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A pair of Semidefinite Programs (SDP)

supx c
Tx infY B • Y

s.t.
∑m

i=1 xiAi � B Y � 0

Ai • Y = ci (i = 1, . . . ,m).

Here

•Ai, B are symmetric matrices, c, x ∈ Rm.
•A � B means: B −A is positive semidefinite (psd).

•A •B =
∑

i,j aijbij.
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supx c
Tx infY B • Y

s.t.
∑m

i=1 xiAi � B Y � 0

Ai • Y = ci (i = 1, . . . ,m).

Here

•Ai, B are symmetric matrices, c, x ∈ Rm.
•A � B means: B −A is positive semidefinite (psd).

•A •B =
∑

i,j aijbij.

• Y � 0
def⇔ all principal subdeterminants are nonnegative.

• Equivalently, if vTY v ≥ 0∀v ∈ Rn.
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• So it is psd iff diagonal elements are nonnegative.

• So LP can be modeled as SDP: make Ai, B diagonal.



Why is SDP important:
LP ⊆ SDP ⊆ Convex Optimization

LP as SDP:

• If Ai and B are diagonal⇒ so is B −
∑m

i=1 xiAi.

• So it is psd iff diagonal elements are nonnegative.

• So LP can be modeled as SDP: make Ai, B diagonal.

SDP is a convex problem:

• Feasible set is convex, since set of psd matrices is.



3 by 3 correlation matrices

The set { (x, y, z) |


1 x y

x 1 z

y z 1

 � 0 }



Why is SDP important: applications in

• 0–1 Integer programming.

•Approx algorithms

•Chemical engineering

•Chemistry

•Coding theory

•Control theory

•Combinatorial opt

•Discrete geometry

• Eigenvalue optimization

• Facility planning

• Finance

•Geometric optimization

•Global optimization

•Graph visualization

• Inventory theory

•Machine learning

•Matrix analysis

• PDEs

• Probability theory

•Robust optimization

• Signal processing

• Statistics

• Structural optimization

• Several thousand papers on
SDP in the last 10 years.
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SDP duality

The primal-dual pair of SDPs:

supx c
Tx infY B • Y

s.t.
∑m

i=1 xiAi � B Y � 0

Ai • Y = ci (i = 1, . . . ,m).

Easy: If x and Y are feasible, then cTx ≤ B • Y.

Ideal situation: ∃x̄, ∃Ȳ : cT x̄ = B • Ȳ .

But: in SDP, unlike in LP pathological phenomena occur:
nonattainment, positive gaps.

This is bad, since we would like a certificate of optimality.
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Pathology # 1: nonattainment in dual

Primal:

sup 2x1 ⇔ sup 2x1

s.t. x1

0 1

1 0

 �
1 0

0 0

 s.t.

 1 −x1

−x1 0

 � 0

Only feasible x1 is x1 = 0.

Dual: Dual variable is Y � 0.

inf y11

s.t.

y11 1

1 y22

 � 0

Unattained inf = 0 : y11 > 0 is feasible, but y11 = 0 is not.
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Pathology # 2: positive duality gap

Primal:

sup x2

s.t. x1


1 0 0

0 0 0

0 0 0

+ x2


0 0 1

0 1 0

1 0 0

 �


1 0 0

0 1 0

0 0 0


Only feasible x2 is x2 = 0.

Dual value is 1, and it is attained.



Terminology

Definition:

• The system
(PSD)

∑m
i=1 xiAi � B

is well-behaved, if for all c such that

sup{ cTx |x ∈ PSD } is finite,

the dual program has the same value, and it attains.

• Badly behaved, otherwise.

• We would like to understand well/badly behaved systems.
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0 1
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1 0
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and

x1


1 0 0

0 0 0

0 0 0

+ x2


0 0 1

0 1 0

1 0 0

 �


1 0 0

0 1 0

0 0 0


are both badly behaved.

Curious similarity – of these, and about 20 others in the
literature
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Why all bad SDPs look the same

• Semidefinite system:

(PSD)
∑m

i=1 xiAi � B

• W.l.o.g. the max (rank) slack is

Z =

Ir 0

0 0

 .
Then (PSD) badly behaved⇔ ∃V a lin. combination of the
Ai and B as

V =


r︷︸︸︷
V11 V12

V T
12 V22

 , where V22 � 0, R(V T
12) 6⊆ R(V22).

