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Abstract

Given the conic formulation of a convex program, we describe a theory that
e Characterizes the faces of the feasible sets.

e Defines nondegeneracy, strict complementarity and relates these to the optimal face, anal-
ogously to the LP case.

e Characterizes the tangent spaces of the feasible sets.

o Introduces the family of boundary structure inequalities which relate the dimensions of the
above-mentioned sets.

o Using the general framework, gives a simple derivation for a number of structural results
about problems that can be formulated as an SDP.

e Shows how two algorithmic aspects can be handled: converting a feasible solution into
one, which is also an extreme point; and performing a restricted sensitivity analysis.

1 Introduction

Consider the primal-dual pair of optimization problems

Min (c,x) Maz (b,y)
(P) st. reEK st. z€ K* (D)
Ar =D Ay+z=c

where

e X and Y are euclidean spaces with dim X > dimY.

e A: X — Y is a linear operator, assumed to be onto.



e A*:Y — X is its adjoint.
e K is a closed, convex, facially exposed cone in X.

e K*:={z|(z,z) >0 Vo € K } is the dual of K, also a closed, convex, facially exposed cone.

The problems (P) and (D) are called a primal-dual pair of conic linear programs, cone programs, or
cone-LP’s. With the appropriate choice of X, Y and K, they include: ordinary LP’s; semidefinite
programs (SDP’s); programs over p-cones, in particular over second order cones.

Besides the wide applicability of cone-LP’s, their main attraction is their elegance : both their
duality theory, and the algorithmic approaches to solve them are natural extensions of their coun-
terparts in linear programming. As we shall see in this chapter, the situation is similar regarding
their geometry. By the “geometry” of a cone-LP we mean the characterization of the

(1) Set of optimal solutions, in particular, of whether this set is a singleton (the question of
uniqueness).

(2) Tangent cone and tangent space of the feasible set at an optimal solution (thus through
polarity, also of the normal cone).

(3) The same for the dual problem.

In this chapter we give the overview of a theory that describes the geometry of cone-LP’s. It is
reminiscent of how the geometry of LP is usually described : through the facial structure of the
feasible set. Since the solution set of a cone-LP is always a face of the feasible set, regardless of what
the underlying cone is, this approach is quite natural. It generalizes the notions, and corresponding
theorems known in LP about the facial structure of the feasible set, on nondegeneracy, and strict
complementarity.

Its essence: given a feasible solution to a cone program, the minimal face of the feasible set contain-
ing it is the intersection of the minimal face of the cone containing it with the affine constraints.
Whether this solution is an extreme point of the feasible set can be characterized using these two
latter sets. (E.g. when the cone program is an LP, the extremity of a feasible solution depends only
on the position of the nonzeros in it; in other words on the minimal face of the nonnegative orthant
that contains it). Moreover, its nondegeneracy is defined by imposing the extremity condition on
the dual with the complementary face of the cone; and strict complementarity of a solution-pair
by requiring them to be in the relative interiors of complementary faces of K and K*. The other
objects we want to study (the tangent cone and tangent space of the feasible set at a solution) will
have a similar description.

This theory can be specialized to various classes of cone-LP’s by using the description of the faces of
the underlying cones. In all the interesting cases this description is quite handy; for the nonnegative
orthant and p-cones, it is trivial; for the semidefinite cone it is given by a classical result (see e.g.

[6])-



The chapter is structured as follows: section 2 collects the notation, and necessary basic results that
will be used later on. Section 3 presents the theory on the geometry of cone programs. In subsection
3.1 we describe their facial structure, the notions of nondegeneracy and strict complementarity, and
prove the generalizations of the results connecting them in LP. We also show how several previous
results on the geometry of SDP are subsumed by this framework. Subsection 3.2 describes the
tangent spaces of the feasible sets. In subsection 3.3 we derive the family of boundary structure
inequalities that relate the dimensions of

e Minimal faces in the primal and dual cones that contain a given optimal solution.
e Minimal faces in the primal and dual feasible sets that contain a given optimal solution.

e Tangent spaces at the primal and dual feasible sets at a given optimal solution.

These inequalities provide a surprising amount of information about the boundary structure of (P)
and (D). For example: at a strictly complementary optimal solution pair in an SDP, it is impossible
to have full-dimensional normal cones at both the primal and dual optima; i.e. both the primal an
dual optimal solutions cannot be “kinky”.

Subsection 3.4 translates the previous results for equivalent cone programs formulated with different
variables (e.g. when the dual slack is eliminated), and subsection 3.5 gives a detailed example. In
section 4 we present several examples of “semidefinite combinatorics”, ie. apply the results on the
geometry of cone programs to deduce some instructive structural results about problems that can
be formulated as an SDP.

Finally, in section 5 we study two algorithmic aspects; converting a feasible solution of a cone-1p
into one, which is also an extreme point of the feasible set, and performing sensitivity analysis.

2 Preliminaries

Spaces and cones of interest The space of n by n symmetric, and the cone of n by n symmetric,
positive semidefinite matrices are denoted by S", and S, respectively. The space S" is equipped
with the inner product

n
(z,2) = Z-’Eijzij
i,j=1

and it is a well-known fact, that ST is self-dual with respect to it.

If 1 < p < 400, then the p-cone is defined as

Ky = {(zo,2) |20 > [|zlp }

If K = K, then K* = K, where £ + & = 1.



Operators and matrices Linear operators are denoted by capital letters; when a matrix is
considered to be an element of a euclidean space, and not a linear operator, it is usually denoted
by a small letter. The i*" row of matrix a is denoted by a;. and the j column by a._;.

The rangespace of an operator A [of a matrix z] is denoted by R(A) [R(z)]. If z € 8™, then A;(z)
denotes its i'® largest eigenvalue, and A(z) the vector (Ai(z),..., A\, (z)).

The identity linear operator, and the identity matrix are denoted by I, and the vector of all ones
by e.

The inner product of z',z? € X is denoted by (z',22). Even if the inner products in X and Y
are different (say if X = 8™ and Y = R™), we still use the notation (,) for both; the context
should make it clear, which one is meant. The matrix product of matrices z! and z? is denoted by
z'z2. The block diagonal matrix obtained by placing ! and z? on the main diagonal is denoted
by z! @ z2.

The dimension of the intersection of subspaces The following simple proposition will be
used many times, hence we state it for convenience.

Proposition 2.1 Suppose that L1 and Lo are subspaces. Then

dlm[L1 +L2] = dim L; +dim Ly —d1m[L1 ﬂLQ]

Faces, feasible directions, tangent cones and tangent spaces in convex sets For vectors
y and z, we denote the open line-segment between y and z by

(v,2) = {py+(Q—-—p2z|0<p<l}

Let C be a closed convex set. A convex subset F' of C is called a face of C, and this fact is denoted
by F«C, if
x€F, yze€C, € (y,z) impliesy,z € F (2.1)

An eztreme point of C is a face consisting of a single element. If S is a subset of C, then we
denote by face (S, C) the minimal face of C' containing S, and for x € C we write face (z,C) for
face ({z},C).

Proposition 2.2 Let C be a convez set, C' < C, and D a convex subset of C.

(i) If iDNC"#0, then D C C".
(i) If D C C', and DNxiC' # 0, then C' = face (D, C).

(i1i) C' = face (D,C), iff tiD NriC" # 0.



