Programs (SDP)

$$
\begin{array}{lrl}
\sup _{x} c^{T} x & \inf _{Y} & B \bullet Y \\
\text { s.t. } \sum_{i=1}^{m} x_{i} A_{i} \preceq B & Y \succeq 0 \\
& & A_{i} \bullet Y=c_{i}(i=1, \ldots, m) .
\end{array}
$$

Here

- A_{i}, B are symmetric matrices, $c, x \in \mathbb{R}^{m}$.
- $A \preceq B$ means: $B-A$ is positive semidefinite (psd).
- $A \bullet B=\sum_{i, j} a_{i j} b_{i j}$.

A pair of Semidefinite Programs (SDP)

$$
\begin{array}{lrl}
\sup _{x} c^{T} x & \inf _{Y} & B \bullet Y \\
\text { s.t. } \sum_{i=1}^{m} x_{i} A_{i} \preceq B & Y \succeq 0 \\
& & A_{i} \bullet Y=c_{i}(i=1, \ldots, m) .
\end{array}
$$

Here

- A_{i}, B are symmetric matrices, $c, x \in \mathbb{R}^{m}$.
- $A \preceq B$ means: $B-A$ is positive semidefinite (psd).
- $A \bullet B=\sum_{i, j} a_{i j} b_{i j}$.
- $Y \succeq 0 \stackrel{\text { def }}{\Leftrightarrow}$ all principal subdeterminants are nonnegative.
- Equivalently, if $\boldsymbol{v}^{T} \boldsymbol{Y} v \geq 0 \forall v \in \mathbb{R}^{n}$.

Why is SDP important:
 $\mathrm{LP} \subseteq \mathrm{SDP} \subseteq$ Convex Optimization

LP as SDP:

- If A_{i} and B are diagonal \Rightarrow so is $B-\sum_{i=1}^{m} x_{i} A_{i}$.
- So it is psd iff diagonal elements are nonnegative.
- So LP can be modeled as SDP: make A_{i}, B diagonal.

Why is SDP important:
 $\mathrm{LP} \subseteq \mathrm{SDP} \subseteq$ Convex Optimization

LP as SDP:

- If A_{i} and B are diagonal \Rightarrow so is $B-\sum_{i=1}^{m} x_{i} A_{i}$.
- So it is psd iff diagonal elements are nonnegative.
- So LP can be modeled as SDP: make A_{i}, B diagonal.

SDP is a convex problem:

- Feasible set is convex, since set of psd matrices is.

3 by 3 correlation matrices

The set $\left\{(x, y, z) \left\lvert\,\left(\begin{array}{lll}1 & x & y \\ x & 1 & z \\ y & z & 1\end{array}\right) \succeq 0\right.\right\}$

Why is SDP important: applications in

- 0-1 Integer programming.
- Approx algorithms
- Chemical engineering
- Chemistry
- Coding theory
- Control theory
- Combinatorial opt
- Discrete geometry
- Eigenvalue optimization
- Facility planning
- Finance
- Geometric optimization
- Global optimization
- Graph visualization
- Inventory theory
- Machine learning
- Matrix analysis
- PDEs
- Probability theory
- Robust optimization
- Signal processing
- Statistics
- Structural optimization
- Several thousand papers on SDP in the last 10 years.

SDP duality

The primal-dual pair of SDPs:

$$
\begin{array}{lrl}
\sup _{x} c^{T} x & \inf _{Y} & B \bullet Y \\
\text { s.t. } \sum_{i=1}^{m} x_{i} A_{i} \preceq B & & Y \succeq 0 \\
& & A_{i} \bullet Y=c_{i}(i=1, \ldots, m) .
\end{array}
$$

SDP duality

The primal-dual pair of SDPs:

$$
\begin{array}{lrl}
\sup _{x} c^{T} x & \inf _{Y} & B \bullet Y \\
\text { s.t. } \sum_{i=1}^{m} x_{i} A_{i} \preceq B & & Y \succeq 0 \\
& & A_{i} \bullet Y=c_{i}(i=1, \ldots, m) .
\end{array}
$$

Easy: If x and Y are feasible, then $c^{T} x \leq B \bullet Y$.

SDP duality

The primal-dual pair of SDPs:

$$
\begin{array}{lrl}
\sup _{x} c^{T} x & \inf _{Y} & B \bullet Y \\
\text { s.t. } \sum_{i=1}^{m} x_{i} A_{i} \preceq B & Y \succeq 0 \\
& & A_{i} \bullet Y=c_{i}(i=1, \ldots, m) .
\end{array}
$$

Easy: If x and Y are feasible, then $c^{T} x \leq B \bullet Y$.
Ideal situation: $\exists \bar{x}, \exists \bar{Y}: c^{T} \bar{x}=B \bullet \bar{Y}$.

SDP duality

The primal-dual pair of SDPs:

$$
\begin{array}{lrl}
\sup _{x} c^{T} x & \inf _{Y} & B \bullet Y \\
\text { s.t. } \sum_{i=1}^{m} x_{i} A_{i} \preceq B & Y \succeq 0 \\
& & A_{i} \bullet Y=c_{i}(i=1, \ldots, m) .
\end{array}
$$

Easy: If x and Y are feasible, then $c^{T} x \leq B \bullet Y$.
Ideal situation: $\exists \bar{x}, \exists \bar{Y}: c^{T} \bar{x}=B \bullet \bar{Y}$.
But: in SDP, unlike in LP pathological phenomena occur: nonattainment, positive gaps.

This is bad, since we would like a certificate of optimality.

Pathology \# 1: nonattainment in dual

Primal:

$$
\begin{array}{ll}
\text { sup } 2 x_{1} \\
\text { s.t. } x_{1}\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \preceq\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right) \quad \Leftrightarrow \quad \sup 2 x_{1} \\
\text { s.t. }\left(\begin{array}{cc}
1 & -x_{1} \\
-x_{1} & 0
\end{array}\right) \succeq 0
\end{array}
$$

Pathology \# 1: nonattainment in dual

Primal:

$$
\begin{aligned}
& \text { sup } 2 x_{1} \\
& \text { s.t. } x_{1}\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \preceq\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)
\end{aligned} \begin{aligned}
& \text { s.t. }\left(\begin{array}{cc}
1 & -x_{1} \\
-x_{1} & 0
\end{array}\right) \succeq 0
\end{aligned}
$$

Only feasible x_{1} is $x_{1}=0$.

