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INTRODUCTION

Consider the integer programming (IP) feasi-
bility problem in the form

FindxeZ" :x € P, (IP)

where P is a polyhedron described by
inequalities. The work of Lenstra in 1979 [1]
answered one of the most challenging ques-
tions in the theory of integer programming
by presenting an algorithm to solve (IP),
whose running time is polynomial, when n,
the dimension is fixed. This paper pioneered
the use of lattice basis reduction in integer
programming, and initiated an interest in
polynomial results in integer programming
under the “fixed dimension” assumption.
Somewhat later Kannan developed an
improved variant [2,3], which—to date—has
the best theoretical complexity for integer
programming feasibility.

The goal of this survey is to review
lattice-based methods to solve (IP), focusing
on Lenstra’s and Kannan’s algorithms,
which are by now considered “classical,” and
the more recent reformulation methods of
Aardal et al. [4], and Krishnamoorthy and
Pataki [5].

Example 1. As motivation, let us consider
a “hard” IP feasibility problem

460 < 51x71 + 49x9 < 489
0< x,22 <10 (1

IA

X1,X2 €,

shown in Fig. 1. One can see by inspection
that it is infeasible.

Let us denote by P the underlying polyhe-
dron. The hyperplanes

{xlx1=Fk}(*&=0,...,9)

all intersect P, so branch-and-bound trying to
prove infeasibility generates 10 subproblems,
when branching on x;. Branching on x2 also
leads to 10 subproblems.

We will return to this example later, in
particular, in the section titled “Reformula-
tion Methods” we show that the rangespace
reformulation of Krishnamoorthy and Pataki
[6] creates an equivalent feasibility prob-
lem, in which the set {y|y2 € Z} has empty
intersection with the underlying polyhedron,
hence branching on yy solves the problem at
the root node.

A lattice L is the set of integral com-
binations of linearly independent vectors
defined as

L=LB) ={Bx:xeZ }CR" (2

The matrix B has r independent columns,
which are said to form a basis of L(B). We
call r the dimension of L, and when r=n
we say that L is full dimensional. Writing
b1,...,b, € R" for the columns of B, we also
denote L by L(b4,...,b;).

The common theme in lattice-based meth-
ods is transforming (IP) into a problem of the
form

Findy €eZ": By € Q, (IPgg)
where the matrix B and the polyhedron @ are
suitably chosen, so the problem of finding a
point in P N Z" is translated into finding one
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Figure 1. The instance of Example 1.

in @ NL(B). We emphasize that the choice of
B and @ is specific to each method, but in
all of them, the polyhedron @ has favorable
geometry, and B has short and near orthog-
onal columns, which form a reduced basis
of L(B) in a sense to be made precise later.
These two facts will allow us to prove good
complexity bounds on solving (IPgg).

The classical (Lenstra’s and Kannan’s)
algorithms are recursive. They branch on the
last few variables in (IPpg), that is, enumer-
ate all possible integer values that these can
attain, then construct new B matrices and
@ polyhedra for each of the resulting sub-
problems, and so on. However, Mehrotra and
Li [6] recently presented a restructuring of
the computations in Lenstra’s algorithm, so
that branching on the last variable in (IPp g)
is translated back to branching on a suit-
able hyperplane in the original problem. In
contrast, the reformulation methods run a
full branch-and-bound algorithm on (IPgg),
and are implemented by simply feeding the
formulation to a commercial IP solver.