(iv) C'=CnaffC".
Proof The statement (i) is Theorem 18.1, (ii) follows from Theorem 18.2 in [30], and (iii) by putting
(i) and (ii) together. Statement (iv) is Exercise 5.4 in [11]. O

For z € C, the cone of feasible directions, the tangent cone and the tangent space at = in C are
defined as

dir (z,C) = {y|z+tye Cforsomet>0}
tcone (z,C) = cl(dir (z,C)) = {y|dist (z +ty,C) =o(t) }
tan(z,C) = tcone(z,C) N —tcone (z,C)

= {yldist (z £ty,C) = o(?) }
The equivalence of the alternative expressions for tcone (z, C) follows e.g. from [19], page 135.

An important fact (Proposition 5.3.1 in [19]), that we state for the ease of reference is

Proposition 2.3 If C; and Cs are nonempty closed convex sets, x € C1 N Co, then
tcone (z,C; N Cy) C  tcone (z,Cy) Ntcone (z, Cy)

with equality holding, if riCy NriCy # (.

Faces, feasible directions and tangent spaces in cones A convex set K is a cone, if uK C K
holds for all g > 0. If K is a cone, then a simple argument shows that (2.1) is equivalent to

r€F, yz€ K, t=y+ z implies y,z € F (2.2)
The dual of the cone K is
K* = K'={z|(z,z) >0forallz e K}

If K, K1 and Ky are convex cones, then

K" = K
(Kl +K2)* = Kf ﬂK;
(KiNKy)* = (K] +K5)

If F<K,and Z € ri F is fixed, then the complementary (or conjugate) face of F' is defined alterna-
tively as
F® = {zeK*|(z,2) =0 forallz € F}
= {z€ K*|(2,2) =0}



The equivalence of the two definitions is straightforward. The complementary face of G <« K* is
defined analogously, and is denoted by G2. K is facially exposed, i.e. all faces of K arise as the
intersection of K with a supporting hyperplane, iff for all F « K, FA» = F, see ([11], Theorem
6.7). For brevity, if F < K, then we write F~* for (F£)*, and FA+ for (F2)L.

It is well known that if K is a polyhedral cone, then for all F < K, then lin F' + lin F'2 is the whole
space. The residual subspace of F' < K is meant to measure, “to what extent F' is nonpolyhedral”.
It is defined as

res F = (linF +lin F2)*

We say, that K is nice, if

K*+ Ft+ isclosed V FaK or, equivalently

2.3
Projj, p(K*) isclosed V FaK (23)

Next, we list several examples of cones, along with the description of their faces. The corresponding
complementary faces, and residual subspaces can be found in Table 2.
Example 2.4 (The nonnegative orthant) If z € K = R"}, then
face (Z,R%) = {z€RY|z; =0 Vist.z;=0}
This face, (after permuting components) can be brought to the form
face ((e,0)7,R™)

for an e of appropriate size. O

Example 2.5 (The semidefinite cone) If Z € K = S”, then
face (z,8Y) = {ze€SY|R(z) CR(Z)}
face (z,S87)> = {z€S?|R(z) CR(@)"}

([6], for a simple proof, see Appendix A). Let ¢ be an orthonormal matrix such that

i = q(§9)q"

where A is a diagonal matrix with positive diagonal. All transformations v”'(.)v where v is an
invertible matrix are one-to-one mappings of S¥ to itself. Therefore face (z,S?) can be brought to
the form

¢" (face (z,57))g = face(q"2¢,8}) = face((70),S1) = face((45),S})
If the rank of z is r, then
dim(face (z,S%)) = t(r) := r(r+1)/2

where ¢(r) denotes the ™ triangular number. O



K A typical F FA res (F')

RY | face ((¢,0)7,RY) | face (0,¢)7, RY) {0}

St | face((G9).81) | face((59),81) [{yes™y=(3rg)}

K, | cone { (lle]lp,@)” } | cone { (llallg, ~2)T} | {(0,9)7 | {y,a) =0}

Table 1: The faces, complementary faces, and residual subspaces in R"}, S and K,

Example 2.6 (The p-cones) Let 1 < p < +o0. Since K, is obtained by “lifting” the unit ball of
the norm || . ||p, all of its nontrivial faces (i.e. apart from the origin and itself) are of the form

cone { (||zllp, )" }

for some z. O

It is not hard to see, that all these cones are facially exposed. They are also nice, by using the
second criterion in (2.3). In the case of R} and S7, the projection in question is just a smaller
copy of the original cone. In the case of K, the linear span of any nontrivial face is a line, and all
cones contained in a line are closed.

Next, we show that the set of feasible directions, and several related sets for an £ € K can be
conveniently described in terms of face (z, K).

Lemma 2.7 Let x € K, and write F = face (x, K). Then the following relations hold.

dir (z,K) = K +1linF (2.6)
dir (z,K)* = K*'NF+t = F&4 = K*NlinF~? (2.7)
cldir (z,K) = cl(K+1linF) = F* = cl(K 4 linF +res F)

Furthermore, if K is nice, then

tan(z, K) = linF +res (F) (2.9)
Proof of (2.6) “D:” Let v € lin F, z € K. Then for some a > 0 z+av € K, hence z+a(v+2) € K.
“C:” Let y € dir (z,K), «> 0,2/ :==z+ay € K. Theny = 1(2/ —z) € K +linF.

Proof of (2.7) The first equality follows from (2.6) by taking the dual, the second by the definition
of F2, and the third by Proposition 2.2 (iii), since F* is a face.



Proof of (2.8) The first and third equalities follow from (2.7).

Proof of (2.9) From the definition of tan(z, K) and since K is nice,
tan(z,K) = (K+linF +res (F)) N —(K +1linF +res (F))
Therefore “O” in (2.9) is obvious. For “C”, let
r' € K, y' €linF +res (F), suchthat z!+y'€ (K +1inF +res (F)) N —(K +linF + res (F))
that is, for some z? € K,y? € lin F + res (F),
' 4yt = —(22+4?) = zl4+2?2 =

Y
r'+22 € KNn(linF+res(F)=F = 1,22 € F
zt 4yt lin F' + res (F)

m

3 The geometry of cone-lp’s: main results

3.1 Facial structure, nondegeneracy and strict complementarity

We say that (P) satisfies the Slater condition, if there is an Z € ri K feasible for (P), and that (D)
satisfies the Slater condition, if there is a (7,Z) € Y x ri K* feasible for (D). We assume that the
optimal values of (P) and (D) are equal, both attained, (this is ensured if both satisfy the Slater
condition) and denote

e Their feasible sets by Feas(P) and Feas(D), resp.

e The set of their optimal solutions by Opt(P) and Opt(D), resp.

Theorem 3.1 (Primal Faces) Let z € Feas(P), and let

F = face(z,Feas(P))
F = face(z,K)

Then

(1) F = face (F,K)

(2) (a) af F=1linF N {z|Az =b} =2+ [lin FNN(4)]
(b)) F=Fn{z|Az =b}

(8) dimF = dim[lin FNN(A)] = dimF — dimY + dim[F+ N R(4*)].



(4) F is a singleton set, i.e. F (or equivalently T) is an extreme point of Feas(P), if and only if
linFNN(A) = {0}

Proof
(1): Follows from (iii) in Proposition 2.2.
(2) (a) “C” : Follows from (1).