Pathology \# 1: nonattainment in dual

Primal:

$$
\begin{array}{ll}
\text { sup } 2 x_{1} \\
\text { s.t. } x_{1}\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \preceq\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right) \quad \Leftrightarrow \quad \sup 2 x_{1} \\
& \text { s.t. }\left(\begin{array}{cc}
1 & -x_{1} \\
-x_{1} & 0
\end{array}\right) \succeq 0
\end{array}
$$

Only feasible x_{1} is $x_{1}=0$.
Dual: Dual variable is $Y \succeq 0$.

$$
\begin{aligned}
& \inf y_{11} \\
& \text { s.t. }\left(\begin{array}{cc}
y_{11} & 1 \\
1 & y_{22}
\end{array}\right) \succeq 0
\end{aligned}
$$

Pathology \# 1: nonattainment in dual

Primal:

$$
\begin{array}{ll}
\text { sup } 2 x_{1} \\
\text { s.t. } x_{1}\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \preceq\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right) \quad \Leftrightarrow \quad \sup 2 x_{1} \\
\text { s.t. }\left(\begin{array}{cc}
1 & -x_{1} \\
-x_{1} & 0
\end{array}\right) \succeq 0
\end{array}
$$

Only feasible x_{1} is $x_{1}=0$.
Dual: Dual variable is $Y \succeq 0$.

$$
\begin{aligned}
& \inf y_{11} \\
& \text { s.t. }\left(\begin{array}{cc}
y_{11} & 1 \\
1 & y_{22}
\end{array}\right) \succeq 0
\end{aligned}
$$

Unattained $\inf =0: y_{11}>0$ is feasible, but $y_{11}=0$ is not.

Pathology \# 2: positive duality gap

Primal:

$$
\begin{aligned}
& \text { sup } x_{2} \\
& \text { s.t. } x_{1}\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)+x_{2}\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right) \preceq\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right)
\end{aligned}
$$

Pathology \# 2: positive duality gap

Primal:

$$
\begin{aligned}
& \text { sup } x_{2} \\
& \text { s.t. } x_{1}\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)+x_{2}\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right) \preceq\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right)
\end{aligned}
$$

Only feasible x_{2} is $x_{2}=0$.

Pathology \# 2: positive duality gap

Primal:

$$
\begin{aligned}
& \text { sup } x_{2} \\
& \text { s.t. } x_{1}\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)+x_{2}\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right) \preceq\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right)
\end{aligned}
$$

Only feasible x_{2} is $x_{2}=0$.
Dual value is 1 , and it is attained.

Terminology

Definition:

- The system

$$
\left(P_{S D}\right) \sum_{i=1}^{m} x_{i} A_{i} \preceq B
$$

is well-behaved, if for all c such that

$$
\sup \left\{c^{T} x \mid x \in P_{S D}\right\} \text { is finite },
$$

the dual program has the same value, and it attains.

- Badly behaved, otherwise.
- We would like to understand well/badly behaved systems.

Motivation

The systems

$$
x_{1}\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \preceq\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)
$$

and

$$
x_{1}\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)+x_{2}\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right) \preceq\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

are both badly behaved.

Motivation

The systems

$$
x_{1}\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \preceq\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)
$$

and

$$
x_{1}\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)+x_{2}\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right) \preceq\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

are both badly behaved.
Curious similarity - of these, and about 20 others in the literature

Why all bad SDPs look the same

- Semidefinite system:

$$
\left(\boldsymbol{P}_{S D}\right) \quad \sum_{i=1}^{m} x_{i} A_{i} \preceq B
$$

Why all bad SDPs look the same

- Semidefinite system:

$$
\left(\boldsymbol{P}_{S D}\right) \quad \sum_{i=1}^{m} \boldsymbol{x}_{i} \boldsymbol{A}_{i} \preceq B
$$

- W.l.o.g. the max (rank) slack is

$$
Z=\left(\begin{array}{cc}
I_{r} & 0 \\
0 & 0
\end{array}\right)
$$

Then $\left(P_{S D}\right)$ badly behaved $\Leftrightarrow \exists V$ a lin. combination of the A_{i} and B as

$$
V=\left(\begin{array}{ll}
\overbrace{11}^{r} & V_{12} \\
V_{12}^{T} & V_{22}
\end{array}\right), \text { where } V_{22} \succeq 0, \mathrm{R}\left(V_{12}^{T}\right) \nsubseteq \mathrm{R}\left(V_{22}\right)
$$

Why all bad SDPs look the same

- Semidefinite system:

$$
\left(\boldsymbol{P}_{S D}\right) \quad \sum_{i=1}^{m} \boldsymbol{x}_{i} \boldsymbol{A}_{i} \preceq B
$$

- W.l.o.g. the max (rank) slack is

$$
Z=\left(\begin{array}{cc}
I_{r} & 0 \\
0 & 0
\end{array}\right)
$$

Then $\left(P_{S D}\right)$ badly behaved $\Leftrightarrow \exists V$ a lin. combination of the A_{i} and B as

$$
V=\left(\begin{array}{ll}
\overbrace{11}^{r} & V_{12} \\
V_{12}^{T} & V_{22}
\end{array}\right), \text { where } V_{22} \succeq 0, \mathrm{R}\left(V_{12}^{T}\right) \nsubseteq \mathrm{R}\left(V_{22}\right)
$$

- Ex: $\quad x_{1}\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right) \preceq\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)$

Why all bad SDPs look the same

- Semidefinite system:

$$
\left(\boldsymbol{P}_{S D}\right) \quad \sum_{i=1}^{m} x_{i} A_{i} \preceq B
$$

- W.l.o.g. the max (rank) slack is

$$
Z=\left(\begin{array}{cc}
I_{r} & 0 \\
0 & 0
\end{array}\right)
$$

Then $\left(P_{S D}\right)$ badly behaved $\Leftrightarrow \exists V$ a lin. combination of the A_{i} and B as

$$
V=\left(\begin{array}{ll}
\overbrace{11}^{r} & V_{12} \\
V_{12}^{T} & V_{22}
\end{array}\right), \text { where } V_{22} \succeq 0, \mathrm{R}\left(V_{12}^{T}\right) \notin \mathrm{R}\left(V_{22}\right) .
$$

