The Facial Structure of Convex Programs

Gábor Pataki

Dept. of IE/OR
Columbia University

The "Geometry" of Convex

and Linear Programs

Convex program: minimizing a convex function subject to convex constraints.

What do we mean by the "geometry" of a convex program?

- Characterization of solution set; uniqueness of solution.
- Same for the dual (if there is an explicit one).
- If we replace the objective by its linearization at the optimum, do we get an equivalent problem?
- etc.

If the convex program is an LP, these questions can be studied through describing the **facial structure** of the feasible set.

There are 3 fundamental notions:

- Faces, extreme points (basic solutions).
- Nondegeneracy.
- Strict complementarity.

Very clear cut connections. E. g.

- x is nondegenerate \Rightarrow dual optimal face is a singleton; \Leftrightarrow dual solution is unique.
- If the dual solution is unique, then any (SC) primal solution must be nondegenerate.

Can we do the same for general convex programs?

No comprehensive study so far. Some literature on the geometry of convex programs:

- (1) Anderson and Nash: LP's in infinite-dimensional spaces.
- (2) Faces of feasible sets of SDP's: Ramana, '94; P. '94.
- (3) Nondegeneracy in SDP: Shapiro, Fan '94, Alizadeh, Haeberly, Overton '95.
- (4) Nondegeneracy in nonlinear programs: Robinson.
- (5) Nondegeneracy in cone programs: Shapiro '96.
- (6) Characterization of solution sets of convex programs: Mangasarian '91; Burke and Ferris '92.
- (7) Weak sharp minima in LP's, QP's: Ferris, Burke '91.
- (8) Minimum principle sufficiency in convex programs: Ferris and Mangasarian '92.

- (1) is too general (even the dimension of the space can be infinite). Most of the others only work for specific problems. No treatment of basic solutions.
- Goal: to develop a unifying theory that subsumes, and generalizes many known results on the "geometry" of convex programs. (Started with SDP...)

Why study the facial structure?

- We should not assume e.g. differentiability. But all closed convex sets have faces → a good approach to describe the local structure of the feasible set.
- Everything we derive should be an easily recognizable generalization of the LP case.

Basic idea

The feasible set of every convex program is the *intersection* of simple convex sets.

E.g. the feasible set of an LP is

$$\{ x \mid x \ge 0 \} \cap \{ x \mid Ax = b \}$$

two sets with trivial geometry.

We will characterize the geometry of the intersection using the geometry of the simple sets.

Plan of talk

- Faces of general convex sets.
- The Main Tool: the FIT Theorem.
- The facial structure of cone-constrained linear programs.
- Diverse applications: eigenvalue-optimization; poly-time solvability of small quadratic programs; (partial) sensitivity analysis in cone programs; graph embedding.
- The facial structure of general convex programs.

Definition:

- If C is a convex set, then $F \subseteq C$ is a face of C, if F is convex, and $x, y \in C$, $\frac{1}{2}(x+y) \in F$ implies $x, y \in F$.
- A face consisting of only one element is called an *extreme point*.

Figure 1: Faces of convex sets

The Main Tool: the FIT Theorem

(Faces of Intersection Theorem)

(by Bonnesen-Fenchel; Dubins; Klee).

Suppose that C_1 , C_2 are closed, convex sets. Then

• F is a face of $C_1 \cap C_2 \Leftrightarrow F = F_1 \cap F_2$ for some F_i faces of C_i

 \Leftarrow : easy.

 \Rightarrow : F_1 and F_2 can be chosen as the *minimal* faces of C_1 and C_2 that contain F. In this case

$$\operatorname{aff} F = \operatorname{aff} F_1 \cap \operatorname{aff} F_2$$

(Example: $C_1 = \{ x \mid Ax = b \}, C_2 = \{ x \mid x \ge 0 \}.$)

A simple, important, (and somewhat forgotten) result.

The Facial Structure of Cone Programs

$$Min \quad c^Tx \qquad Max \quad b^Ty$$

$$(P) \quad s.t. \quad x \in K \qquad s.t. \quad z \in K^* \qquad (D)$$

$$Ax = b \qquad A^Ty + z = c$$

where K is a closed convex cone in \mathbb{R}^k ,

$$K^* = \{z \mid zx \ge 0 \ \forall x \in K\} \text{ the polar of } K$$

Interesting choices of K

- $\bullet \ \mathcal{R}^k_+ \to \mathrm{LP}$
- Second-order (SO) cone, $K_2 = \{(t, x) \in \mathbb{R}^{1+d} \mid t \ge ||x||\}$
- Positive semidefinite matrices \rightarrow SDP

1. Basic solutions in cone programs

Definition: An extreme point of the feasible set of a cone program is called a *basic solution*.