(2) (a) " : LetvelinFN{z|Az =b}. Asz € FNriF, there exists € > 0 such that

v = I+e@—v)
z= = ZT—¢€(T—v)
zt,z” € F

Clearly, z* and z~ also satisfy the affine constraint, so they are in Feas(P). As & € F < Feas(P),
and z € (z7,z7)

_|_

z,xT € F =

v € aff{zT,z7} Caff F
as required.
(2) (b): We have

F = Feas(P) N aff F

(KN{z|Az=0b}) N (linFN{z|Az =0})

= (KNlinF) N {z|Az=1b}
Fn{z|Az=0b}

where the first equality follows by F< Feas(P), and the last by F <« K.

(3): By (2) (a),
af F—z = N(A) NlinF =
dimF = dim[linFNN(4)]
= dimF + dimN(A) — dim [N (A4) + lin F ]
= dimF+dimX —dimY — dim [N (A) + lin F']
= dimF — dimY + dim[R(A*) N F+]
with the third equality following from Proposition 2.1.

(4): F is a singleton set, iff aff F is, so the equivalence follows from (2) (a).

Theorem 3.2 (Dual Faces) Let (y,z) € Feas(D), and let

(
(

G = face

((g,%), Feas(D))
Y xG = face(

]
7,2), Y x K*)) (& G =face(z,K*))

Then



(1) Y x G = face (G, (Y x K*))

(2) (a) aff G = (Y xlinG)N{(y,2) | A*y+2z=c}
= (7,2) + [(Y x linG) NN (4*, )]
(b) 6= xG)N{(y,2) | A"y +2z=c}
(8) dimG = dim[linGNR(A*)] = dimG — (dim X — dimY) + dim[G- NN (4)].
(4) G is a singleton set, i.e. G (or equivalently (§,%)) is an extreme point of Feas(D), if and only
if
linGNR(A*) = {0}

Proof (1) and (2) follow along the same lines as their counterparts in the Primal Faces Theorem,
by noting that the relative interior [affine hull], of Y x G is the the direct product of Y with the
relative interior [affine hull] of G.

(3): From (2)(a)

af G — (g,z2) = (Y xlinG)NN(A*I)
dimG = dim[linGNR(A*)]
= dimR(A*) + dimG — dim[lin G + R(A*)]
= dimG — (dimX — dimY) +dim[Gt NN (A4)]

(4): G is a singleton set, iff aff G is, so the equivalence follows from (2) (a). -

Remark 3.3 If A is not onto, then dim Y in all the previous results should be replaced by rank A.

Definition 3.4 Let x be feasible for (P), (y,z) feasible for (D), F = face(z,K), and G =
face (z, K*). We say that

e Z is (primal) nondegenerate if

lin FANR(A*) = {0}

e (y,z) is (dual) nondegenerate if

linGANN(A) = {0}
Furthermore, if T and (g,z) are optimal solutions, then we say that

e They are strictly complementary if F2 = G.

It turns out, that all results well known from LP that connect nondegeneracy in either (P) or (D),
strict complementarity, and uniqueness of the optimal solution in the “opposite” problem carry

over word by word to our more general framework.



Theorem 3.5 Let Z, (§,2z), F and G be as in Definition 3.4. Then the following hold.

(1) (a) If (§,Z) is nondegenerate, then T is a unique primal optimal solution.
(b) The converse of (1)(a) holds, assuming that they are strictly complementary.
(¢) If (y, Z) is nondegenerate, then

dimG2t > dimX —dimY

(2) (a) If T is nondegenerate, then (g,Zz) is a unique dual optimal solution.
(b) The converse holds, assuming that they are strictly complementary.

(c) If Z is nondegenerate, then

dimF2+ > dimY

Proof of (1) The duality gap between arbitrary primal and dual feasible solutions z and (y, z) is
(z, z), hence
Opt(P) = Feas(P)N{z e K*|(z,z) =0}
= Feas(P)NG> —
E := face(Opt(P),K) C G*

By the Primal Faces Theorem (3), Opt(P) is a singleton, iff
IinENN(A) = {0}

From this (1) (a) is immediate. If strict complementarity holds, i.e. Z € Opt(P) NriG*, then by
Proposition 2.2, (ii)

E = G~
s0, (1) (b) also follows. The proof of (1) (c) is immediate from the definition.

Proof of (2) Analogous. O

Remark 3.6 With the sole exception of the (b) parts of Theorem 3.5, all results derived so far
are true, even if K is not facially exposed. The only difficulty arising in this case is that (using the
notation there), strict complementarity could be stated in 2 different ways:

(i) FA=@, or (ii)F=aG>

Neither of (i) or (ii) implies the other, unless K is facially exposed, in which case F = F~%, and

G = G2, hence (1) and (2) are equivalent.

However, the proof of the (b) parts in Theorem 3.5 implies, that if (1) (which may be called “primal
strict complementarity”) holds, and (7, Z) is unique, then Z is (primal) nondegenerate. Similarly,
if (2) (which may be called “dual strict complementarity”,) holds, and Z is unique, then (g, z) is
(dual) nondegenerate.



Since all cones known so far that occur in practice are facially exposed, and the results for the
non-exposed case are simple generalizations of the exposed case, we restrict ourselves to the latter.
O

Remark 3.7 Note that nondegeneracy simply requires the extremity condition given in parts (4) of
the Primal and Dual Faces Theorems to hold for a strictly complementary solution in the “opposite”
program (even though a strictly complementary solution pair may not always exist; for SDP, see
the discussion at the end of this subsection.) |

Remark 3.8 Our definition of nondegeneracy is a generalization of the one used by Alizadeh,
Haeberly and Overton for SDP, [2], and of the one by Alizadeh and Schmieta [3]. In Definition 3.4
primal nondegeneracy is defined by
R(A)NlinF® = {0} < (3.10)
NA)+F* = X

and in [3] by
N(A) +tan(z,K) = X (3.11)

“assuming that tan(z, K) exists”. If we define tan(z, K) as in Section 2, and assume that K ( such
as R", S and the p-cone) is nice, then by Lemma 2.7 F21 = tan(z, K). Therefore (3.11) and
(3.10) are equivalent. The case of dual nondegeneracy is similar, assuming that K* is nice.

On the other hand, our theory covers not only nondegeneracy and strict complementarity, but also
the characterization of the faces of the feasible sets (and tangent spaces, etc. - see later), which is
of independent interest. O

In the remainder of Subsection 3.1 we specialize these results for linear and semidefinite programs.

Example 3.9 (Linear programming) If X = R",Y = R™, K = K* = R", then (P) and (D)
are a standard pair of primal and dual linear programs. For z € K,

lin (face (Z,K)) = {ylyi=0 Vist. 7, =0}

In particular, (3) in Theorem 3.1 specializes to: Z is an extreme point iff the columns of A corre-
sponding to its nonzero components are linearly independent. Similarly, Z is nondegenerate, iff the
rows of this submatrix are linearly independent.

