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The \Geometry" of Convex

and Linear Programs

Convex program : minimizing a convex function subject to convexconstraints.What do we mean by the \geometry" of a convex program ?� Characterization of solution set; uniqueness of solution.� Same for the dual (if there is an explicit one ).� If we replace the objective by its linearization at the optimum,do we get an equivalent problem ?� etc.
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If the convex program is an LP, these questions can be studiedthrough describing the facial structure of the feasible set.There are 3 fundamental notions:� Faces, extreme points (basic solutions).� Nondegeneracy.� Strict complementarity.Very clear cut connections. E. g.� x is nondegenerate ) dual optimal face is a singleton; , dualsolution is unique.� If the dual solution is unique, then any (SC) primal solutionmust be nondegenerate.
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Can we do the same for general convex programs ?No comprehensive study so far. Some literature on the geometry ofconvex programs:(1) Anderson and Nash : LP's in in�nite-dimensional spaces.(2) Faces of feasible sets of SDP's: Ramana, '94; P. '94.(3) Nondegeneracy in SDP: Shapiro,Fan '94, Alizadeh, Haeberly, Overton '95.(4) Nondegeneracy in nonlinear programs : Robinson.(5) Nondegeneracy in cone programs: Shapiro '96.(6) Characterization of solution sets of convex programs: Mangasarian '91;Burke and Ferris '92.(7) Weak sharp minima in LP's, QP's: Ferris, Burke '91.(8) Minimum principle su�ciency in convex programs: Ferris andMangasarian '92.
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� (1) is too general (even the dimension of the space can bein�nite). Most of the others only work for speci�c problems.No treatment of basic solutions.� Goal: to develop a unifying theory that subsumes, andgeneralizes many known results on the \geometry" of convexprograms. (Started with SDP...)
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Why study the facial structure ?� We should not assume e.g. di�erentiability. But all closedconvex sets have faces �! a good approach to describe thelocal structure of the feasible set.� Everything we derive should be an easily recognizablegeneralization of the LP case.
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Basic ideaThe feasible set of every convex program is the intersection ofsimple convex sets.E.g. the feasible set of an LP isfx jx � 0 g \ fx jAx = b gtwo sets with trivial geometry.We will characterize the geometry of the intersection using thegeometry of the simple sets.
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Plan of talk

� Faces of general convex sets.� The Main Tool: the FIT Theorem.� The facial structure of cone-constrained linear programs.� Diverse applications : eigenvalue-optimization; poly-timesolvability of small quadratic programs; (partial) sensitivityanalysis in cone programs; graph embedding.� The facial structure of general convex programs.
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De�nition:� If C is a convex set, then F � C is a face of C, if F is convex,and x; y 2 C; 12(x+ y) 2 F implies x; y 2 F .� A face consisting of only one element is called an extreme point.
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Figure 1: Faces of convex sets9
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The Main Tool: the FIT Theorem

(Faces of Intersection Theorem)

( by Bonnesen-Fenchel; Dubins; Klee).Suppose that C1; C2 are closed, convex sets. Then� F is a face of C1 \ C2 , F = F1 \ F2 for some Fi faces of Ci(: easy.
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): F1 and F2 can be chosen as the minimal faces of C1 and C2that contain F . In this casea�F = a�F1 \ a�F2(Example: C1 = fx jAx = b g; C2 = fx jx � 0 g.)A simple, important, (and somewhat forgotten) result.
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Figure 2:
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The Facial Structure of Cone Programs

Min cTx Max bT y(P ) s:t: x 2 K s:t: z 2 K� (D)Ax = b AT y + z = cwhere K is a closed convex cone in Rk;K� = fz j zx � 0 8x 2 Kg the polar of KInteresting choices of K� Rk+ ! LP� Second-order (SO) cone, K2 = f(t; x) 2 R1+d j t �k x kg� Positive semide�nite matrices ! SDP13



'
&

$
%

   F  conjugate(F) 

Figure 3: A second order cone
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1. Basic solutions in cone programsDe�nition: An extreme point of the feasible set of a coneprogram is called a basic solution.Theorem:� Suppose x feasible for (P), F the min. face of K that containsx. Then x is basic ,N (A) \ lin F = f0gProof:x is basic ,Min: face of feasible set that contains x is a singleton ,its a�ne hull fx jAx = b; x 2 lin F g is a singleton ,N (A) \ lin F = f0g
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Moreover, if
N (A) \ lin F = f0gfails, we can �nd a 4x 6= 0 in it, and solving

maxf t : x� t4x 2 F gtakes us to a lower-dimensional face of K (need to take care ofprecision).Therefore, we can get to a basic solution in �nitely many steps.Characterization of dual basic solutions: analogous (Rm �K� is acone also).
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Special casesFaces of the interesting conesRk+ fx j x = (�; : : : ;�; 0; : : : ; 0)gSO cone f�(k x0 k; x0) j � � 0 g for some x0 2 Rd