- Ex: $x_{1}\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right) \preceq \overbrace{\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)}^{Z}$

Why all bad SDPs look the same

- Semidefinite system:

$$
\left(\boldsymbol{P}_{S D}\right) \quad \sum_{i=1}^{m} x_{i} A_{i} \preceq B
$$

- W.l.o.g. the max (rank) slack is

$$
Z=\left(\begin{array}{cc}
I_{r} & 0 \\
0 & 0
\end{array}\right)
$$

Then $\left(P_{S D}\right)$ badly behaved $\Leftrightarrow \exists V$ a lin. combination of the A_{i} and B as

$$
V=\left(\begin{array}{ll}
\overbrace{V_{11}}^{r} & V_{12} \\
V_{12}^{T} & V_{22}
\end{array}\right), \text { where } V_{22} \succeq 0, \mathrm{R}\left(V_{12}^{T}\right) \notin \mathrm{R}\left(V_{22}\right) .
$$

- Ex: $x_{1} \overbrace{\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)}^{V} \preceq \overbrace{\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)}^{Z}$

What is missing?

- Matrices Z, V prove that $\left(P_{S D}\right)$ is badly behaved.
- But: this is not yet a poly time, or easy to verify proof of bad behavior

What is missing?

- Matrices Z, V prove that $\left(P_{S D}\right)$ is badly behaved.
- But: this is not yet a poly time, or easy to verify proof of bad behavior
- Aside: how do we prove that $A x=b$ is infeasible?

What is missing?

- Matrices Z, V prove that $\left(P_{S D}\right)$ is badly behaved.
- But: this is not yet a poly time, or easy to verify proof of bad behavior
- Aside: how do we prove that $A x=b$ is infeasible? \rightarrow row echelon form.

What is missing?

- Matrices Z, V prove that $\left(P_{S D}\right)$ is badly behaved.
- But: this is not yet a poly time, or easy to verify proof of bad behavior
- Aside: how do we prove that $A x=b$ is infeasible? \rightarrow row echelon form.
- We will borrow ideas from the row echelon form to produce easy-to-verify certificates.

Reformulations of

$$
\left(P_{S D}\right) \sum_{i=1}^{m} x_{i} \boldsymbol{A}_{i} \preceq B
$$

are obtained by a sequence of:

- Apply a rotation $V^{T}() V$ to all matrices, where V is invertible.
- $B \leftarrow B+\sum_{i=1}^{m} \mu_{i} A_{i}$
- $A_{i} \leftarrow \sum_{j=1}^{m} \lambda_{j} A_{j}$ where $\lambda_{i} \neq 0$

Reformulations preserve well/badly behaved status; preserve max slack; provide an equivalence relation

Theorem: $\left(P_{S D}\right)$ is badly behaved \Leftrightarrow it has a reformulation:

$$
\left(P_{S D, b a d}\right) \sum_{i=1}^{k} x_{i}\left(\begin{array}{cc}
F_{i} & 0 \\
0 & 0
\end{array}\right)+\sum_{i=k+1}^{m} x_{i}\left(\begin{array}{cc}
F_{i} & G_{i} \\
G_{i}^{T} & H_{i}
\end{array}\right) \preceq\left(\begin{array}{cc}
I_{r} & 0 \\
0 & 0
\end{array}\right)=Z,
$$

Theorem: $\left(P_{S D}\right)$ is badly behaved \Leftrightarrow it has a reformulation:

$$
\left(P_{S D, b a d}\right) \sum_{i=1}^{k} x_{i}\left(\begin{array}{cc}
F_{i} & 0 \\
0 & 0
\end{array}\right)+\sum_{i=k+1}^{m} x_{i}\left(\begin{array}{cc}
F_{i} & G_{i} \\
G_{i}^{T} & H_{i}
\end{array}\right) \preceq\left(\begin{array}{cc}
I_{r} & 0 \\
0 & 0
\end{array}\right)=Z,
$$

where

1) Z is \max slack; 2) $\binom{G_{i}}{H_{i}}$ lin. indep. 3) $H_{m} \succeq 0$

Theorem: $\left(P_{S D}\right)$ is badly behaved \Leftrightarrow it has a reformulation:

$$
\left(P_{S D, b a d}\right) \sum_{i=1}^{k} x_{i}\left(\begin{array}{cc}
F_{i} & 0 \\
0 & 0
\end{array}\right)+\sum_{i=k+1}^{m} x_{i}\left(\begin{array}{cc}
F_{i} & G_{i} \\
G_{i}^{T} & H_{i}
\end{array}\right) \preceq\left(\begin{array}{cc}
I_{r} & 0 \\
0 & 0
\end{array}\right)=Z,
$$

where

1) Z is \max slack; 2) $\binom{G_{i}}{H_{i}}$ lin. indep. 3) $H_{m} \succeq 0$

Proof that $\left(P_{S D, b a d}\right)$ is badly behaved:

Theorem: $\left(P_{S D}\right)$ is badly behaved \Leftrightarrow it has a reformulation:

$$
\left(P_{S D, b a d}\right) \sum_{i=1}^{k} x_{i}\left(\begin{array}{cc}
F_{i} & 0 \\
0 & 0
\end{array}\right)+\sum_{i=k+1}^{m} x_{i}\left(\begin{array}{cc}
F_{i} & G_{i} \\
G_{i}^{T} & H_{i}
\end{array}\right) \preceq\left(\begin{array}{cc}
I_{r} & 0 \\
0 & 0
\end{array}\right)=Z,
$$

where

1) Z is max slack; 2) $\binom{G_{i}}{H_{i}}$ lin. indep. 3) $H_{m} \succeq 0$

Proof that ($P_{S D, b a d}$) is badly behaved:
x feas. with slack $S \Rightarrow$ last $n-r$ cols of S are zero

$$
\begin{array}{cc}
\Rightarrow & x_{k+1}=\cdots=x_{m}=0 \\
\Rightarrow & \sup -x_{m}=0
\end{array}
$$

Theorem: $\left(P_{S D}\right)$ is badly behaved \Leftrightarrow it has a reformulation:

$$
\left(P_{S D, b a d}\right) \sum_{i=1}^{k} x_{i}\left(\begin{array}{cc}
F_{i} & 0 \\
0 & 0
\end{array}\right)+\sum_{i=k+1}^{m} x_{i}\left(\begin{array}{cc}
F_{i} & G_{i} \\
G_{i}^{T} & H_{i}
\end{array}\right) \preceq\left(\begin{array}{cc}
I_{r} & 0 \\
0 & 0
\end{array}\right)=Z,
$$

where

1) Z is \max slack; 2) $\binom{G_{i}}{H_{i}}$ lin. indep. 3) $H_{m} \succeq 0$

Proof that ($P_{S D, b a d}$) is badly behaved:
But: no dual soln with value 0 .