• Ex: x1

V︷ ︸︸ ︷0 1

1 0

 �
Z︷ ︸︸ ︷1 0

0 0
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What is missing?

• Matrices Z, V prove that (PSD) is badly behaved.

• But: this is not yet a poly time, or easy to verify proof of
bad behavior

• Aside: how do we prove that Ax = b is infeasible? → row
echelon form.

• We will borrow ideas from the row echelon form to produce
easy-to-verify certificates.



Reformulations of

(PSD)
∑m

i=1 xiAi � B

are obtained by a sequence of:

• Apply a rotation V T ()V to all matrices, where V is invert-
ible.

•B ← B +
∑m

i=1 µiAi

•Ai←
∑m

j=1 λjAj where λi 6= 0

Reformulations preserve well/badly behaved status; preserve
max slack; provide an equivalence relation
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Proof that (PSD,bad) is badly behaved:

x feas. with slack S ⇒ last n− r cols of S are zero

⇒ xk+1 = · · · = xm = 0

⇒ sup−xm = 0
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Example: before reformulation

x1


54 46 50 4

46 −38 87 −106

50 87 −60 296

4 −106 296 −368

+x2


110 91 105 −6

91 −72 171 −210

105 171 −72 528

−6 −210 528 −672

+x3


42 35 40 0

35 −28 67 −82

40 67 −36 216

0 −82 216 −272



+x4


36 30 35 −2

30 −24 57 −70

35 57 −24 176

−2 −70 176 −224

 �


389 323 370 −12

323 −257 610 −748

370 610 −288 1920

−12 −748 1920 −2432


Hard to tell if well or badly behaved



Example: after reformulation

x1


0 1 0 0

1 −2 0 0

0 0 0 0

0 0 0 0

+x2


2 1 0 0

1 0 0 0

0 0 0 0

0 0 0 0

+x3


0 0 2 1

0 0 3 −1

2 3 0 2

1 −1 2 0



+x4


0 0 3 −1

0 0 2 −1

3 2 4 0

−1 −1 0 0

 �


1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0


As before: x3 = x4 = 0⇒ sup−x4 = 0

But: no dual solution with value 0
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Corollaries:

• The question:

Is (PSD) well behaved?

is in NP ∩ coNP in real number model of computing.

• Certificate: reformulation, and proof that Z is max rank
slack.

• (PSD) well behaved ⇒ for all c with a finite obj. value ∃
optimal

Y =


r︷︸︸︷
Y11 0

0 Y22
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Theorem cont’d: (PSD) is well behaved ⇔ it has a
reformulation:

(PSD,good)
∑k

i=1 xi

Fi 0

0 0

+
∑m

i=k+1 xi

 Fi Gi

GT
i Hi
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Ir 0

0 0

 = Z,

where

1) Z is max slack; 2) Hi lin. indep. 3) Hi • I = 0 ∀i
• Corollary: we can generate all well behaved semidefinite sys-

tems: choose in sequenceHi, Gi, Fi. Then do reformulation.

• Corollary: we can generate all linear maps under which the
image of the psd cone is closed.

• Proof: {(Ai • Y )mi=1 |Y � 0 } is closed ⇔
∑m

i=1 xiAi � 0 is
well behaved.



How about proving infeasibility?

This part is joint with Minghui Liu.
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Here

•Ai are symmetric matrices.

•A •B =
∑

i,j aijbij.
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Farkas’ Lemma for SDP

• (1)⇒ (2):

(1)
∑m

i=1 yiAi � 0,
∑m

i=1 yibi = −1 (Palt) is feasible.

(2)Ai •X = bi ∀i, X � 0 (P ) is infeasible.

• Proof: One line.

• However: (2) 6⇒ (1): (Palt) is not an exact certificate of in-
feasibility.