Theorem:

• Suppose x feasible for (P), F the min. face of K that contains x. Then

$$x ext{ is basic} \Leftrightarrow \mathcal{N}(A) \cap \lim F = \{0\}$$

Proof:

$$x$$
 is basic \Leftrightarrow

Min. face of feasible set that contains x is a singleton \Leftrightarrow its affine hull $\{x \mid Ax = b, x \in \text{lin } F\}$ is a singleton \Leftrightarrow $\mathcal{N}(A) \cap \text{lin } F = \{0\}$

Moreover, if

$$\mathcal{N}(A) \cap \lim F = \{0\}$$

fails, we can find a $\triangle x \neq 0$ in it, and solving

$$\max\{t: x \pm t \triangle x \in F\}$$

takes us to a lower-dimensional face of K (need to take care of precision).

Therefore, we can get to a basic solution in finitely many steps.

Characterization of dual basic solutions: analogous ($\mathcal{R}^m \times K^*$ is a cone also).

Special cases

Faces of the interesting cones

$$\mathcal{R}_{+}^{k} \quad \{x \mid x = (\oplus, \dots, \oplus, 0, \dots, 0)\}$$
SO cone
$$\{\lambda(\parallel x^{0} \parallel, x^{0}) \mid \lambda \geq 0 \} \text{ for some } x^{0} \in \mathcal{R}^{d}$$
Psd cone
$$\{X \mid X = \begin{pmatrix} \oplus & 0 \\ 0 & 0 \end{pmatrix}\}$$

or the orthogonal rotation of such a set $V(\bullet)V^T$ (Barker and Carlson '75) \mathbf{LP}

$$x: (+ ... + | 0 ... 0)$$
 $lin F: (\times ... \times | 0 ... 0)$
 $A: (B | N)$

Corollary:

• x basic \Leftrightarrow columns of B are independent.

SDP

$$X: \left(\begin{array}{c} + & 0 \\ 0 & 0 \end{array} \right)$$
 $\lim F: \left(\begin{array}{c} \times & 0 \\ 0 & 0 \end{array} \right)$
 $A_i: \left(\begin{array}{c} (A_i)_{11} & (A_i)_{12} \\ (A_i)_{21} & (A_i)_{22} \end{array} \right)$

 $(A_i \bullet VXV^T = V^TA_iV \bullet X \to \text{rescaling.})$

Corollary: X basic $\Leftrightarrow \{(A_1)_{11}, \dots, (A_m)_{11}\}$ span the space of r by r symmetric matrices.

2. Nondegeneracy in cone programs

Definition: F face of K. The set

$$F^{\triangle} = \{ z \in K^* \mid z^T x = 0 \ \forall \ x \in F \}$$

is called the complementary (conjugate) face of F. (Nonneg. orthant: flip the position of zeros)

Fact:

$$F^{\triangle\triangle} = F$$

for all faces, if K is facially exposed.

Definition: Suppose x is feasible for (P), F is the minimal face of K that contains x. We say that x is nondegenerate, if

$$\mathcal{R}(A^T) \cap \lim F^{\triangle} = \{0\}$$

(recall: basic, if $\mathcal{N}(A) \cap \lim F = \{0\}$)

Example: LP

$$1 \quad \dots \quad s$$
 $x: \quad (\quad + \quad \dots \quad + \quad | \quad 0 \quad \dots \quad 0 \quad)$ $\lim F^{\triangle}: \quad (\quad 0 \quad \dots \quad 0 \quad | \quad \times \quad \dots \quad \times \quad)$ $A: \quad (\quad B \quad | \quad N \quad)$

Corollary:

• x nondegenerate \Leftrightarrow rows of B are independent.

The duality gap for x and (y, z) is always $x^T z$.

Fact: S.t. x is a nondegenerate primal optimal solution. Any dual optimal solution (y, z) must satisfy

$$A^T y + z = c, \ z \in K^*, \quad z^T x = 0 \quad \Rightarrow$$

 $A^T y + z = c, \ z \in F^{\triangle} \qquad \Rightarrow$

it must be basic \Rightarrow dual optimal solution is unique.

Nondegeneracy of dual solution: analogous.

Examples of complementary faces

$$\mathcal{R}_{+}^{k} \qquad \{(\oplus, \dots, \oplus, 0, \dots, 0)\} \quad \{(0, \dots, 0, \oplus, \dots, \oplus\}$$
SO cone
$$\{\lambda(\parallel x^{0} \parallel, x^{0}) \mid \lambda \geq 0 \} \quad \{\lambda(\parallel x^{0} \parallel, -x^{0}) \mid \lambda \geq 0 \}$$
Psd cone
$$\left\{\begin{pmatrix} \oplus & 0 \\ 0 & 0 \end{pmatrix}\right\} \quad \left\{\begin{pmatrix} 0 & 0 \\ 0 & \oplus \end{pmatrix}\right\}$$

So, in these cases, it is easy to work out what nondegeneracy means.

