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/ ‘The “Geometry” of Convex I \
‘and Linear Programs'

Convex program : minimizing a convex function subject to convex

constraints.

What do we mean by the “geometry” of a convex program 7
e Characterization of solution set; uniqueness of solution.
e Same for the dual (if there is an explicit one ).

e If we replace the objective by its linearization at the optimum,

do we get an equivalent problem 7

e ctc.
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/If the convex program is an LP, these questions can be studied \
through describing the facial structure of the feasible set.

There are 3 fundamental notions:
e Faces, extreme points (basic solutions).
e Nondegeneracy.

e Strict complementarity.
Very clear cut connections. E. g.

e r is nondegenerate = dual optimal face is a singleton; < dual

solution is unique.

e If the dual solution is unique, then any (SC) primal solution

/

must be nondegenerate.




/Can we do the same for general convex programs 7 \

No comprehensive study so far. Some literature on the geometry of
convex programs:

(1) Anderson and Nash : LP’s in infinite-dimensional spaces.

(2) Faces of feasible sets of SDP’s: Ramana, '94; P. ’94.

(3) Nondegeneracy in SDP: Shapiro,Fan ’94, Alizadeh, Haeberly, Overton ’95.
(4) Nondegeneracy in nonlinear programs : Robinson.

(5) Nondegeneracy in cone programs: Shapiro ’96.

(6) Characterization of solution sets of convex programs: Mangasarian ’91;
Burke and Ferris ’92.

(7) Weak sharp minima in LP’s, QP’s: Ferris, Burke "91.

(8) Minimum principle sufficiency in convex programs: Ferris and

Mangasarian ’92.
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e (1) is too general (even the dimension of the space can be
infinite). Most of the others only work for specific problems.

No treatment of basic solutions.

e Goal: to develop a unifying theory that subsumes, and
generalizes many known results on the “geometry” of convex
programs. (Started with SDP...)
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Why study the facial structure 7

e We should not assume e.g. differentiability. But all closed
convex sets have faces — a good approach to describe the

local structure of the feasible set.

e Everything we derive should be an easily recognizable
generalization of the LP case.
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Basic idea

The feasible set of every convex program is the intersection ot

simple convex sets.

E.g. the feasible set of an LP is
{zlz>0} N {z|Az =10}

two sets with trivial geometry.

We will characterize the geometry of the intersection using the

geometry of the simple sets.
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‘Plan of talk.

Faces of general convex sets.
The Main Tool: the FIT Theorem.
The facial structure of cone-constrained linear programs.

Diverse applications : eigenvalue-optimization; poly-time
solvability of small quadratic programs; (partial) sensitivity

analysis in cone programs; graph embedding.

The facial structure of general convex programs.




/Deﬁnition: \

o If (' is a convex set, then F' C C is a face of C, if F' is convex,
and z,y € C, %(:C+y) € F implies x,y € F.

e A face consisting of only one element is called an extreme point.

\ Figure 1: Faces of convex sets /
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The Main Tool: the FIT Theorem'
(Faces of Intersection Theorem) I

( by Bonnesen-Fenchel; Dubins; Klee).

Suppose that C1, Cy are closed, convex sets. Then

e 'isafaceof C1NCy & F = F;NF, for some F; faces of C}

< easy.

-

/
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=: F and F5 can be chosen as the minimal faces of C; and Cq

that contain F'. In this case

afft F° = aftFy NaftFy

(Example: C1 ={x|Axz=b}, Co={z|z>0}.)

A simple, important, (and somewhat forgotten) result.

-

11



C1

Cc2

NOT minimal

> XX

NOT minimal

NOT minimal

DEORD
<

(YA

Figure 2:

MINIMAL

12




/ The Facial Structure of Cone Programs' \

Min 'z Max by
(P) st. zeK s.t. z e K* (D)
Ar =10 Aly+z2=c

where K is a closed convex cone in R*,
K*={z|zzx > 0Vx € K} the polar of K
Interesting choices of K
e RY — LP

e Second-order (SO) cone, Ky = {(t,z) € R |t >| z ||}

\o Positive semidefinite matrices — SDP /
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Figure 3: A second order cone

conjugate(F)
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/1. Basic solutions in cone programs \

Definition: An extreme point of the feasible set of a cone

program is called a basic solution.

Theorem:

e Suppose x feasible for (P), F' the min. face of K that contains

x. Then
x 1s basic &
N(A)Nlin F = {0}
Proof:
x 1s basic &

Min. face of feasible set that contains z is a singleton <«
its affine hull { x| Az = b, z € lin F } is a singleton &
N(A)Nlin F = {0}

\_ /
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Moreover, if

N(A)Nlin F = {0}

fails, we can find a Ax # 0 in it, and solving

max{t : x+ttAx € F}

takes us to a lower-dimensional face of K (need to take care of

precision).

cone also).