Theorem: $\left(P_{S D}\right)$ is badly behaved \Leftrightarrow it has a reformulation:

$$
\left(P_{S D, b a d}\right) \sum_{i=1}^{k} x_{i}\left(\begin{array}{cc}
F_{i} & 0 \\
0 & 0
\end{array}\right)+\sum_{i=k+1}^{m} x_{i}\left(\begin{array}{cc}
F_{i} & G_{i} \\
G_{i}^{T} & H_{i}
\end{array}\right) \preceq\left(\begin{array}{cc}
I_{r} & 0 \\
0 & 0
\end{array}\right)=Z,
$$

where

1) Z is \max slack; 2) $\binom{G_{i}}{H_{i}}$ lin. indep. 3) $H_{m} \succeq 0$

Proof that ($P_{S D, b a d}$) is badly behaved:
But: no dual soln with value 0 .

Example: before reformulation

$$
\begin{aligned}
x_{1}\left(\begin{array}{cccc}
54 & 46 & 50 & 4 \\
46 & -38 & 87 & -106 \\
50 & 87 & -60 & 296 \\
4 & -106 & 296 & -368
\end{array}\right) & +x_{2}\left(\begin{array}{cccc}
110 & 91 & 105 & -6 \\
91 & -72 & 171 & -210 \\
105 & 171 & -72 & 528 \\
-6 & -210 & 528 & -672
\end{array}\right)
\end{aligned}+x_{3}\left(\begin{array}{cccc}
42 & 35 & 40 & 0 \\
35 & -28 & 67 & -82 \\
40 & 67 & -36 & 216 \\
0 & -82 & 216 & -272
\end{array}\right)
$$

Hard to tell if well or badly behaved

Example: after reformulation

$$
\begin{aligned}
x_{1}\left(\begin{array}{cc|cc}
0 & 1 & 0 & 0 \\
1 & -2 & 0 & 0 \\
\hline 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) & +x_{2}\left(\begin{array}{cc|cc}
2 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
\hline 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)+x_{3}\left(\begin{array}{cc|cc}
0 & 0 & 2 & 1 \\
0 & 0 & 3 & -1 \\
\hline 2 & 3 & 0 & 2 \\
1 & -1 & 2 & 0
\end{array}\right) \\
& +x_{4}\left(\begin{array}{cc|cc}
0 & 0 & 3 & -1 \\
0 & 0 & 2 & -1 \\
\hline 3 & 2 & 4 & 0 \\
-1 & -1 & 0 & 0
\end{array}\right)
\end{aligned} \xlongequal[\left(\begin{array}{cc|cc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
\hline 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)]{ } \begin{aligned}
\left(\begin{array}{cc}
0
\end{array}\right. \\
\hline
\end{aligned}
$$

As before: $x_{3}=x_{4}=0 \Rightarrow \sup -x_{4}=0$
But: no dual solution with value 0

Theorem: $\left(P_{S D}\right)$ is well behaved \Leftrightarrow it has a reformulation:

$$
\left(P_{S D, g o o d}\right) \sum_{i=1}^{k} x_{i}\left(\begin{array}{cc}
F_{i} & 0 \\
0 & 0
\end{array}\right)+\sum_{i=k+1}^{m} x_{i}\left(\begin{array}{cc}
F_{i} & G_{i} \\
G_{i}^{T} & H_{i}
\end{array}\right) \preceq\left(\begin{array}{cc}
I_{r} & 0 \\
0 & 0
\end{array}\right)=Z,
$$

Theorem: $\left(P_{S D}\right)$ is well behaved \Leftrightarrow it has a reformulation:

$$
\left(P_{S D, \text { good })} \sum_{i=1}^{k} x_{i}\left(\begin{array}{cc}
F_{i} & 0 \\
0 & 0
\end{array}\right)+\sum_{i=k+1}^{m} x_{i}\left(\begin{array}{cc}
F_{i} & G_{i} \\
G_{i}^{T} & H_{i}
\end{array}\right) \preceq\left(\begin{array}{cc}
I_{r} & 0 \\
0 & 0
\end{array}\right)=Z,\right.
$$

where

1) Z is max slack; 2) H_{i} lin. indep. 3) $H_{i} \bullet I=0 \forall i$

Corollaries:

- The question:

Is $\left(P_{S D}\right)$ well behaved?
is in $N P \cap c o N P$ in real number model of computing.

Corollaries:

- The question:

Is ($P_{S D}$) well behaved?
is in $N P \cap c o N P$ in real number model of computing.

- Certificate: reformulation, and proof that Z is max rank slack.

Corollaries:

- The question:

Is ($P_{S D}$) well behaved?
is in $N P \cap c o N P$ in real number model of computing.