3. Strict complementarity in cone programs

Definition: Let x and (y, z) be complementary primal and dual solutions. We say that they are strictly complementary if

(SC) $x \in \operatorname{ri} F$ and $z \in \operatorname{ri} F^{\triangle}$

for a face F of K.

(LP: total number of nonzeros = n; SDP: total rank = n.)

4. Analogy of the bound on the number of nonzeros in LP

Suppose that x is feasible for (P), F is the min. face of K that contains x. Then x is basic \Leftrightarrow

$$\{x \mid Ax = b, x \in \text{lin } F\} \text{ is a singleton }$$

Corollary: x, and F are as above. If x is basic, then

$$\dim F \leq m$$

(LP: $\dim F = \text{number of nonzeros in } x$)

A sharper version: (For LP : Tijssen and Sierksma, Math. Progr. '98) Let d = dimension of dual solution set. Then

$$\dim F \leq m - d$$

with equality holding in LP.

Proof outline The independent dual solutions create dependence in the rows of the system

$$Ax = b, [(\lim F)^{\perp}]x = 0$$

 \Longrightarrow this system must have more rows.

SDP

Corollary: Let d be the dimension of the set of dual optimal solutions, X a basic optimal solution of the primal SDP. Let r be the rank of X. Then

$$t(r) \leq m - d$$

where t(r) = r(r+1)/2 is the r^{th} triangular number.

(Existence of such a solution (without d): independently Barvinok, '95).

What fits into this framework

1. Eigenvalue-clustering in eigenvalue-optimization

 $f_k(X) = \text{sum of the } k \text{ largest eigenvalues of the symmetric matrix } X.$ Fact:

- (1) $\exists f'(X) \Leftrightarrow \lambda_k(X) > \lambda_{k+1}(X)$.
- (2) If (1) fails, then the subdifferential has dimension t(multiplicity of $\lambda_k(X)$).

Consider

$$\begin{array}{ll}
Min & f_k(X) \\
s.t. & \mathcal{A}X &= b
\end{array} \tag{1}$$

Observation: at optimal solutions frequently f_k is nondifferentiable \longrightarrow a "model problem" of nonsmooth optimization.

In fact, much of the machinery of NSO was developed to deal with nonsmoothness in (1).

The graph of $\lambda_{\max}(X)$ (parametrizing the feasible X matrices)

$$(1) X = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} + x_1 \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} + x_2 \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

(2) The constraint system is randomly generated.

The clustering has been observed since the seventies without giving sound theoretical explanation: Cullum, Donath and Wolfe ('75); Fletcher; Overton; Shapiro; ... (≥ 20 references)

Theorem: (P, '95) At an extreme point X^* of the solution set of (1)

$$\lambda_k(X^*) = \lambda_{k+1}(X^*)$$

must hold, if the degrees of freedom (= t(n) - # of constraints) is at least k(n-k). Moreover, there is a lower bound on the multiplicity of $\lambda_k(X^*)$ that increases with the degrees of freedom (analogy in LP : few constraints \Rightarrow few nonzeros in a basic solution).

Outline of proof

Problem (1) can be formulated with extra variables $(z \in \mathcal{R}, V \succeq 0, W \succeq 0)$ as an SDP (Alizadeh; N and N)

X is opt. with eigenvalues $\lambda_1 \geq \ldots \lambda_n \Rightarrow$ the opt. (z^*, V^*, W^*) are

$$\lambda_{k+1} \le z^* \le \lambda_k \tag{2}$$

$$\lambda(V^*) = (\lambda_1 - z^*, \dots, \lambda_k - z^*, 0, \dots, 0)^T$$

$$\lambda(W^*) = (0, \dots, 0, z^* - \lambda_{k+1}, \dots, z^* - \lambda_n)^T$$
(3)

X is an extreme point of the solution set $\Rightarrow (z^*, V^*, W^*, X)$ is in a face of dim $\leq 1 \Rightarrow$ ub on rank $V^* + \text{rank } W^* \Rightarrow$

$$\lambda_k(X^*) = \lambda_{k+1}(X^*)$$

and lower bound on the multiplicity of $\lambda_k(X^*)$.

2. (Partial) Sensitivity Analysis

Suppose we have a pair of optimal solutions to (P) and (D), called x and (y, z). Now we change the objective from c to $c + t \triangle c$. How big can t be so that x remains optimal? Denote by t^* the largest t.