If z and (g, z) are a strictly complementary pair of solutions, then
dimF = dimF —dimY +dim[F NR(A4%)]

= dimF —m+dim[linGNR(A")]
= dimF —-m+dim g (3.12)



where the first equality follows from (3) in the Primal Faces Theorem, the second by F* =linG,
and the third by (3) in the Dual Faces Theorem. The formula (3.12) reduces to a result of Tijssen
and Sierksma [34], as follows. They define

o(F) = dmF+bndF —n

as the degree of degeneracy of face F, with bnd F being the number of hyperplanes in the description
of the polyhedron Feas(P), which are tight at z (equivalently at every point in F). (The number
o(F) can depend on the representation of Feas(P). ) In words, the degeneracy degree is the number
of “superfluous” hyperplanes at F, ie. of hyperplanes which are tight at F, but not necessary to
define its affine hull. They prove

dimG = o(F) (3.13)
Rewriting (3.12) yields
dimg = dimF+m —dimF
and it is not hard to see, that
m—dimF = bndF —n
therefore (3.12) and (3.13) are indeed equivalent. O

Example 3.10 (Semidefinite programming) If X = §",Y = R™, K = K* = 87, A and A*
are defined via a',...,a™ € S” as

Az = : , Aty = Y yd

(@™, x)

then (P) and (D) are a pair of semidefinite programs. By the characterization of the faces of S%
given in Example 2.5,

lin (face (z,S5%)) = {z€S"|R(z) CR(z)}

therefore specializing the results in the Primal and Dual Faces Theorems is straightforward. We
obtain

Corollary 3.11 Suppose that T € Feas(P),(y,z) € Feas(D), where (P) and (D) are a pair of
SDP’s defined by the operator A above, and b € R™, ¢ € S™. Let

F = face(z, Feas(P)), r = rankZ
G = face((y,z),Feas(D)), s = rankZ

Then the following hold.

(1) t(r) < m + dim F.



(2) If T is nondegenerate, then t(n —r) < t(n) —m.
(3) t(s) < (t(n) —m) + dimG.
(4) If (g, z) is nondegenerate, then t(n —s) < m.

(5) © and (y,z) are strictly complementary, iff r + s = n.

Proof Note that dim X = #(n), dimY = m, and by Example 2.5 if z € S? then
rankz <r << dim (face (z,SV)) < t(r)

Then, (1) follows by (3) in the Primal Faces Theorem, (2) by (1)(c) in Theorem 3.5, (3) by (3) in
the Dual Faces Theorem, and (4) by (2)(c) in Theorem 3.5. O

Moreover, just as in the LP case, one can obtain and elegant characterization of extreme and
nondegenerate solutions. Let Z be a feasible solution of (P), and ¢ an orthonormal matrix such
that

z = q(§%9q"

where A is a diagonal matrix with positive diagonal. Partition g as ¢ = [¢', ¢%], where R(q') = R(Z)
and R(q?) is its orthogonal complement. Since

(a),2) (q"a'q, (59))
Az = : = :
(a™, ) (q"a™q, (59))
we obtain that Z is an extreme [nondegenerate] point in Feas(P) iff (%}%) is such a point in the
primal SDP defined by rhs b, and linear operator A,, where

(¢"a'q, x)
Az = :
(¢"a™q, z)
Therefore,

Corollary 3.12 Using the notation of Corollary 3.11, the following hold.

(1) T is an extreme point of Feas(P) < the matrices
{(@")%a'q",...,(¢")"a™q" }
span S".
(2) % is a nondegenerate point of Feas(P) < the matrices

((ql)Talql (ql)Ta1q2> ((ql)Tamql (ql)Tamq2>
C R BN CORCS 0

are linearly independent.



To characterize the extremity, and nondegeneracy of a dual feasible solution (7,Z), one does not
need to repeat the calculations. Recall from Remark 3.7 that nondegeneracy requires the extremity
condition to hold for a strictly complementary solution in the “opposite” problem. Suppose that
(7, Z) is a feasible solution of (D), and write

7 = (o)l
where Q is a diagonal matrix with positive diagonal, s = rank z, § = [¢}, §%], where R(§%) = R(2)
and R(G') is its orthogonal complement. Then we obtain
Corollary 3.13 Using the notation of Corollary 3.11, the following hold.
(1) (y,Z) is an extreme point of Feas(D) iff the matrices in (2) of Corollary 3.12 with q in place
of q are linearly independent.

(2°) (y,z) is a nondegenerate point of Feas(D) iff the matrices in (1) of Corollary 3.12 with q in
place of g span S™°.

In ordinary linear programs, a strictly complementary solution-pair always exists, as was shown by
Goldman and Tucker [18]. This is not the case for SDP. An example was given in [2], which we
reproduce here.

Let n=m=3,b=(100)"

0 0 O 1 0 0 0 0 1
c = 0 0 0], a = 0 0 0], a2 = 0 0], a® =
0 0 1 0 0 0 1 0 O

Then it is straightforward to see that Z and (7, Z) given by

100 000
z = [000], 3y = (000),z=[000
000 001

are both nondegenerate, therefore both unique optimal solutions, which do not satisfy strict com-

—

plementarity.

An instructive family of SDP examples where strict complementarity fails can be created from
(convex) quadratically constrained quadratic programs (QCQP’s). All such problems can be written

in the form
max (b, y)

. 4 CQP
st. |ldy—fi? < v (i=1,...,m) (QOQP)



with the d'’s being appropriate symmetric matrices and the f%’s vectors. The problem (QCQP)
then has an SDP representation

max (b, y)

s.t. ((diyffi)T diy;fi> = 0 @G=1,...,m)

which is equivalent to

max (b, y)

s.t. 28 =0 (SDP-QCQP)

m 0 —df]- _ i I. —ft -
]:1<_d?-j 0 )y] +z (_(fz)T ’yi> (i=1,...,m)

The proof of the following theorem is straightforward, therefore omitted.
Theorem 3.14 Suppose that
e i is a unique optimal solution of (QCQP) (therefore also of (SDP-QCQP) with the appro-

priate z',...,Z™ slacks), and

e in (QCQP) constraints 1 through k are the tight ones.
Then (1) and (2) below are equivalent.

(1) b is a strictly positive combination of the gradients of the tight constraints of (QCQP).

(2) The dual of (SDP-QCQP) has an optimal solution, which is strictly complementary with

(y,24,...,2™).
O

Finally, since the dimension formulas that follow from parts (3) in the Primal and Dual Faces
Theorems and Theorem 3.5 look quite elegant for extreme and nondegenerate solutions, we state
them separately in Corollary 3.15. More refined and tighter formulas will follow in subsection 3.3.

Corollary 3.15 Suppose that T is an extreme and nondegenerate point in Feas(P) and (g,Zz) in
Feas(D),

F = face(z,K), G = face(z,K*)
Then

dim FA&+
GAJ_

dimY
dim X —dimY

dim F

N
dim G (3.16)

< <
< <

dim



In particular, if (P) and (D) are ordinary linear programs, with data defined as in Ezample 3.9,

r = # of nonzeros in z, s = # of nonzeros in z,
then
r o= m
= n—m

If (P) and (D) are semidefinite programs, with data defined as in Ezample 3.10,

r = rankZ, s = rankz,
then
tr) <  m < tn)—tln—r)
t(s) < tln)—m < t(n)—tn—s)

3.2 Tangent spaces

(3.17)

(3.18)

In this subsection we characterize the tangent spaces of the feasible sets of (P) and (D) at given

feasible solutions. It turns out, that they can described in a manner similar to how the faces were

described. The main result is

Theorem 3.16 ( Tangent Spaces) Suppose that K and K* are nice, and both (P) and (D)
satisfy the Slater condition. Let T and (§,Z) be primal and dual feasible solutions, respectively,

F = face(z,K), T = tan(z, Feas(P))
G = face(z,K*), U = tan((g,Zz),Feas(D))

Then

(1) T = FALAN(A).

(2) dim7T = dim[FA+NN(A)]

= dim FA+ —dimY + dim[lin F& N R(A%)].
(8) U = (Y x GAL) NN (A%, ).
(4) dimU = dim[GA+NR(A%)]

= dim G2+ — (dim X — dimY) + dim[linG® NN (4)].