The nullspace reformulation method,
which is applicable to equality constrained
integer programs was proposed by Aardal
et al. [4]. Later, Krishnamoorthy and Pataki
[5] introduced the rangespace reformulation
method for general integer programs. One
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can analyze these methods on a family
of knapsack feasibility problems, with the
coefficient vector of the knapsack constraint
decomposing as a =Ap +r, where p and
r are integral vectors, and A is a large
integer. There are a variety of instances
that fit into this framework with three
interesting properties: (i) they are difficult
for branch-and-bound that branches on the
x; variables; (ii) their infeasibility is proven
by branching on px; and (iii) when A is suffi-
ciently large, branching on the last variable
in the reformulations has the same effect as
branching on px in the original problem.
There is a compelling history of these
instances, dating back to Jeroslow’s famous
problem from 1974 [7]. An analysis of
nullspace reformulation assuming such
decomposable structure was given by Aardal
and Lenstra [8,9]. Krishnamoorthy and
Pataki [5] showed how a variety of knapsack
problems starting with Jeroslow’s problem
satisfy properties (i) and (ii), presented a
“recipe” to generate such instances, and
proved Property (iii) for both reformulations.
A recent result of Pataki et al. [10] shows
that when branch-and-bound is applied to
the reformulation of bounded integer pro-
grams, the majority of instances get solved
without generating any subproblems, that



is, at the root node. This result may seem
counterintuitive; however, it fits in nicely
with the previous work on “low density” sub-
set sum problems, which have been widely
used in cryptography.

The rest of the survey is divided into five
sections. In the rest of the introduction we
describe key definitions that will be used
throughout the paper. In the section titled
“Reduced Bases” we describe reduced bases
of lattices. In the section titled “The Geom-
etry of Lattices and Convex Sets” we present
a lemma due to Lenstra on the geometry of
lattices, and convex sets, which will play a
role in the analysis of both the classical, and
the reformulation methods. In the section
titled “Lenstra’s and Kannan’s Algorithms”
we review Babai’s improved version [11]
of Lenstra’s algorithm, and Kannan’s algo-
rithm. Kannan’s algorithm is less frequently
covered in surveys than Lenstra’s method,
perhaps because it is more technical: we
think that we succeeded in giving a simplified
treatment. In the section titled “Reformula-
tion Methods” we review the reformulation
methods, with their complexity analyses.
In the section titled “Further Reading and
Computational Testing” we point to further
reading, and review computational results
obtained by lattice-based methods.

The emphasis of the survey is providing
simple proofs of complexity results, illustra-
tive examples, and a unifying view of the
classical and the reformulation methods.
For instance, we will continue Example
1, and show how Lenstra’s algorithm, and
the rangespace reformulation handle this
“difficult” instance. We include exercises,
and we think that the survey will be suitable
to teach a two- to three-class long segment on
lattice-based methods in a course on Integer
Programming.

A reader may be interested either only in
Lenstra’s and Kannan’s algorithms, or only
in the reformulation methods; so for conve-
nience, sections titled “Lenstra’s and Kan-
nan’s Algorithms” and “Reformulation Meth-
ods” can be read independently of each other.

Exercise 1. Generalize Example 1 by show-
ing that for positive integers A and u with A >
21 + 1, the integer programming problem
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A+Dxg+A—1xg < Ap—p—1

n 3)

A=A+ p

IA
IA

0 < X1,X2

IA

X1,X2 € VA

is infeasible, and branching either on x1 or x
will generate at least u subproblems.

Important Definitions

Branch-and-bound, which we abbreviate as
B&B, is a classical solution method for (IP);
it was first proposed by Land and Doig [12]. It
starts with P as the sole subproblem (node).
In a general step, one chooses a subprob-
lem P, a variable x;, and creates nodes P' N
{x|x; = y}, where y ranges over all possible
integer values of x;. We repeat this until all
subproblems are shown to be empty, or we
find an integral point in one of them.

Sometimes we will branch on hyperplanes
to solve (IP): given a nonzero integral vector
p, we let

kmax = max {px|x € P}, @
kmin = min {px|x € P},

and create the subproblems
Pﬂ{x|px = LkmaxJ}a N ﬂ{xlpx = |—kmin-|}~

The number of subproblems is the integer
width of P along p, that is,

iwidth(p, P) = |Rmax) — [Pmin] + 1.

In particular, if iwidth(p, P) = 0, then (IP) is
infeasible, and we say that its infeasibility is
proven by branching on px. Analogously, the
width of P along p is defined as
width(p, P) = kmax — Rmin-

To emphasize the difference between Land
and Doig’s branch-and-bound algorithm, and
branching on hyperplanes, we call the former
method ordinary branch-and-bound.