-

Therefore, we can get to a basic solution in finitely many steps.

Characterization of dual basic solutions: analogous (R™ x K* is a

/
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Special cases
Faces of the interesting cones
RE {z]|z=(®,...,9,0,...,0)}
SO cone {X(|| z° [|,2°) | A >0} for some z° € R

o 0
Psd cone {X | X = }

0 0

or the orthogonal rotation of such a set V(e)V1

(Barker and Carlson '75)
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LP
1 r
r: ( + + 0
lin F: ( X X 0
A: ( B N
Corollary:

-

e 1 basic < columns of B are independent.
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/SDP \

(A; o VXVT =VTAV eX — rescaling.)
Corollary: X basic < {(41)11,--.,(Am)11} span the space of r

\by r symmetric matrices. /
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/2. Nondegeneracy in cone programs
Definition: F face of K. The set

FAh={zeK*|zTe=0VzeF}

is called the complementary (conjugate) face of F. (Nonneg.
orthant: flip the position of zeros)
Fact:
F2% =F
for all faces, if K is facially exposed.

Definition: Suppose x is feasible for (P), F' is the minimal face
of K that contains x. We say that x is nondegenerate, it

R(AT)Nlin F> = {0}

\(recallz basic, if N(A) Nlin F = {0})

/
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Example: LP
1 S
r: ( + + 0 0
lin F2: (0 0 X X
A: ( B N
Corollary:

-

e r nondegenerate < rows of B are independent.
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The duality gap for x and (y, z) is always z? 2.

Fact: S.t. x is a nondegenerate primal optimal solution. Any dual
optimal solution (y, z) must satisfy

Aty+z=c¢ ze K*, 2Te=0 =
ATy+z2=c¢, z€ F& =

it must be basic = dual optimal solution is unique.

Nondegeneracy of dual solution: analogous.

\_ /
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Examples of complementary faces

RE {(®,...,®,0,...,00} {(0,...,0,®,...,0}
SO cone  {A(|2” [[,2°) [A>0} {A([[2° ||, =2°) [A>0}
® 0 0 O
Psd cone { oA }
0 O 0 @

So, in these cases, it is easy to work out what nondegeneracy

mearns.

-
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3. Strict complementarity in cone programs

Definition: Let z and (y, 2) be complementary primal and dual

solutions. We say that they are strictly complementary it
(SC) z €riF and z € 1i F'&

for a face F' of K.

(LP : total number of nonzeros = n; SDP: total rank = n.)

\_ /
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4. Analogy of the bound on the number of nonzeros in LP

Suppose that x is feasible for (P), F' is the min. face of K that
contains . Then x is basic <

{z|Ax =b, x €lin F} is a singleton

Corollary: x, and F' are as above. If z is basic, then

dmF < m

(LP: dim F' = number of nonzeros in )

\_ /
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A sharper version: (For LP : Tijssen and Sierksma, Math.
Progr. '98) Let d = dimension of dual solution set. Then

dimF < m-—d

with equality holding in LP.

Proof outline The independent dual solutions create dependence

in the rows of the system
Az =, [(lin F)*]z =0

— this system must have more rows.

\_ /
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SDP

Corollary: Let d be the dimension of the set of dual optimal

solutions, X a basic optimal solution of the primal SDP. Let r be
the rank of X. Then

tir)y < m-—d

where t(r) = r(r + 1)/2 is the " triangular number.

(Existence of such a solution (without d): independently Barvinok,
'95).

\_ /
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‘What fits into this framework'

1. Eigenvalue-clustering in eigenvalue-optimization

fx(X) = sum of the k largest eigenvalues of the symmetric matrix
X. Fact:

(1) 3F(X) & M(X) > A1 (X).

(2) If (1) fails, then the subdifferential has dimension
t( multiplicity of A\ (X)).

\_ /
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Consider
Min  fr(X)

1
st. AX =b L)

Observation : at optimal solutions frequently fi is nondifferentiable

— a “model problem” of nonsmooth optimization.

In fact, much of the machinery of NSO was developed to deal with

nonsmoothness in (1).

\_ /
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ﬂhe graph of A ax(X) (parametrizing the feasible X matrices)

0
] + x2
—1

(1)X = [ :) +.’131

]

~
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(2) The constraint system is randomly generated.