Proof First, from (2.9) in Lemma 2.7 recall

tan(z,K) = F2%, tan(z,K*) = G~+



(1): Since (P) satisfies the Slater condition, by Proposition 2.3
tcone (Z, Feas(P)) = tcone(z,K) N N(4) =
T =tan(Z, Feas(P)) = tan(z,K) N N(4A) = F2+nN(A)

(2): Analogous to the proof of (1).

(3): Since
aff F —z lin F N N(A)
T = FALnN(4)

we can use a similar calculation ( with F2+ in place of lin F' ) as in computing dim F in the proof

of the Primal Faces Theorem.

(4): Since
aff G — (y,2) = (Y x1linG) N N(A* 1)
U = (Y xGAH)nNAxI)
we can use a similar calculation ( with G®+ in place of linG ) as in computing dim G in the proof

of the Primal Faces Theorem. O

Remark 3.17 If we can compute dim7 and dim F~L, then equation (2) makes it possible to
check whether Z is nondegenerate (with an analogous statement relating dual nondegeneracy to
equation (4)).

To keep the presentation relatively short, we do not write out the specializations for LP and SDP;
they are quite straightforward.

3.3 The boundary structure inequalities

Putting together the results of the previous subsections, we shall now derive several instructive
inequalities that relate the dimensions of

e Minimal faces in the primal and dual cones that contain a given optimal solution.

e Minimal faces in the primal and dual feasible sets that contain a given optimal solution.

e Tangent spaces at the primal and dual feasible sets at a given optimal solution.

We will call these inequalities the boundary structure inequalities. Theorem 3.18 below contains
their statement, and an intuitive explanation follows.

Theorem 3.18 (Boundary Structure Inequalities) Suppose that K and K* are nice, and both
(P) and (D) satisfy the Slater condition. Let T and (y,Zz) be complementary solutions of (P) and
(D), respectively,

F = face(z,K), F = face(z, Feas(P)), T = tan(z, Feas(P))

G = face(z,K*), G = face((§,2),Feas(D)), U = tan((7,zZ),Feas(D))



Then

(1) dimF —dimY +dim¥# < dimF < dimG* —dimY + dim Y

(2) dimF + (dimX —dim7) > dim F + dim F2 4 dim [res F N R(A*)]
Suppose that strict complementarity holds. Then

(3) dimU + dim7T = dimF + dimG + dimres F

(4) dim FA+ —dim 7 < dimY < dim F + dim U

with the left inequality at equality iff the primal solution is unique, and the right inequality at
equality iff the dual solution is unique.

Proof First, from the Primal and Dual Faces Theorems, and the Tangent Spaces Theorem we

recall
dimF = dimF —dimY +dim[F NR(A%)] (3.19)
dim7 = dimF2t —dimY + dim[lin FA N R(A")] (3.20)
dim¢ = dim[linG NR(A4*)] (3.21)
dimY = dim[GAENR(4AY)] (3.22)
Moreover,

F C GA, FJ_ D GAJ_
(1): The first inequality:
dimF = dimF —dimY +dim[F{NR(A")]
> dimF —dimY + dim[G2t NR(A")]
= dimF — dimY + dim ¢

The second:

dimF = dimF —dimY +dim[F NR(4%)]
< dimG® — dimY + dim[GAF NR(AY)]
= dimG® — dimY + dim U

as the number of linearly independent vectors in linG* \ lin F' is at least as large as in [F+ N
R(AN]\ [GAENR(A*)]. Also, this inequality is an equality if strict complementarity holds.

(2): Taking (3.19) — (3.20) yields

dimF —dim7 = dimF —dim FA+ +dim[F+ N R(A4*)] — dim[lin FA N R(4A%)] <«
dimF + (dim X —dim7) = dimF + dim F2® +dim[F+ NR(A*)] — dim[lin FA N R(A*)]
> dim F + dim F# + dim [res F N R(A*)]



(3): By symmetry from (1), or from (3.21) we obtain

dimG — (dimX —dimY) + dim7 < dimG < dimF® — (dimX —dimY)+dim7 <
dimY —dimGt +dim7 < dimG < dimY —dimF2+ 4+ dim 7T

Adding the second of these inequality chains to (1) yields
dim F — dim G* + (dimY + dim7) < dimF +dimG < dimG® —dim F2+ + (dim Y + dim 7))
therefore, if strict complementarity holds, then

dimf +dim7 = dimF +dimG + dimres F

(4): From (1) we have
dimF = dimF —dimY + dimU (3.23)
By symmetry, and strict complementarity

dimG = dimF® — (dimX —dimY) 4+ dim 7
= dimY — dim F*t +dim T (3.24)

Putting (3.23) and (3.24) together we obtain

dimY = dmF —dimF +dimiU
= dimG +dim FA+ —dim T

from which the two inequalities in (4) readily follow. a

The geometry behind the inequalities Inequality (1) in the Boundary Structure Inequalities
Theorem is a generalization of the Tijssen-Sierksma equality (3.13). Inequality (2) proves that

“the primal feasible set at T is at least as nonsmooth as the primal cone at z”.

To see what this means, for a convex set C C R", and z € C, the normal cone to C at x is defined
as

ncone (z,C) = {v]|(v,z) > (v,y)forally e C}
It is well known, that
ncone (z,C)* = —tcone(z,C) =
ncone (z,C)t = tan(z,C) =
dim ncone (z,C) + dimtan(z,C) = n (3.25)

Also, if z and F are as in the Boundary Structure Inequalities Theorem, then

ncone (z, K) = —F2



The quantity
dim face (z, C') + dim ncone (z, C)

is an intuitive measure of the nonsmoothness of C' at z. Since face (z,C) C tan(z,C), by (3.25)
this number is always less than or equal than n. If C is a polyhedron, then it is equal to n; and if
C is a sphere (that is “as smooth as possible”), and z is on its boundary, then it is 1.

Now, inequality (2) can be rewritten as
dim F + dimncone (Z, Feas(P)) > dimF +dim F2 + dim[R(A*) Nres F]  (3.26)

Since

e dim F + dimncone (Z, Feas(P)) is the measure of nonsmoothness of Feas(P) at Z, and
e dim F + dim F2 is the measure of nonsmoothness of K at Z,
inequality (3.26) indeed shows that “Feas(P) at z is at least as nonsmooth as K at z”. Confer this

with the case, when K = R'}; in this case, res F' = {0}, and inequality (3.26) proves that Feas(P),
which is a polyhedron, is exactly as nonsmooth as K.

Finally, consider equality (3) in the theorem. This proves, that if strict complementarity holds,
then

dim 7 +dim U > dimres F (3.27)

That is, unless the face F' is polyhedral, ie. res F = {0}, then at least one of the primal and dual
feasible sets will have a nontrivial tangent space at the given optimal solutions.

Specializing the Boundary Structure Inequalities Theorem for SDP, and using the substitution for

the dimension of the normal cone, as described above, we obtain

Corollary 3.19 If (P) and (D) are semidefinite programs, with data defined as in Ezample 3.10,
z and (y,z) are complementary solutions of (P) and (D), respectively,

r = rankz, F = face(z,Feas(P)), T tan(z, Feas(P))
s = rankz, G = face((9,2),Feas(D)), U = tan((y,2),Feas(D))

Then

(1) t(r) —m+dimU < dimF < t(n—s) —m+dimU

(2) dimF + dimncone (Z, Feas(P)) > t(r) + t(s) + dim[res F N R(A*)]
Suppose that strict complementarity holds. Then

(8) dim U + dim 7 = dimF +dimG + r(n —r)



(4) ttn) —t(n—r) —dim 7T < m < #(r) +dim U

with the left inequality at equality iff the primal solution is unique, and the right inequality at
equality iff the dual solution is unique.