- Certificate: reformulation, and proof that Z is max rank slack.
- $\left(P_{S D}\right)$ well behaved \Rightarrow for all c with a finite obj. value \exists optimal

$$
\boldsymbol{Y}=\left(\begin{array}{cc}
\overbrace{\boldsymbol{Y}_{11}}^{r} & 0 \\
0 & Y_{22}
\end{array}\right)
$$

Theorem cont'd: $\left(P_{S D}\right)$ is well behaved \Leftrightarrow it has a reformulation:

$$
\left(P_{S D, \text { good })} \sum_{i=1}^{k} x_{i}\left(\begin{array}{cc}
F_{i} & 0 \\
0 & 0
\end{array}\right)+\sum_{i=k+1}^{m} x_{i}\left(\begin{array}{cc}
F_{i} & G_{i} \\
G_{i}^{T} & H_{i}
\end{array}\right) \preceq\left(\begin{array}{cc}
I_{r} & 0 \\
0 & 0
\end{array}\right)=Z,\right.
$$

where

1) Z is max slack; 2) H_{i} lin. indep. 3) $H_{i} \bullet I=0 \forall i$

Theorem cont'd: $\left(P_{S D}\right)$ is well behaved \Leftrightarrow it has a reformulation:

$$
\left(P_{S D, \text { good })} \sum_{i=1}^{k} x_{i}\left(\begin{array}{cc}
F_{i} & 0 \\
0 & 0
\end{array}\right)+\sum_{i=k+1}^{m} x_{i}\left(\begin{array}{cc}
F_{i} & G_{i} \\
G_{i}^{T} & H_{i}
\end{array}\right) \preceq\left(\begin{array}{cc}
I_{r} & 0 \\
0 & 0
\end{array}\right)=Z,\right.
$$

where

1) Z is max slack; 2) \boldsymbol{H}_{i} lin. indep. 3) $\boldsymbol{H}_{i} \bullet I=0 \forall i$

- Corollary: we can generate all well behaved semidefinite systems: choose in sequence H_{i}, G_{i}, F_{i}. Then do reformulation.

Theorem cont'd: $\left(P_{S D}\right)$ is well behaved \Leftrightarrow it has a reformulation:

$$
\left(P_{S D, \text { good }}\right) \sum_{i=1}^{k} x_{i}\left(\begin{array}{cc}
F_{i} & 0 \\
0 & 0
\end{array}\right)+\sum_{i=k+1}^{m} x_{i}\left(\begin{array}{cc}
F_{i} & G_{i} \\
G_{i}^{T} & H_{i}
\end{array}\right) \preceq\left(\begin{array}{cc}
I_{r} & 0 \\
0 & 0
\end{array}\right)=Z,
$$

where

1) Z is max slack; 2) \boldsymbol{H}_{i} lin. indep. 3) $\boldsymbol{H}_{i} \bullet I=0 \forall i$

- Corollary: we can generate all well behaved semidefinite systems: choose in sequence H_{i}, G_{i}, F_{i}. Then do reformulation.
- Corollary: we can generate all linear maps under which the image of the psd cone is closed.

Theorem cont'd: $\left(P_{S D}\right)$ is well behaved \Leftrightarrow it has a reformulation:

$$
\left(\boldsymbol{P}_{S D, \text { good }}\right) \sum_{i=1}^{k} x_{i}\left(\begin{array}{cc}
\boldsymbol{F}_{i} & 0 \\
0 & 0
\end{array}\right)+\sum_{i=k+1}^{m} x_{i}\left(\begin{array}{cc}
\boldsymbol{F}_{i} & \boldsymbol{G}_{i} \\
\boldsymbol{G}_{i}^{T} & \boldsymbol{H}_{i}
\end{array}\right) \preceq\left(\begin{array}{cc}
\boldsymbol{I}_{r} & 0 \\
0 & 0
\end{array}\right)=Z,
$$

where

1) Z is max slack; 2) \boldsymbol{H}_{i} lin. indep. 3) $\boldsymbol{H}_{i} \bullet I=0 \forall i$

- Corollary: we can generate all well behaved semidefinite systems: choose in sequence H_{i}, G_{i}, F_{i}. Then do reformulation.
- Corollary: we can generate all linear maps under which the image of the psd cone is closed.
- Proof: $\left\{\left(A_{i} \bullet Y\right)_{i=1}^{m} \mid Y \succeq 0\right\}$ is closed $\Leftrightarrow \sum_{i=1}^{m} x_{i} A_{i} \preceq 0$ is well behaved.

How about proving infeasibility?
This part is joint with Minghui Liu.

Semidefinite System (spectrahedron)

$$
\begin{align*}
& A_{i} \bullet X \tag{P}\\
&=b_{i}(i=1, \ldots, m) \\
& X \succeq 0
\end{align*}
$$

Semidefinite System (spectrahedron)

$$
\begin{align*}
A_{i} \bullet X & =b_{i}(i=1, \ldots, m) \tag{P}\\
X & \succeq 0
\end{align*}
$$

Here

- A_{i} are symmetric matrices.
- $A \bullet B=\sum_{i, j} a_{i j} b_{i j}$.

Farkas' Lemma for SDP

- $(1) \Rightarrow(2)$:
(1) $\sum_{i=1}^{m} y_{i} A_{i} \succeq 0, \sum_{i=1}^{m} y_{i} b_{i}=-1\left(P_{\text {alt }}\right)$ is feasible.
(2) $A_{i} \bullet X=b_{i} \forall i, X \succeq 0(P)$ is infeasible.

Farkas' Lemma for SDP

- $(1) \Rightarrow(2)$:
(1) $\sum_{i=1}^{m} y_{i} A_{i} \succeq 0, \sum_{i=1}^{m} y_{i} b_{i}=-\mathbf{1}\left(\boldsymbol{P}_{\text {alt }}\right)$ is feasible.
(2) $A_{i} \bullet X=b_{i} \forall i, X \succeq 0(P)$ is infeasible.
- Proof: One line.

Farkas' Lemma for SDP

- $(1) \Rightarrow(2)$:
(1) $\sum_{i=1}^{m} \boldsymbol{y}_{i} \boldsymbol{A}_{i} \succeq 0, \sum_{i=1}^{m} \boldsymbol{y}_{i} \boldsymbol{b}_{i}=-\mathbf{1}\left(\boldsymbol{P}_{\text {alt }}\right)$ is feasible.
(2) $\boldsymbol{A}_{\boldsymbol{i}} \bullet \boldsymbol{X}=\boldsymbol{b}_{i} \forall \boldsymbol{i}, \boldsymbol{X} \succeq 0(\boldsymbol{P})$ is infeasible.
- Proof: One line.
- However: $(2) \nRightarrow(1):\left(P_{\text {alt }}\right)$ is not an exact certificate of infeasibility.