It is well known [13] that if A is a rational
matrix with n columns, then

NA) :={xeZ"|Ax =0} (5)



4 BASIS REDUCTION METHODS

is also a lattice, and we call this set the
null-lattice of A.

We call a matrix U unimodular, if it is
square, integral, and has determinant +1.

For a convex set @ we write (@) for
the radius of the largest ball in the affine
hull of @ that can be inscribed in @, and
R(Q) for the radius of the smallest ball that
contains Q:

r(@) =max {s|3p € @ s.t. Ball(p,s)
N aff(@) € @}, and
R(Q) = min {s|3peQ s.t. Ball(p,s)2Q}, (7)

(6)

where Ball(p,s) is the Euclidean ball with
center p and radius s.

REDUCED BASES

A lattice L(B) with dimension r > 2 has
infinitely many bases, and it is well known,
that all of them are of the form BU, where U
is a unimodular matrix. Multiplying B by a
unimodular matrix is equivalent to perform-
ing a sequence of three elementary column
operations on B : multiplying a column by
—1; exchanging two columns; and adding an
integer multiple of a column to another.

As a lattice may not have an orthonormal
basis of unit vectors, we will be interested

Figure 2. A lattice, with a reduced, and a
nonreduced basis.

in bases comprising “reasonably” short and
“near orthogonal” ones. These bases will be
called reduced.

Example 2.
by the vectors

1 1/2
we(1)o=( M) @

Multiplying the matrix [b1, b2] with

o (31

gives another basis

Consider the lattice generated

by = —2by — by, bl = —by — by.

Figure 2 shows the lattice points, and the
two bases, with the vectors in the first clearly
shorter, and closer to being orthogonal.

We describe lattice bases that are reduced
in the sense of Lenstra, Lenstra, and Lovasz
(LLL), and Korkin and Zolotarev (KZ). We
will say that b1, ..., b, is an LLL (KZ) reduced
basis, if it is such a basis of L(b4, ..., b,).




Givenby,...,b, € R", thevectors bj,..., b}
form their Gram-Schmidt orthogonaliza-
tion, if

bl =b1 (9)

i—1
by =bi— Y ub;i=2,...,r), (10)
j=1

with

wij = (bi, b7)/1167 1% (11)
=2, .,rj=1,...,i—1).

In other words, b is the projection of b;
onto the orthogonal complement of the linear
span of b1,...,b;_1. Given by,...,b,, their
Gram—Schmidt vectors are by definition
orthogonal, and will be used as reference
vectors to express near orthogonality of
the bi.

Convention. Given b4,...,b,, we will write
b3,...,b} for their Gram—Schmidt vectors,
and p;; for the corresponding coefficients
without explicitly saying.

Perhaps the best-known reducedness
concept in lattices is LLL reducedness.
These bases were introduced by Lenstra
and colleagues in their seminal 1982 article
[14]. They are polynomial time computable
when the lattice is generated by rational
vectors, and they found uses in numerous
contexts other than integer programming,
for instance, in number theory and cryp-
tography. For efficient implementations we
refer the reader to the LiDia library [15] at
the University of Darmstadt, and the NTL
library of Victor Shoup [16].

We use Schrijver’s definition [13], which is
less restrictive than the classical one [14].

Definition 1.
reduced, if

We say that b4, ..., b, is LLL

Lojujl<1/2G=2,...,rj=1,...,i—1).
2. Bl < V21bf 4l G=1,...,r— 1.

We remark that an LLL reduced basis
remains computable in polynomial time, if we
replace the factor of +/2 with /4/3 + ¢ for an
arbitrarily small positive € : the running time
is polynomial in the size of the basis and 1/e.
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Both conditions in Definition 1 naturally
correspond to “near orthogonality,” since in
an orthogonal basis all ;1;; would be zero, and
condition (2) could be achieved by a simple
rearranging, with the factor +/2 replaced by
1. On the other hand, it is easy to construct
examples of bases having near parallel
vectors that violate conditions 1 and 2 by an
arbitrary amount.