3.4 The geometry of the feasible sets expressed with different variables

Frequently, the dual problem is given in a form without the slack variable z, as

Mazx (b,y)
s.t. A*’y SK* C (Dy)

The points in Feas(D) and Feas(D) are obviusly in one-to-one correspondence: y € Feas(D,) <
(y,d(y)) € Feas(D), with ¢(y) = ¢ — A*y. It is easy, if somewhat tedious to translate all results
proved previously on the geometry of Feas(D) to describe the geometry of Feas(D,). The proof of
Lemma 3.20 is deferred to Appendix B.

Lemma 3.20 The following hold.
(1) (a) F is a face of Feas(D), if and only if Projy(F) is a face of Feas(Dy).
(b) dim F = dim Proj, (F).
(2) If (y,z) € Feas(D), then

(a) tan(g, Feas(Dy)) = Proj, [tan((7, Z), Feas(D)) |
(b) dim[tan(y, Feas(D,))] = dim[tan((y, z), Feas(D))]

a
3.5 A detailed example
In this subsection we give a detailed example that illustrates the formulas
dimG = dim[linGNR(A")]
= dimG — (dimX — dimY) + dim[G* NN (4)] (3.28)
dmU = dim[GALNR(AY)]
dim G2+ — (dim X — dimY) 4 dim [lin G® N N (4) ] (3.29)
dim F = dim[linFNN(4)] (3.30)
dim 7 = dim[FAnN(4)] (3.31)

from the Dual Faces and Tangent Spaces Theorems, by showing a primal-dual pair of cone program,
with 3 different objective functions for the dual. For each objective, we will



e Find a complementary, hence optimal primal-dual solution pair.

Compute dim G and dim G2+ algebraically.

Find dim U and dim G by inspecting the graph of the dual feasible set projected onto the y

space.

Deduce, whether the dual solution is nondegenerate from (3.29).

e If strict complementary holds, compute dim F from (3.30) and dim 7 from (3.31).

For each objective, the reader may easily check, that both (P) and (D) satisfy the Slater condition,
hence the results of the Tangent Spaces Theorem will hold.

The pair of cone programs are defined by X = $? x §2, Y =R? K = K* = Si X Sﬁ_ as

Min ((571)2") (7 1),%%)

st. o' € 7, z? e S%
(P) <(_017(1))a$1> +<(_017(1))7$2> = b
(T 02"y (7 0)e”) = b

Max by + boyo

st. 2t e Si, 2% e S_%
(D) 91(701_(%) -I-yg(_& (?) +2b = (701_})
yi(570) +we(Tg o) 22 = (1 1)
and we will have 3 different choices for b. A simple calculation shows
Feas(Dy) = {(y1,92)|y2> (y1 —1)% y2 > (y1 +1)*}

and Feas(D,) is shown on Figure 1.

First, let (b1,b2) = (0,—1). An optimal solution pair of (D) and (P) is given by

g=0O0" Z=(;1) 2=
=44 2=35(11)

We find
dimyf = 0, dimG = 0

from Figure 1, since the dimensions of the optimal face, and tangent space are the same in the
(y, z)-space as in the y-space by the results of the previous subsection. Also,

dimG = 2, dimG®t = 4
dimX —dimY = 4



Figure 1: Feas(Dy)

Plugging these numbers into (3.29) and (3.28) yields
dim[linGA NN (4)] = 0
dim[GFNN(4)] = 2
Therefore, (7, 2" @ z2) is nondegenerate, hence ' @ z2 is a unique primal optimal solution. Also,

as they are strictly complementary,

dim7 = dim[G'NN(4)] = 2

Next, let (b1,b2) = (—2,—1). An optimal solution pair of (D) and (P) is given by the same
(y,z" @ 7?) as before and

=0 7= (1))
Note that now strict complementary does not hold; indeed, since (—2, —1) is the gradient of the
constraint function —ys + (y1 —1)? at 7, so by Theorem 3.14 a strictly complementary solution pair
cannot exist. Still, by nondegeneracy, the primal optimal solution is unique, and

dim7 < dim[G'NN(4)] = 2

although the exact dimension of 7 now can only be computed algebraically (by finding dim [ F~+N
N(A))).

a
g=(LaT 2= (472 2=(,9

Fo(1h) =0



We have
dimd = 1, dimg = 0
dimG = 4, dimG®t = 5
dimX —dimY = 4

hence
dim[linGA NN (A)] = 0
dim[G*NN(4)] = 0

therefore (7,z' @ z%) is nondegenerate, so Z is a unique primal optimal solution, and by strict
complementarity
dim7 = dim[G'*NN(4)] = 0

4 Semidefinite Combinatorics

The subject of polyhedral combinatorics is the study of optimization problems via the polyhedral
structure of their linear programming formulations. Combining knowledge on the extremal struc-
ture of polyhedra with the specifics of the LP-formulation can give valuable insights about the
given optimization problem.

In this section we give three examples to illustrate that similar studies are possible, and worthwhile
using convex programming, in particular SDP formulations. In a convex programming formulation
one may want to characterize and study

(1) The extreme point optimal solutions in the primal and dual problems.

(2) The nondegenerate optimal solutions in the primal and dual problems.

(3) The solution pairs which lack strict complementarity.

4.1 The Multiplicity of Optimal Eigenvalues

Let A be an affine function from R™ to §". The eigenvalue-optimization problem is
Min { fr(A(z)) :z € R™} (EV%)
where fr(A(z)) is the sum of the k largest eigenvalues of A(x).

The problem (EVj) can be formulated as a semidefinite program, as it was shown by Alizadeh [1]
and Nesterov and Nemirovskii [24]. In fact, it is the earliest instance of SDP that has been the
subject of a computational study; see [12, 14] In these studies, and in many more recent papers
dealing with eigenvalue-optimization, the following phenomenon was observed. At optimal solutions
of (EV}) the eigenvalues of the optimal matrix tend to coalesce; if z* achieves the minimum, then
frequently A\p(A(z*)) = Mr1(A(2*)), and A\g(A(x*)) often has multiplicity even larger than two.



The clustering phenomenon plays a central role in eigenvalue-optimization. As proven by Cullum,
Donath, and Wolfe [12] the function fj is differentiable at a fixed symmetric matrix a if and only
if Mg(a) > Agy1(a). If this condition fails to hold, then the dimension of the subgradient of fy at a
grows quadratically with the multiplicity of Ag(a). Furthermore, if f; is nonsmooth at A(z*) then
generally the composite function fi o A is also nonsmooth at z*.

Therefore, clustering tends to cause the nondifferentiability of the objective function fi o A at a
solution point, making (EVj) a “model problem” in nonsmooth optimization. We remark, that
[ © A may be differentiable at z* even if fi is not differentiable at A(z*) (e.g. when A(z) = I);
this, however is usually not the case.

Example 4.1 Consider the problem with k£ =1,
A@) = a1(y D+m(] o)+ (o 1)

The graph of the function fi o A : R? — R is pictured in Figure 2. Clearly, at the unique optimal
solution z* = (0,0) f1 o A is not differentiable.