Literature: exact certificates of infeasibility

- Ramana 1995
- Klep, Schweighofer 2013
- Waki, Muramatsu 2013: variant of facial reduction of
- Borwein, Wolkowicz 1981
- Also: Ramana, Tuncel, Wolkowicz, 1997

Literature: exact certificates of infeasibility

- Ramana's dual, and certificate of infeasibility: needs $O(n)$ copies of the system, extra variables, and constraints like $U_{i+1} \succeq W_{i} W_{i}^{T}$

Literature: exact certificates of infeasibility

- Ramana's dual, and certificate of infeasibility: needs $O(n)$ copies of the system, extra variables, and constraints like $U_{i+1} \succeq W_{i} \boldsymbol{W}_{i}^{T}$
- Goal: Find an exact certificate of infeasibility that is "almost" as simple as Farkas' Lemma.

Infeasible example, and proof of infeasibility

$$
\begin{gathered}
\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \bullet X=0 \\
\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right) \bullet X=-1 \\
X \succeq 0
\end{gathered}
$$

Infeasible example, and proof of infeasibility

$$
\begin{gathered}
\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \bullet X=0 \\
\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right) \bullet X=-1 \\
X \succeq 0
\end{gathered}
$$

- Suppose X feasible $\Rightarrow X_{11}=0$

$$
\begin{aligned}
& \Rightarrow X_{12}=X_{13}=0 \\
& \Rightarrow X_{22}=-1
\end{aligned}
$$

Infeasible example, and proof of infeasibility

$$
\begin{gathered}
\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \bullet X=0 \\
\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right) \cdot X=-1 \\
X \succeq 0
\end{gathered}
$$

- Suppose X feasible $\Rightarrow X_{11}=0$

$$
\begin{aligned}
& \Rightarrow \boldsymbol{X}_{12}=\boldsymbol{X}_{13}=0 \\
& \Rightarrow \boldsymbol{X}_{22}=-1
\end{aligned}
$$

- Main idea: We will find such a structure in every infeasible semidefinite system.

Reformulation (again!)

$$
\begin{align*}
& A_{i} \bullet X \tag{P}\\
&=b_{i}(i=1, \ldots, m) \\
& X \succeq 0
\end{align*}
$$

Reformulation (again!)

$$
\begin{align*}
A_{i} \bullet X & =b_{i}(i=1, \ldots, m) \tag{P}\\
X & \succeq 0
\end{align*}
$$

- We obtain a reformulation of (P) by a sequence of the following:
(1) Elementery row operations on the equations.
(2) $A_{i} \leftarrow V^{T} A_{i} V(i=1,, \ldots, m)$, where V is invertible.

Reformulation (again!)

$$
\begin{align*}
& A_{i} \bullet X \tag{P}\\
&=b_{i}(i=1, \ldots, m) \\
& X \succeq 0
\end{align*}
$$

- We obtain a reformulation of (P) by a sequence of the following:
(1) Elementery row operations on the equations.
(2) $A_{i} \leftarrow V^{T} A_{i} V(i=1,, \ldots, m)$, where V is invertible.
- (1) is inherited from Gaussian elimination.

Reformulation (again!)

$$
\begin{align*}
A_{i} \bullet X & =b_{i}(i=1, \ldots, m) \tag{P}\\
X & \succeq 0
\end{align*}
$$

- We obtain a reformulation of (P) by a sequence of the following:
(1) Elementery row operations on the equations.
(2) $A_{i} \leftarrow V^{T} A_{i} V(i=1,, \ldots, m)$, where V is invertible.
- (1) is inherited from Gaussian elimination.
- Fact: Reformulations preserve (in)feasibility.

Theorem 1: (P) infeasible \Leftrightarrow it has a reformulation

$$
\begin{align*}
A_{i}^{\prime} \bullet X & =0(i=1, \ldots, k) \\
A_{k+1}^{\prime} \bullet X & =-1 \tag{ref}\\
& : \\
X & \succeq 0
\end{align*}
$$

where $k \geq 0$, and for $i=1, \ldots, k+1$ the A_{i}^{\prime} look like

$$
A_{1}^{\prime}=\left(\begin{array}{cc}
\overbrace{I}^{I} & \overbrace{0}^{r_{1}} \\
0 & 0
\end{array}\right), A_{i}^{\prime}=(\overbrace{r_{1}}^{r_{1}+\ldots+r_{i-1}} \overbrace{\begin{array}{c}
x \\
\times
\end{array}}^{\begin{array}{c}
r_{i} \\
\times
\end{array}} \begin{array}{c}
\times \\
0
\end{array})
$$

with $r_{1}, \ldots, r_{k}>0, r_{k+1} \geq 0$.

Theorem 1: (P) infeasible \Leftrightarrow it has a reformulation

$$
\begin{align*}
A_{i}^{\prime} \bullet X & =0(i=1, \ldots, k) \\
A_{k+1}^{\prime} \bullet X & =-1 \tag{ref}\\
& \vdots \\
X & \succeq 0
\end{align*}
$$

where $k \geq 0$, and for $i=1, \ldots, k+1$ the A_{i}^{\prime} look like
with $r_{1}, \ldots, r_{k}>0, r_{k+1} \geq 0$.

$$
\text { Proof of } " \Leftarrow " \text { : }
$$

Theorem 1: (P) infeasible \Leftrightarrow it has a reformulation

$$
\begin{align*}
A_{i}^{\prime} \bullet X & =0(i=1, \ldots, k) \\
A_{k+1}^{\prime} \bullet X & =-1 \tag{ref}\\
& \vdots \\
X & \succeq 0
\end{align*}
$$

where $k \geq 0$, and for $i=1, \ldots, k+1$ the A_{i}^{\prime} look like

$$
A_{1}^{\prime}=\left(\begin{array}{cc}
\overbrace{\boldsymbol{I}}^{r_{1}} & \overbrace{0}^{n-r_{1}} \\
0 & \overbrace{0}^{r_{1}+\ldots+r_{i-1}}
\end{array}\right), A_{i}^{\prime}=\left(\begin{array}{cc}
\times \\
\times & \overbrace{\times}^{r_{i}} \\
\times & \begin{array}{c}
\text { I } \\
\times
\end{array} \\
0 & 0 \\
\times-r_{1}-\ldots-r_{i} \\
0
\end{array}\right)
$$

with $r_{1}, \ldots, r_{k}>0, r_{k+1} \geq 0$.
Proof of " $\Leftarrow "$: Suppose that X feasible in $\left(\mathrm{P}_{\text {ref }}\right)$