(LP: well-known; SDP: Goldfarb and Scheinberg '97)

A simple common generalization, and extension.

Suppose that the primal and dual solutions are unique, and (SC) holds. Let the primal face be F, the dual face F^{\triangle} .

Then x is optimal, as long as

$$z(t) \in F^{\triangle}$$

$$A^{T}y(t) + z(t) = c + t\triangle c$$
(4)

is feasible (since the duality gap is $x^T z(t)$).

Write

$$A^T \triangle y + \triangle z = \triangle c$$

with some $\Delta z \in \text{lin } F^{\Delta}$ (if it is impossible, then $t^* = 0$).

But the solution to (4) is unique \Rightarrow it must be $(y(0) + t\Delta y, z(0) + t\Delta z)$.

Corollary:

$$t^* = \max\{t \mid z(0) + t \triangle z \in F^{\triangle}\}\$$

LP: ratio-test; SDP: computing max. eigenvalue; SO-cone programming: quadratic linesearch.

3. Poly-time solvability of small nonconvex quadratic programs

$$Min x^T Q x + 2q^T x$$

 $s.t. x^T A_i x + 2b_i^T x + c_i \le 0 \ (i = 1, ..., m)$ (5)

where Q and A_i are not necessarily positive semidefinite \longrightarrow a possibly nonconvex problem.

Equivalent formulation:

$$Min \quad Q' \bullet \begin{pmatrix} x_0 \\ x \end{pmatrix} \begin{pmatrix} x_0 \\ x \end{pmatrix}^T$$

$$s.t. \quad x_0^2 = 1$$

$$A'_i \bullet \begin{pmatrix} x_0 \\ x \end{pmatrix} \begin{pmatrix} x_0 \\ x \end{pmatrix}^T \leq c'_i \ (i = 1, \dots, m)$$

This can be relaxed to

$$Min \quad Q' \bullet X$$

$$s.t. \quad X \succeq 0$$

$$X_{00} = 1$$

$$A'_{i} \bullet X \leq c'_{i} \ (i = 1, \dots, m)$$

$$(6)$$

Suppose that X is a basic optimal solution to (6), the rank of X is r and there are d nontight inequalities. Then

$$t(r) + d \leq m + 1$$

Corollary: If m = 1, then there is a rank 1 optimal solution \Rightarrow the relaxation is exact. Also, this solution can be found in polynomial time from a possibly nonbasic solution.

Therefore for m=1 the original problem is solvable in polynomial time (if computations are done exactly: Wolkowicz; Ye; more careful analysis: Vavasis and Zipfel)

The same is true, if m = 2, and there are no linear terms (apparently new).

An extension to general convex programs

Any convex program can be written as

$$\min\left\{f_1(x)+\ldots+f_m(x)\right\}$$

where the f_i 's are "elementary" convex functions.

E.g. let m=3,

$$f_1(x) = cx$$

 $f_2(x) = \delta(x | x \in K)$
 $f_3(x) = \delta(x | Ax = b)$

(δ is the *indicator function* of the corresponding convex set).

Denote the set of optimal solutions by S, and suppose that

$$f_i(x) = \alpha_i \quad \text{if } x \in S \tag{7}$$

Let

$$C_i = \{x \mid f_i(x) \leq \alpha_i\}$$

Then

$$S = C_1 \cap \ldots \cap C_m$$

 \longrightarrow characterization of the faces of S with the help of the faces of the C_i 's.

Nondegeneracy: with the help of the Fenchel-dual.

Special case:

$$\begin{array}{ll}
Min & f(x) \\
s.t. & g_i(x) \le 0 \quad (i = 1, \dots, m)
\end{array} \tag{8}$$

where f and the g_i 's are differentiable. Then a solution x is

- nondegenerate in the "facial structure" framework \Leftrightarrow the vectors $\nabla g_{i_1}(x), \ldots, \nabla g_{i_p}(x)$ corresp. to the tight cosntraints are linearly independent.
- strictly complementary with the corresp. dual solution \Leftrightarrow $\nabla f(x)$ is a strict positive combination of these vectors.

Related work

- Nondegeneracy, etc. is a generic property in cone programs. (Shapiro, AHO: for SDP, using differential geometry). In the general framework it is even easier.
- The nonsmoothness of *any* function of eigenvalues can be "predicted" from the case, when it is restricted to *diagonal* matrices (with A. Lewis).

Conclusion

- A theory to describe the "geometry" of general convex programs. Subsumes many known, and provides many new results.
- Facial structure: well-known tool in LP, (surprisingly) also works well in this general context.
- Applications: General results on basic (etc) solutions + structure of a specific problem = better understanding of the problem: "Convex combinatorics".