5 -5
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The clustering has been observed since the seventies without giving
sound theoretical explanation: Cullum, Donath and Wolfe (’75);
Fletcher; Overton; Shapiro; ... ( > 20 references )

Theorem: (P, ’95) At an extreme point X* of the solution set of

(1)
Ae(X7) = A1 (X7)

must hold, if the degrees of freedom ( = t(n) - # of constraints ) is
at least k(n — k). Moreover, there is a lower bound on the
multiplicity of A\ (X ™) that increases with the the degrees of
freedom (analogy in LP : few constraints = few nonzeros in a basic
solution).

\_ /
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/Outline of proof \

Problem (1) can be formulated with extra variables
(z€e R,V >=0,W »0) as an SDP ( Alizadeh; N and N)

X is opt. with eigenvalues A1 > ...\, = the opt. (z*,V*, W*) are

Ayl <28 < Ag (2)

AV*) = (A1—==2%, ..., \p—2%, 0, .., 0 )T
A(W*) = (0, R | .V TRNUIN A W

X is an extreme point of the solution set = (z*,V*, W* X) is in a
face of dim <1 = ub on rank V* + rank W* =

Ae(XF) = A1 (X7)

Qld lower bound on the multiplicity of Ax(X™). /
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/2. (Partial) Sensitivity Analysis \

Suppose we have a pair of optimal solutions to (P) and (D), called
x and (y, z). Now we change the objective from ¢ to ¢ + tAc. How
big can t be so that z remains optimal 7 Denote by t* the largest .

(LP: well-known; SDP: Goldfarb and Scheinberg ’97)
A simple common generalization, and extension.

Suppose that the primal and dual solutions are unique, and (SC)
holds. Let the primal face be F, the dual face F2.

Then z is optimal, as long as

Ay(t) +2(t) = c+the

Qfeasible (since the duality gap is % 2(t)).
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Write
ATAy+ 2z = Ac

with some Az € lin F# (if it is impossible, then t* = 0).

But the solution to (4) is unique = it must be
(y(0) + tAy, z(0) + tAz).

Corollary:

t* = max{t|2(0)+tAz e F~}

LP: ratio-test; SDP: computing max. eigenvalue; SO-cone

programming: quadratic linesearch.

-
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/3. Poly-time solvability of small nonconvex quadratic \

prograrns

Min z''Qx +2¢'z
s.t. xTAia:—l—2biTx—|—ci <0(i=1,...,m)

(5)

where () and A; are not necessarily positive semidefinite — a

possibly nonconvex problem.

Equivalent formulation:
T

: L0 Lo
Min Qe

st. xi=

36
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This can be relaxed to

Min Q eX
s.t. X >0
(6)

Ale X < ¢ (1=1,...,m)

Suppose that X is a basic optimal solution to (6), the rank of X is
r and there are d nontight inequalities. Then

tr)+d < m+1

\_ /
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Corollary: If m =1, then there is a rank 1 optimal solution =
the relaxation is exact. Also, this solution can be found in

polynomial time from a possibly nonbasic solution.

Therefore for m = 1 the original problem is solvable in polynomial
time (if computations are done exactly : Wolkowicz; Ye; more

careful analyisis : Vavasis and Zipfel )

The same is true, if m = 2, and there are no linear terms

(apparently new).

\_ /
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/ ‘An extension to general convex programs'

Any convex program can be written as

min{ fi(x) 4+ ...+ fm(x) }

where the f;’s are “elementary” convex functions.

E.g. let m = 3,
filx) = cx
fo(x) = d(z|lze K)
folw) = 6(x|Az=b)

\(5 is the indicator function of the corresponding convex set).

/
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file) = «a ifzes (7)

Denote the set of optimal solutions by S, and suppose that

Let

Ci = {z|filz) <ai}

Then
S = Cin...nC,

—— characterization of the faces of S with the help of the faces of
the C}’s.

Nondegeneracy: with the help of the Fenchel-dual.

/
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Special case:

st. gi(x) <0 (i=1,...,m)
where f and the g;’s are differentiable. Then a solution x is
e nondegenerate in the “facial structure” framework < the

vectors Vg;, (x),...,Vg; () corresp. to the tight cosntraints
are linearly independent.

e strictly complementary with the corresp. dual solution <

V f(x) is a strict positive combination of these vectors.

\_ /
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Related work '

e Nondegeneracy, etc. is a generic property in cone programs.
(Shapiro, AHO: for SDP, using differential geometry). In the

general framework it is even easier.

e The nonsmoothness of any function of eigenvalues can be
“predicted” from the case, when it is restricted to diagonal

matrices (with A. Lewis).

-
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Conclusion '

e A theory to describe the “geometry” of general convex
programs. Subsumes many known, and provides many new

results.

e Facial structure: well-known tool in LP, (surprisingly) also

works well in this general context.

e Applications : General results on basic (etc) solutions +
structure of a specific problem = better understanding of the

problem: “Convex combinatorics”.

-
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