Psd cone fX j X = 0@ � 00 0
1Agor the orthogonal rotation of such a set V (�)V T(Barker and Carlson 075)
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LP 1 : : : rx : ( + : : : + j 0 : : : 0 )lin F : ( � : : : � j 0 : : : 0 )A : ( B j N )Corollary:� x basic , columns of B are independent.
18



'
&

$
%

SDP

X : 0B@ rz}|{+ 00 0
1CA

lin F : 0@ � 00 0
1A

Ai : 0@ (Ai)11 (Ai)12(Ai)21 (Ai)22
1A

( Ai � V XV T = V TAiV �X ! rescaling.)Corollary: X basic , f(A1)11; : : : ; (Am)11g span the space of rby r symmetric matrices. 19
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2. Nondegeneracy in cone programsDe�nition: F face of K. The setF4 = fz 2 K� j zTx = 0 8 x 2 Fgis called the complementary (conjugate) face of F . (Nonneg.orthant: ip the position of zeros)Fact: F44 = Ffor all faces, if K is facially exposed.De�nition: Suppose x is feasible for (P), F is the minimal faceof K that contains x. We say that x is nondegenerate, ifR(AT ) \ lin F4 = f0g(recall: basic, if N (A) \ lin F = f0g)20
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Example: LP 1 : : : sx : ( + : : : + j 0 : : : 0 )lin F4 : ( 0 : : : 0 j � : : : � )A : ( B j N )Corollary:� x nondegenerate , rows of B are independent.
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The duality gap for x and (y; z) is always xT z.Fact: S.t. x is a nondegenerate primal optimal solution. Any dualoptimal solution (y; z) must satisfyAT y + z = c; z 2 K�; zTx = 0 )AT y + z = c; z 2 F4 )

it must be basic ) dual optimal solution is unique.Nondegeneracy of dual solution: analogous.
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Examples of complementary facesRk+ f(�; : : : ;�; 0; : : : ; 0)g f(0; : : : ; 0;�; : : : ;�gSO cone f�(k x0 k; x0) j � � 0 g f�(k x0 k;�x0) j � � 0 gPsd cone f0@ � 00 0
1Ag f0@ 0 00 �
1AgSo, in these cases, it is easy to work out what nondegeneracymeans.
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3. Strict complementarity in cone programsDe�nition: Let x and (y; z) be complementary primal and dualsolutions. We say that they are strictly complementary if(SC) x 2 riF and z 2 riF4for a face F of K.(LP : total number of nonzeros = n; SDP: total rank = n.)
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4. Analogy of the bound on the number of nonzeros in LPSuppose that x is feasible for (P), F is the min. face of K thatcontains x. Then x is basic ,fx jAx = b; x 2 lin F g is a singletonCorollary: x, and F are as above. If x is basic, thendimF � m(LP: dimF = number of nonzeros in x)
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A sharper version: (For LP : Tijssen and Sierksma, Math.Progr. '98) Let d = dimension of dual solution set. ThendimF � m� dwith equality holding in LP.Proof outline The independent dual solutions create dependencein the rows of the systemAx = b; [(lin F )?]x = 0=) this system must have more rows.
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SDPCorollary: Let d be the dimension of the set of dual optimalsolutions, X a basic optimal solution of the primal SDP. Let r bethe rank of X. Then
t(r) � m� dwhere t(r) = r(r + 1)=2 is the rth triangular number.(Existence of such a solution (without d): independently Barvinok,'95).
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What �ts into this framework

1. Eigenvalue-clustering in eigenvalue-optimizationfk(X) = sum of the k largest eigenvalues of the symmetric matrixX. Fact:(1) 9f 0(X), �k(X) > �k+1(X).(2) If (1) fails, then the subdi�erential has dimensiont( multiplicity of �k(X)).
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Consider Min fk(X)s:t: AX = b (1)

Observation : at optimal solutions frequently fk is nondi�erentiable�! a \model problem" of nonsmooth optimization.In fact, much of the machinery of NSO was developed to deal withnonsmoothness in (1).
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The graph of �max(X) (parametrizing the feasible X matrices)(1) X = � 1 00 1 � + x1 � 1 00 �1 � + x2 � 0 11 0 �
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(2) The constraint system is randomly generated.
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The clustering has been observed since the seventies without givingsound theoretical explanation: Cullum, Donath and Wolfe ('75);Fletcher; Overton; Shapiro; ... ( � 20 references )Theorem: (P, '95) At an extreme point X� of the solution set of(1) �k(X�) = �k+1(X�)must hold, if the degrees of freedom ( = t(n) - # of constraints ) isat least k(n� k). Moreover, there is a lower bound on themultiplicity of �k(X�) that increases with the the degrees offreedom (analogy in LP : few constraints ) few nonzeros in a basicsolution).
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Outline of proofProblem (1) can be formulated with extra variables(z 2 R; V � 0;W � 0) as an SDP ( Alizadeh; N and N)X is opt. with eigenvalues �1 � : : : �n ) the opt. (z�; V �;W �) are�k+1 � z� � �k (2)