Theorem 1: (P) infeasible \Leftrightarrow it has a reformulation

$$
\begin{align*}
A_{i}^{\prime} \bullet X & =0(i=1, \ldots, k) \\
A_{k+1}^{\prime} \bullet X & =-1 \tag{ref}\\
& \vdots \\
X & \succeq 0
\end{align*}
$$

where $k \geq 0$, and for $i=1, \ldots, k+1$ the A_{i}^{\prime} look like

$$
A_{1}^{\prime}=\left(\begin{array}{cc}
\overbrace{\boldsymbol{I}}^{r_{1}} & \overbrace{0}^{n-r_{1}} \\
0 & \overbrace{0}
\end{array}\right), A_{i}^{\prime}=(\begin{array}{cc}
r_{1}+\ldots+r_{i-1}
\end{array} \overbrace{\times}^{r_{i}} \overbrace{\times}^{n-r_{1}-\ldots-r_{i}} \begin{array}{c}
\times \\
\times \\
\times
\end{array})
$$

with $r_{1}, \ldots, r_{k}>0, r_{k+1} \geq 0$.

$$
\begin{aligned}
\text { Proof of } " \Leftarrow ": & \text { Suppose that } X \text { feasible in }\left(\mathrm{P}_{\text {ref }}\right) \\
& \Rightarrow \text { first } r_{1} \text { rows of } X \text { are } 0
\end{aligned}
$$

Theorem 1: (P) infeasible \Leftrightarrow it has a reformulation

$$
\begin{align*}
A_{i}^{\prime} \bullet X & =0(i=1, \ldots, k) \\
A_{k+1}^{\prime} \bullet X & =-1 \tag{ref}\\
& \vdots \\
X & \succeq 0
\end{align*}
$$

where $k \geq 0$, and for $i=1, \ldots, k+1$ the A_{i}^{\prime} look like

$$
A_{1}^{\prime}=\left(\begin{array}{cc}
\overbrace{\boldsymbol{I}}^{r_{1}} & \overbrace{0}^{n-r_{1}} \\
0 & \overbrace{0}^{r_{1}+\ldots+r_{i-1}}
\end{array}\right), A_{i}^{\prime}=\left(\begin{array}{cc}
\times \\
\times & \overbrace{\times}^{r_{i}} \\
\times & \begin{array}{c}
\text { I } \\
\times
\end{array} \\
0 & 0 \\
\times-r_{1}-\ldots-r_{i} \\
0
\end{array}\right)
$$

with $r_{1}, \ldots, r_{k}>0, r_{k+1} \geq 0$.

$$
\begin{aligned}
\text { Proof of } " \Leftarrow ": & \text { Suppose that } X \text { feasible in }\left(\mathrm{P}_{\mathrm{ref}}\right) \\
& \Rightarrow \text { first } r_{1} \text { rows of } X \text { are } 0 \\
& \cdots \\
& \Rightarrow \text { first } r_{1}+\ldots+r_{k} \text { rows of } X \text { are } 0
\end{aligned}
$$

Theorem 1: (P) infeasible \Leftrightarrow it has a reformulation

$$
\begin{align*}
A_{i}^{\prime} \bullet X & =0(i=1, \ldots, k) \\
A_{k+1}^{\prime} \bullet X & =-1 \tag{ref}\\
& \vdots \\
X & \succeq 0
\end{align*}
$$

where $k \geq 0$, and for $i=1, \ldots, k+1$ the A_{i}^{\prime} look like

$$
A_{1}^{\prime}=\left(\begin{array}{cc}
\overbrace{\boldsymbol{I}}^{r_{1}} & \overbrace{0}^{n-r_{1}} \\
0 & \overbrace{0}^{r_{1}+\ldots+r_{i-1}}
\end{array}\right), A_{i}^{\prime}=\left(\begin{array}{cc}
\times \\
\times & \overbrace{i} \\
\times & \begin{array}{c}
r_{i} \\
0
\end{array} \\
\begin{array}{c}
n-r_{1}-\ldots-r_{i} \\
0
\end{array}
\end{array}\right)
$$

with $r_{1}, \ldots, r_{k}>0, r_{k+1} \geq 0$.

$$
\begin{aligned}
\text { Proof of } " \Leftarrow ": & \text { Suppose that } X \text { feasible in }\left(\mathrm{P}_{\text {ref }}\right) \\
& \Rightarrow \text { first } r_{1} \text { rows of } X \text { are } 0 \\
& \ldots \\
& \Rightarrow \text { first } r_{1}+\ldots+r_{k} \text { rows of } X \text { are } 0 \\
& \Rightarrow A_{k+1}^{\prime} \bullet X \geq 0
\end{aligned}
$$

Back to the Example

- Back to the example:

$$
\begin{aligned}
& \left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \bullet X=0 \\
& \left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right) \bullet X=-1 \\
& X \succeq 0
\end{aligned}
$$

Back to the Example

- Back to the example:

Theorem 1: (P) infeasible \Leftrightarrow it has a reformulation

$$
\begin{align*}
A_{i}^{\prime} \bullet X & =0(i=1, \ldots, k) \\
A_{k+1}^{\prime} \bullet X & =-1 \tag{ref}\\
& : \\
X & \succeq 0
\end{align*}
$$

where $k \geq 0$, and for $i=1, \ldots, k+1$ the A_{i}^{\prime} look like

$$
A_{1}^{\prime}=\left(\begin{array}{cc}
\overbrace{I}^{I} & \overbrace{0}^{r_{1}} \\
0 & 0
\end{array}\right), A_{i}^{\prime}=(\overbrace{r_{1}}^{r_{1}+\ldots+r_{i-1}} \overbrace{\begin{array}{c}
x \\
\times
\end{array}}^{\begin{array}{c}
r_{i} \\
\times
\end{array}} \begin{array}{c}
\times \\
0
\end{array})
$$

with $r_{1}, \ldots, r_{k}>0, r_{k+1} \geq 0$.