Exercise 2. Verify that the lattice in
Example 2 does not have an orthogonal
basis. Show that b; and b9 form an LLL
reduced basis, but 5] and b, do not.

From the two basic properties of LLL
reduced bases, one can derive several other
inequalities that show the shortness (which
is less straightforward from conditions (1)
and (2) of Definition 1), and near orthogo-
nality of the basis vectors. For details we
refer to Lenstra et al. [14], and we recall an
inequality that will be used in the section
titled “Reformulation Methods”.

Proposition 1. Let b1,...,b, be an LLL
reduced basis of the lattice L, and x1, . . . ,x; be

arbitrary linearly independent vectors in L.
Then

max {[|b1ll, ..., 1b¢ll}

< 20-V/2 ax {heall, ...

(12)
s llxell}.

We remark, that the performance of LLL
reduction in practice is much better than
predicted by the estimate (12), especially
when ¢ is small.

Korkin—Zolotarev (KZ) reduced bases
were introduced by Kannan [2,3] as a key
ingredient in his integer programming
algorithm, and he also showed that they
are computable in polynomial time, when
the dimension is fixed. It is currently not
known, whether they are computable in
polynomial time for varying r. Surprisingly,
it turned out that KZ reduced bases have
been described previously already in the
19th century [17]; however, no algorithms
were known to compute them until Kannan’s
result. The LiDia [15] and NTL libraries [16]
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also contain efficient subroutines to compute
KZ reduced bases.

Definition 2. We say that b, ..
reduced basis, if

.,brisaKZ

1. b7 is a shortest vector of L(b1, ..., b,);

2. |uyl <1/2G=2,...,r;j=1,...,1 = 1);
and

3. letting b;,...,b, be the projection of
bg,...,b, on the orthogonal comple-
ment of the line spanned by b1, they
form a KZ reduced basis.

While KZ reduced bases are harder to
compute than LLL reduced ones, they have
stronger properties. We recall two inequali-
ties that we will use later.

Proposition 2. Let bi,...,b, be a KZ
reduced basis of the lattice L, and x1,...,x;
arbitrary linearly independent vectors in L.
Then

max {[b1 ...

< VE+3
2

s N1bell}
(13)

s llce -

max {[x1], ..

Furthermore, forallj <r

_ 1/(r—j+1)
1631 < v/r=7+ 1 (1671 16 1) (14)

holds.

The inequality (13) is due to Lagarias et al.
[18]. To put into context, we can compare the
sublinear factor in it with the exponential
factor in (12).

Inequality (14) follows from the defini-
tion of KZ reducedness, and for the proof
we refer to Kannan [3]. Let us note that
multiplying the inequalities [|b¥|| < v/2'[|b7,,|
for i =0,...,r—j in an LLL reduced basis
would give a similar inequality with a fac-
tor of 209/ only (or with a factor (4/3 +
€)"=)/%if we use a strengthened definition
of LLL reducedness); so a KZ reduced basis
improves inequality (2) in Definition 1 in an

aggregate sense. Exercise 3 shows that the
improvement also holds for every i.

Exercise 3. Show that if b1, ..
reduced basis, then

lei] = VABIbi| G=1...r-D

holds; so a KZ reduced basis is also LLL
reduced.

.,b.1s a KZ

THE GEOMETRY OF LATTICES AND CONVEX
SETS

Proposition 3 concerns the solvability of
(IPgg), and we will use it in the analysis
of both the classical, and the reformulation
methods. It asserts that if @ is “large” with
respect to the norms of the columns of B,
then (IPgq) is feasible, and if it is “small,”
then one can reduce (IPgg) to a “small”
number of r — 1 dimensional subproblems.

Proposition 3.
b1,...,b,. Then

Denote the columns of B by

1. if @ is contained in the linear span of
{b1,...,b:}, and

1 N ;
M@ = 5\ IBLIZ+ -+ 1712, (15)

then (IPpq) is feasible.
2. If (IPgg) is feasible, then y, must belong
to an interval of length at most

2R(Q)J
+1; 16
L 16511 (16

hence (IPgg) can be reduced to at most
this many r — 1-dimensional IP feasi-
bility problems.