�(V �) = ( �1�z�; : : : ; �k�z�; 0; : : : ; 0 )T�(W �) = ( 0; : : : ; 0; z���k+1; : : : ; z���n )T (3)

X is an extreme point of the solution set ) (z�; V �;W �; X) is in aface of dim � 1 ) ub on rank V � + rank W � )�k(X�) = �k+1(X�)and lower bound on the multiplicity of �k(X�).33
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2. (Partial) Sensitivity AnalysisSuppose we have a pair of optimal solutions to (P) and (D), calledx and (y; z). Now we change the objective from c to c+ t4c. Howbig can t be so that x remains optimal ? Denote by t� the largest t.(LP: well-known; SDP: Goldfarb and Scheinberg '97)A simple common generalization, and extension.Suppose that the primal and dual solutions are unique, and (SC)holds. Let the primal face be F , the dual face F4.Then x is optimal, as long as z(t) 2 F4AT y(t) + z(t) = c+ t4c (4)

is feasible (since the duality gap is xT z(t)).34
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Write AT4y +4z = 4cwith some 4z 2 lin F4 (if it is impossible, then t� = 0).But the solution to (4) is unique ) it must be(y(0) + t4y; z(0) + t4z).Corollary: t� = maxf t jz(0) + t4z 2 F4 gLP: ratio-test; SDP: computing max. eigenvalue; SO-coneprogramming: quadratic linesearch.
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3. Poly-time solvability of small nonconvex quadraticprograms
Min xTQx+ 2qTxs:t: xTAix+ 2bTi x+ ci � 0 (i = 1; : : : ;m) (5)where Q and Ai are not necessarily positive semide�nite �! apossibly nonconvex problem.Equivalent formulation:Min Q0 �0@x0x

1A0@x0x
1AT

s:t: x20 = 1A0i �0@x0x
1A0@x0x
1AT � c0i (i = 1; : : : ;m)
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This can be relaxed toMin Q0 �Xs:t: X � 0X00 = 1A0i �X � c0i (i = 1; : : : ;m) (6)

Suppose that X is a basic optimal solution to (6), the rank of X isr and there are d nontight inequalities. Thent(r) + d � m+ 1
37



'
&

$
%

Corollary: If m = 1, then there is a rank 1 optimal solution )the relaxation is exact. Also, this solution can be found inpolynomial time from a possibly nonbasic solution.Therefore for m = 1 the original problem is solvable in polynomialtime (if computations are done exactly : Wolkowicz; Ye; morecareful analyisis : Vavasis and Zipfel )The same is true, if m = 2, and there are no linear terms(apparently new).
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An extension to general convex programs

Any convex program can be written as

min f f1(x) + : : :+ fm(x) gwhere the fi's are \elementary" convex functions.E.g. let m = 3, f1(x) = cxf2(x) = � (x jx 2 K )f3(x) = � (x jAx = b )( � is the indicator function of the corresponding convex set).
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Denote the set of optimal solutions by S, and suppose thatfi(x) = �i if x 2 S (7)Let Ci = fx j fi(x) � �i g

Then S = C1 \ : : : \ Cm�! characterization of the faces of S with the help of the faces ofthe Ci's.Nondegeneracy: with the help of the Fenchel-dual.
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Special case:
Min f(x)s:t: gi(x) � 0 (i = 1; : : : ;m) (8)

where f and the gi's are di�erentiable. Then a solution x is� nondegenerate in the \facial structure" framework , thevectors rgi1(x); : : : ;rgip(x) corresp. to the tight cosntraintsare linearly independent.� strictly complementary with the corresp. dual solution ,rf(x) is a strict positive combination of these vectors.
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Related work

� Nondegeneracy, etc. is a generic property in cone programs.(Shapiro, AHO: for SDP, using di�erential geometry). In thegeneral framework it is even easier.� The nonsmoothness of any function of eigenvalues can be\predicted" from the case, when it is restricted to diagonalmatrices (with A. Lewis).
42



'
&

$
%

Conclusion

� A theory to describe the \geometry" of general convexprograms. Subsumes many known, and provides many newresults.� Facial structure: well-known tool in LP, (surprisingly) alsoworks well in this general context.� Applications : General results on basic (etc) solutions +structure of a speci�c problem = better understanding of theproblem: \Convex combinatorics".
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