Literature: exact certificates of infeasibility

•Ramana 1995

•Klep, Schweighofer 2013

•Waki, Muramatsu 2013: variant of facial reduction of

• Borwein, Wolkowicz 1981

•Also: Ramana, Tuncel, Wolkowicz, 1997
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copies of the system, extra variables, and constraints like
Ui+1 �WiW
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Literature: exact certificates of infeasibility

•Ramana’s dual, and certificate of infeasibility: needs O(n)
copies of the system, extra variables, and constraints like
Ui+1 �WiW

T
i

•Goal: Find an exact certificate of infeasibility that is “al-
most” as simple as Farkas’ Lemma.
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Infeasible example, and proof of infeasibility


1 0 0

0 0 0

0 0 0

 •X = 0


0 0 1

0 1 0

1 0 0

 •X = −1

X � 0

• Suppose X feasible ⇒ X11 = 0
⇒ X12 = X13 = 0
⇒ X22 = −1

•Main idea: We will find such a structure in every infeasible
semidefinite system.
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Reformulation (again!)

Ai •X = bi (i = 1, . . . ,m)

X � 0
(P)

•We obtain a reformulation of (P) by a sequence of the fol-
lowing:

(1) Elementery row operations on the equations.

(2)Ai← V TAiV (i = 1, , . . . ,m), where V is invertible.

• (1) is inherited from Gaussian elimination.

• Fact: Reformulations preserve (in)feasibility.



Theorem 1: (P) infeasible⇔ it has a reformulation

A′i •X = 0 (i = 1, . . . , k)

A′k+1 •X = −1 (Pref)

...

X � 0

where k ≥ 0, and for i = 1, . . . , k + 1 the A′i look like

A′1 =

( r1︷︸︸︷ n−r1︷︸︸︷
I 0
0 0

)
, A′i =


r1+...+ri−1︷ ︸︸ ︷ ri︷︸︸︷ n−r1−...−ri︷ ︸︸ ︷
× × ×
× I 0
× 0 0


with r1, . . . , rk > 0, rk+1 ≥ 0.
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Proof of “⇐ ” : Suppose that X feasible in (Pref)
⇒ first r1 rows of X are 0
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Proof of “⇐ ” : Suppose that X feasible in (Pref)
⇒ first r1 rows of X are 0

· · ·
⇒ first r1 + . . .+ rk rows of X are 0
⇒ A′k+1 •X ≥ 0
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• Back to the example:

A′1︷ ︸︸ ︷
1 0 0

0 0 0

0 0 0

 •X =

b′1︷︸︸︷
0


0 0 1

0 1 0

1 0 0


︸ ︷︷ ︸

A′2

•X = −1︸︷︷︸
b′2

X � 0
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• k = 0→ original Farkas’ lemma.
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Theorem 1: (P) infeasible⇔ it has a reformulation

A′i •X = 0 (i = 1, . . . , k)

A′k+1 •X = −1 (Pref)

...

X � 0

where k ≥ 0, and for i = 1, . . . , k + 1 the A′i look like

A′1 =

( r1︷︸︸︷ n−r1︷︸︸︷
I 0
0 0

)
, A′i =


r1+...+ri−1︷ ︸︸ ︷ ri︷︸︸︷ n−r1−...−ri︷ ︸︸ ︷
× × ×
× I 0
× 0 0


with r1, . . . , rk > 0, rk+1 ≥ 0.

•Using this result, we can generate all infeasible SDP prob-
lems, as:

(1) Generate a system like (Pref).

(2) Reformulate it.
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Proof outline

• Based on simplified facial reduction algorithm: construct
the A′i one by one.

• “Difficult” direction is about 1.5 pages.

•Alternative: adapt a traditional facial reduction algorithm,
the closest one is by Waki and Muramatsu.



Computational use

• Infeasible instances with this basic structure are very chal-
lenging for SDP solvers!

• Even more so, if we apply random elementary row ops and
rotations.
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• Liu-P: Exact duality in semidefinite programming based on
elementary reformulations, SIOPT 2015

• Liu-P: Exact duals and short certificates fo infeasibility and
weak infeasibility in conic linear programming, under review
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Conclusion

• Pathologies in duality: well- and badly behaved semidefi-
nite (feasible) systems.

•Combinatorial type characterizations.

•Reformulations to easily recognize good and bad behavior
→ NP ∩ co−NP certificates.

• Block-diagonality of all dual multipliers

• Exact, simple certificate of infeasibility of a semidefinite sys-
tem based on elementary reformulation.

• (Pref) being infeasible is almost a tautology.

•Algorithm to systematically generate all infeasible SDPs.



Thank you!