Theorem 1: (P) infeasible \Leftrightarrow it has a reformulation

$$
\begin{align*}
A_{i}^{\prime} \bullet X & =0(i=1, \ldots, k) \\
A_{k+1}^{\prime} \bullet X & =-1 \tag{ref}\\
& \vdots \\
X & \succeq 0
\end{align*}
$$

where $k \geq 0$, and for $i=1, \ldots, k+1$ the A_{i}^{\prime} look like

$$
A_{1}^{\prime}=\left(\begin{array}{cc}
\overbrace{\boldsymbol{I}}^{r_{1}} & \overbrace{0}^{n-r_{1}} \\
0 & \overbrace{0}^{r_{1}+\ldots+r_{i-1}}
\end{array}\right), A_{i}^{\prime}=\left(\begin{array}{cc}
\times \\
\times & \overbrace{i} \\
\times & \begin{array}{c}
r_{i} \\
0
\end{array} \\
\begin{array}{c}
n-r_{1}-\ldots-r_{i} \\
0
\end{array}
\end{array}\right)
$$

with $r_{1}, \ldots, r_{k}>0, r_{k+1} \geq 0$.

- $k=0 \rightarrow$ original Farkas' lemma.

Theorem 1: (P) infeasible \Leftrightarrow it has a reformulation

$$
\begin{align*}
A_{i}^{\prime} \bullet X & =0(i=1, \ldots, k) \\
A_{k+1}^{\prime} \bullet X & =-1 \tag{ref}\\
& : \\
X & \succeq 0
\end{align*}
$$

where $k \geq 0$, and for $i=1, \ldots, k+1$ the A_{i}^{\prime} look like

$$
A_{1}^{\prime}=\left(\begin{array}{cc}
\overbrace{I}^{I} & \overbrace{0}^{r_{1}} \\
0 & 0
\end{array}\right), A_{i}^{\prime}=(\overbrace{r_{1}}^{r_{1}+\ldots+r_{i-1}} \overbrace{\begin{array}{c}
x \\
\times
\end{array}}^{\begin{array}{c}
r_{i} \\
\times
\end{array}} \begin{array}{c}
\times \\
0
\end{array})
$$

with $r_{1}, \ldots, r_{k}>0, r_{k+1} \geq 0$.

Theorem 1: (P) infeasible \Leftrightarrow it has a reformulation

$$
\begin{aligned}
A_{i}^{\prime} \bullet X & =0(i=1, \ldots, k) \\
A_{k+1}^{\prime} \bullet X & =-1 \\
& \vdots \\
X & \succeq 0
\end{aligned}
$$

where $k \geq 0$, and for $i=1, \ldots, k+1$ the A_{i}^{\prime} look like

$$
A_{1}^{\prime}=\left(\begin{array}{cc}
\overbrace{I}^{I} & \overbrace{0}^{r_{1}} \\
0 & \overbrace{0}
\end{array}\right), A_{i}^{\prime}=(\begin{array}{cc}
\overbrace{1}+\ldots+r_{i-1}
\end{array} \overbrace{\times}^{r_{i}} \overbrace{\times}^{n-r_{1}-\ldots-r_{i}} \begin{array}{c}
\times \\
\times \\
\times
\end{array})
$$

with $r_{1}, \ldots, r_{k}>0, r_{k+1} \geq 0$.

- Using this result, we can generate all infeasible SDP problems, as:
(1) Generate a system like ($\mathrm{P}_{\text {ref }}$).
(2) Reformulate it.

Proof outline

- Based on simplified facial reduction algorithm: construct the A_{i}^{\prime} one by one.

Proof outline

- Based on simplified facial reduction algorithm: construct the A_{i}^{\prime} one by one.
- "Difficult" direction is about 1.5 pages.

Proof outline

- Based on simplified facial reduction algorithm: construct the A_{i}^{\prime} one by one.
- "Difficult" direction is about 1.5 pages.
- Alternative: adapt a traditional facial reduction algorithm, the closest one is by Waki and Muramatsu.

Computational use

- Infeasible instances with this basic structure are very challenging for SDP solvers!
- Even more so, if we apply random elementary row ops and rotations.

Papers

- P: On the closedness of the linear image of a closed convex cone, Math of OR, 2007
- P: Bad semidefinite programs: they all look the same, under review.
- Liu-P: Exact duality in semidefinite programming based on elementary reformulations, SIOPT 2015
- Liu-P: Exact duals and short certificates fo infeasibility and weak infeasibility in conic linear programming, under review

Conclusion

- Pathologies in duality: well- and badly behaved semidefinite (feasible) systems.

Conclusion

- Pathologies in duality: well- and badly behaved semidefinite (feasible) systems.
- Combinatorial type characterizations.

Conclusion

- Pathologies in duality: well- and badly behaved semidefinite (feasible) systems.
- Combinatorial type characterizations.
- Reformulations to easily recognize good and bad behavior $\rightarrow N P \cap c o-N P$ certificates.

Conclusion

- Pathologies in duality: well- and badly behaved semidefinite (feasible) systems.
- Combinatorial type characterizations.
- Reformulations to easily recognize good and bad behavior $\rightarrow N P \cap c o-N P$ certificates.
- Block-diagonality of all dual multipliers

Conclusion

- Pathologies in duality: well- and badly behaved semidefinite (feasible) systems.
- Combinatorial type characterizations.
- Reformulations to easily recognize good and bad behavior $\rightarrow N P \cap c o-N P$ certificates.
- Block-diagonality of all dual multipliers
- Exact, simple certificate of infeasibility of a semidefinite system based on elementary reformulation.

Conclusion

- Pathologies in duality: well- and badly behaved semidefinite (feasible) systems.
- Combinatorial type characterizations.
- Reformulations to easily recognize good and bad behavior $\rightarrow N P \cap c o-N P$ certificates.
- Block-diagonality of all dual multipliers
- Exact, simple certificate of infeasibility of a semidefinite system based on elementary reformulation.
- $\left(\mathrm{P}_{\text {ref }}\right)$ being infeasible is almost a tautology.

Conclusion

- Pathologies in duality: well- and badly behaved semidefinite (feasible) systems.
- Combinatorial type characterizations.
- Reformulations to easily recognize good and bad behavior $\rightarrow N P \cap c o-N P$ certificates.
- Block-diagonality of all dual multipliers
- Exact, simple certificate of infeasibility of a semidefinite system based on elementary reformulation.
- $\left(\mathrm{P}_{\text {ref }}\right)$ being infeasible is almost a tautology.
- Algorithm to systematically generate all infeasible SDPs.

Thank you!