Figure 2: The graph of fi0 A

R4
A

Somewhat surprisingly, in the case n = m = 2 every choice of the coefficient matrices in the
definition of A(z) gives rise to at least one point where the objective function is nonsmooth.
Another example is given in Figure 3. Here the optimal solution is not unique, still, there is a
nonsmooth optimum. O

In the rest of the section we outline, how the rankbounds on extreme matrices in SDP’s can be
used to explain eigenvalue-clustering in extreme point optimal solutions of (EV}). This material
is taken from [28], and proofs are omitted, or only sketched.



Figure 3: The graph of f; o A for different data

Lemma 4.2 Fiz a € S", and suppose that

a = gq(Diag(X(a)))g"
The optimal value of the problem
Min, v kz+(I,v)

s.t. veSt, we St (4.33)
2ZI+v—w=a

is fr(a). The triple (z*,v*, w*) is optimal to (4.33) if and only if

[Ak(a), Ak+1(a)]

v* = q(Diag(X(a) —2")+)q"
) q(Diag(z"e—A(a))+)q"

N
m

g
|

a

Remark 4.3 The optimal solutions of (4.33) do not depend on the choice of a’s eigenvectors.
Suppose that the distinct eigenvalues of a are

iy (@), -, i, (a)

in descending order and Ag(a) = A, (a). Then the distinct eigenvalues of v* and w* in Lemma 4.2
are

Xip(a) — 2%, N (@) — 2" and 2" — N, (a),...,2" — X, (a)



respectively. Therefore, choosing different eigenvectors of a to represent the eigenspace correspond-
ing to Aj;(a) ( = 1,...,r) does not change v* and w*.

It follows from Lemma 4.2, that ( by plugging A(z) into the place of a in (4.33) ) the problem
(EVy) can be formulated as the SDP

Ming , vw kz+ (I,v)
s.t. vesSt,weds! (SDPy)
zI +v—w= A(x)

In the following we assume the mapping A to be fixed, and denote the set of optimal solutions of

e (4.33) (in the (z,v,w)-space) by Q(a) for a given a.
e (EV) (in the z-space) by Opt(EV} ), and

e (SDPy) (in the (z,z,v,w)-space) by Opt(SDPy)
Theorem 4.4 The following hold.

(1) The point z* is an extreme point of Opt(EVy) if and only if fr o A is strictly convex at x*.
(2) If nonempty, the set Opt(EVy) has at least one extreme point.
(3) Let z* be an extreme point of Opt(EVy). If m > k(n — k), then

Me(A(z7) = Meqa (A7) (4.35)

Sketch of Proof Of (3) If z* is an extreme point of Opt(EVj), then
F* = {2} x Q(A(z"))
is a face of Opt(SDPy), therefore also of Feas(SDPy). Since the only possible degree of freedom in
F* is in choosing z*, we have dim F* < 1. Now, let (z*, z*,v*,w*) € F*, i = rankv*, j = rank w*
and apply the Primal Faces Theorem with
X = RxR™"xS8"xS8", YV = 8" K = RxR"xS8 xS}

to conclude

L+m+t() +i() < tn)+1 (4.36)

By (4.36) if m > k(n — k), then i = k, j = n — k cannot hold simultaneously. Since (z*,v*,w*) €
Ok (A(z*)) was arbitrary, we conclude that (4.35) must hold. O



4.2 The geometry of a max-cut relaxation

Consider the set
En = {x651|$ii:1(7j:1,...,n)}

Optimizing over &, provides a strong relaxation of the maximum cut problem ( [13], [16]); having
this motivation, it was termed the elliptope and its geometry studied in [20] and [21].

In Theorem 4.5 we show that several results in these papers can be easily derived from our general
framework. We consider &, as a feasible set of a primal type SDP, ie. let X = 8™, Y = R", K =
K* = 8% and define A and A* via a',...,a" € 8™, with a* having 1 in the ** position on the main
diagonal, and 0 everywhere else.

Theorem 4.5 Let x € &,. Then

(1) Z is a nondegenerate point.

(2) dim tan(z,&,) = 0 if and only if rankZz = 1.

Proof Let
T = tan(z,&,), F = face(z,8%), r = rankz

(1): After exchanging rows and columns, we may assume that the elements of R(A*) are of the

form
I 0 O
0 -I 0
0O 0 O

Suppose that such a matrix is in lin F, with the size of the nonzero block equal to some s > 0.

Then
I 0 O I 00 I 00
0 —I 0] € linF® = [0 I 0O EFA:><OIO,x>:O
0 0 O 0 00 0 00
Since Z > 0, its lower (n — s) X (n — s) principal submatrix must be zero. But z;; =1 (i = 1,...,n),

hence s = 0, proving

lin FANR(A*) = {0}
as required.
(2): From (2) in the Tangent Spaces Theorem,

dim7 = dimFAt —dimY + dim[lin F4 NR(A*)]
= (t(n)—tn—r))—n+0 (4.37)
> 0

with equality holding iff r = 0. O



Remark 4.6 By the nondegeneracy of all points in &, it also follows that for any ¢ € S™, the dual
of

min (¢, z)
st. z €&,

has a unique optimal solution, a result proved independently in [31] and [13]. Also, the formula for
dim 7 given in (4.37) is equivalent to the formula for dim ncone (z,&,) in [21] since

dim ncone (z,&,) = t(n)—dim T

4.3 The embeddability of graphs

As one more example of semidefinite combinatorics, we give a simple proof of a theorem of Barvinok

[7].

Definition 4.7 Let G = (V, E;w) be a graph, with {w;j : (i,7) € E} a nonnegative weighting on
the edges. We say that G is realizable in RY, if there exists vectors x',...,z" € R%, such that

Ha:i—:ij = w;; Y(i,j) € E

Theorem 4.8 Suppose that G = (V, E;w) is realizable in some dimension. Then it is realizable in
Re, with d satisfying

Proof Define the matrices m* € S™ for (i,5) € E by

g ij
w — My

iyo_ i
JJj = -1

i — My

m i

=1 m
and with all other components zero. Then G is realizable in R, iff

Jzl,. .., 2" € R? st (b, x%) — 2(zt, 27) + (27, 27) = wy V(i,j) €E &
Jz e R st (m, zzT) = wi; V(i,j) € E &
Jy e St ranky=d s.t. (m¥,y) = ng V(i,j) € E

Therefore, G is representable in some dimension, iff the SDP in the last line above has a feasible
solution, and it is representable in dimension < d*, iff it has a feasible solution of rank < d*.
However, the first of these statements implies the second with d* satisfying

(d?) < |E|

by taking a solution which is an extreme point of the feasible set.



5 Two algorithmic aspects

In this section we describe, how two algorithmic aspects of cone programming can be handled using
our framework: transforming a feasible solution into one, which is an extreme point of the feasible
set; and determining by how much one can perturb the objective function in a given direction,
while keeping the current solution optimal.

5.1 Finding an extreme point solution

This section is devoted to the following question: Given a feasible solution Z to the problem

Min {c,z)
st. z€eEK (P)
Az =D

we want to find an extreme point feasible solution, called Z with no worse objective value.

(1) Let F = face (z, K).
(2) Find a nonzero Az € linF N N(A). If no such vector exists, set Z =z and STOP.

(3) If {c,Az) > 0, set Az = —Az. Determine o* = max{«a|Z + aAz € F~}.
If «* = 400, STOP; (P) is unbounded.

(4) Set T =z + a*Ax, and go to (1).

The current Z is not an extreme point, iff a nonzero Az can be found in Step (2), by (4) in the
Primal Faces Theorem. Also, by elementary convex analysis, if o* is found in Step (3), then

face (z + oAz, K) C face(z, K)

therefore the algorithm is correct, and finite.

5.2 Sensitivity Analysis

Consider the primal-dual pair of cone-1p’s parametrized by the scalar ¢ > 0.

Min (c+ tAc,x) Maz (b,y)
(Py) st. zeK st. ze€ K* (Dy)
Az =b A*'y+z=c+tAc



Let Z be an optimal solution of (Py), and

t* = sup{t|Z isan optimal solution of (P;) }

Theorem 5.1 Suppose (Py) satisfies the Slater condition, and T and (g, Z) is an optimal solution-
pair of (Pg) and (Dg). Then

(1) t* is the optimal value of

Maz t
st. Z+tAz € F& )
Az € linF& t

A*Ay+ Az = Ac

(if the last two constraints of (D}) are infeasible then the optimal value of (D}) is understood
to be 0).

(2) If © and (y,z) are strictly complementary, then t* > 0.

(8) If Z is nondegenerate, and there is Az € lin F> s.t. A*Ay+ Az = Ac, then
t* = max{t|z+tAze F?}

for some such fized Az.

Proof

(1): Since (F), equivalently (P;) for an arbitrary ¢ > 0 satisfies the Slater condition, (D;) attains
its optimal value. Therefore ¢* is the optimal value of

Maz t
st. =z e F& (D{tl)
A*y+2z = c+tAc

Then
>0
3t >0, (y(t),2(t)) feasible for (D})
3¢ >0, (Ay,Az) feasible for (Dj)

=
=
where the second equivalence follows by taking

(Ay,Az) = - ((y(®) —9), (2(t) — 2))

~&~ | =

and this also proves that (Dj}) and (D}) have the same optimal value.
(2): Straightforward.

(3): The primal optimal solution Z is nondegenerate, iff

lin F2 N R(A*) = {0}



In this case, the system

Az € linF®
A*Ay+ Az = Ac

which is part of (D}) has a unique solution. The claim follows. O

6 Literature

For Section 2 Barker studied the facial structure of convex cones in [4, 5]. Nice cones, (although
without this name) were introduced by Borwein and Wolkowicz [9, 10].

For Section 3 The bounds on the rank of extreme matrices in SDP’s were proved by Pataki in [25],
and in [28]. The existence of a solution with a small rank (a rank that satisfies the bound stated
for an extreme point) was proved independently by Barvinok [7]. The faces of “spectrahedra” ie.
of feasible sets of SDP’s were characterized by Ramana and Goldman [29]. Nondegeneracy and
strict complementarity for SDP were introduced and studied by Shapiro and Fan [32], Alizadeh,
Haeberly and Overton [2], and for symmetric cones (ie. for the semidefinite, and second order
cones) by Faybusovich [15]. For the second order cone, see also Alizadeh and Schmieta [3]. In [2]
also the genericity of the property of strict complementarity was proved, ie. they showed that the
instances of SDP which do not have a strictly complementary solution pair form a set of measure
7€ero.

The general framework on the facial structure, nondegeneracy and strict complementarity for gen-
eral cone programs was described by Pataki in [26], and in the dissertation [27]. Strict complemen-
tarity was also introduced independently by Luo, Sturm and Zhang [22].

For Section 4 The multiplicity of the critical eigenvalue in eigenvalue-optimization was studied
in [28] by Pataki.

For Section 5 The algorithm to find an extreme point feasible solution of a cone-lp was given in
[26] and [27] by Pataki. The method for sensitivity analysis is a generalization of the one given for
SDP by Goldfarb and Scheinberg in [17]. The treatment given here is rather restrictive of course;
it handles only a perturbation in a given direction, however, it is algorithmic, rather than purely
structural. An extensive study on the structural properties of how the solution changes under per-
turbations is given by Bonnans and Shapiro [8]. For structural results on the sensitivity of a central
solution of an SDP, see Sturm and Zhang [33]. A simple treatment on by how much the solution
of an SDP can change, when the problem data is perturbed is described by Nayakkankuppam and
Overton [23].
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A The faces of the semidefinite cone

We will use some facts from linear algebra stated in
Proposition A.1 Suppose that x and y are in S%. Then

(1) Rz +y) = R(z) +R(y)
(2) If R(y) C R(x), then there exists z € ST such that
z € (y,2)
In other words, the line-segment from y to x can be extended past x within ST .

(8) {z,y) =0 if and only if R(x) L R(y).

To prove (2.4) it is enough to verify the PSD Faces Theorem below. Formula (2.5) for the conjugate
face will then follow by using (3) in Proposition A.1.

Theorem A.2 (PSD Faces) A set is a face of ST if and only if it is of the form
{z|z eS8, R(z) CL}

for some subspace L of R™.

Proof Denote the set in the statement of the theorem by F'(L).
(If) Proposition A.1 (1) implies both the convexity of F(L), and
if t+y € F(L) then z € F(L), andy € F(L)
(Only if) Let F' be a face of S7. Define L as the subspace spanned by the rangespaces of all
matrices in F. We claim
F = F(L)

with the inclusion C being obvious. To show the reverse, we first construct a matrix £ € F' with
R(%) = L. As there are matrices z',...,z* in F such that

L = YLiR@E) = R(ZL, )

therefore

:f::Ea:Z

=1

will do. Now, pick any y € F(L). By (2) in Proposition A.1 there exists z € ST such that

T € (y,2)

Since F is a face of ST containing &, we conclude that y (and z) must be in F. a



B Proof of Lemma 3.20

Recall that ¢(y) = ¢ — A*y.

Proof of (1) We have

F aFeas(D) &
(v',#), (W%, #%) € Feas(D) and '[(y,2") +(u%2%)] € F imply  (BAY)
(y',2'),(s*,7") € F (B.42)

But, (B.41) is equivalent to

(', ¢y"). (¥*,4(y*)) € Feas(D) and
yt y? € Feas(D,) and +y2) € Proj,(F) (B.43)
and (B.42) to

(v', oY), (. 9()%) € F &
y', y* € Proj,(F) (B.44)

Therefore,
F<aFeas(D) <« (B.43)implies (B.44) < Proj,(F) < Feas(Dy)
This proves (1.1). To see (1.2), one only needs to note

Fo= {(y,¢(y) |y € Proj,(F) }
Proof of (2) By the proof of the Tangent Spaces Theorem

tcone ((¢,2), Feas(D)) = {(y,z)|A*y+2=0, z € tcone (2, K*)} = (B.45)
Proj, [tcone ((9, 2), Feas(D))] = {y| — A"y € tcone (c — A*y, K*) } (B.46)
(B.47)

A straightforward calculation shows
dir (7, Feas(Dy)) = (—A*)"'[dir (c— A*j,K*)] =
cldir (g, Feas(Dy)) = (—A*)"![cldir (c— A"y, K*)] <
tcone (4, Feas(Dy)) = (—A*)"![tcone(c — A*y, K*)] (B.48)

where the first implication follows by Theorem 6.7 in [30]. Putting (B.48) and (B.46) together
yields

tcone (g, Feas(Dy)) = Proj, [tcone ((7,2), Feas(D))] =
tan(y, Feas(Dy)) = Proj, [tan((y,Z2), Feas(D))]
which proves (2.1). Also, by B.45
tan((§,2), Feas(D) = {(y,—A"y)| — A%y € tan(c — A°5, K*)}

which shows that projecting tan((y, z), Feas(D)) onto the y-space preserves its dimension, proving
(2.2).