For a proof of statement 1 of Proposition
3, we refer to Lenstra [1] (Lemma on p. 540).
In fact, Lenstra only states the bound with b;
in place of the b7, but his proof does imply the
stronger statement. As motivation, consider
a lattice in R? spanned by orthogonal vec-
tors, that is, b} = b; for i = 1, 2. The point on
the plane, which is farthest from the lattice
points is at the intersection of diagonals of



BASIS REDUCTION METHODS 7

X2
o
B

—4 . . o
Q,
5L . . . i
613 : : ; i i 1
-6 -4 -2 0 2 4 6
X

a grid rectangle, with distance equal to the
right-hand side of (15). Thus, a ball around
any point in space with this radius will con-
tain a lattice point.

Statement 2 of Proposition 3 is also
essentially due to Lenstra, though it is not
stated precisely in this form. A geometric
proof can be found in Lenstra [1] (p. 541).
For motivation, consider Fig. 3. The problem
of finding a lattice point in @ is reduced to
finding such a point in one of the @;, and
the distance between the lines containing
the @; is ||b}]l, leading to the desired upper
bound. Note that [|b}] in this example is
considerably smaller than |b2].

We give an algebraic proof of statement 2
of Proposition 3. Writing

B'Q=1{y|BycQ an
we show
width(e,,B~'Q) < zﬁﬁ). (18)

Let y,1 and y, 2 denote the maximum and
the minimum of y, over B~1Q. Writing B for
the matrix composed of the first » — 1 columns
of B, and b, for the last column, it holds that
there are y1,y2 € R"~! such that By1 4 b,y,1

Figure 3. Illustration of statement 2 in
Proposition 3.

and By + bryr2 are in Q. So,
2R(Q) > |(By1 + byyr1) — Byz + byyro) |
= |By1 —y2) + b,(r1 — yr2) |
> (67| lyr1 = yrol
= ||b} |width(e,, B'Q)
holds, as required.

Remark 1. If y, is fixed to an integer
k in (IPgg), then the corresponding lower-
dimensional subproblem is
Findye Z"': By + kb, € Q@ N {y |y, =k}.
(19)

Corollary 1. When in (IPggq) we branch
on yr,¥r-1,...,Y; in this order, the number of
resulting subproblems on the level of yj is at

most
(5]

Proof. The formula (19) shows the form
of the resulting subproblems, after we

(20)
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branched on y,. Using part (2) in Proposition
3 implies that branching on y,_; will create at
most

\‘MJ +1 (21)

674

subproblems from each of these, and so on,
and this completes the proof.

LENSTRA’S AND KANNAN’S ALGORITHMS

Lenstra’s Algorithm

Lenstra’s paper [1] first disposes with two
technicalities. Assuming that P is described
as P = {x|Ax < b}, with A and b integral,
and their components bounded by a in abso-
lute value, Lenstra shows that when (IP) is
feasible, it has a solution x¥ with max; |x;| <
(n + Dn2a". So we can assume that P is
bounded, and Lenstra shows that we can also
assume that it is full dimensional.

Next we “round” P by computing in poly-
nomial time an invertible transformation t,
so that

R(P)/r(zP) < ¢, :=nn+1) (22)
will hold, that is, P
“spherical.”

appears relatively

0.3

0.25

0.2

0.15

0.1

X2

0.05

Figure 4. The polyhedron of Example 1
after Lenstra’s rounding, and the points
of r/ 2.

Example 1 (continued). Using Lenstra’s
algorithm we computed 7P, where P is the
polyhedron in Example 1. With t having a
transformation matrix

0.3326 0.3101

( 0 0.0164 ) ’ (23)
the rounded polyhedron is
460 < 153.3333x1 + 88.5270x9 < 489
0 < 3.0065x; —56.8034x2 <10 (24)

0< 60.9285x4 < 10,
shown in Fig. 4 with the points of the lattice

72,

Now (IP) is transformed into trying to find
x € TZ" N tP. After choosing an LLL reduced
basis B for the lattice tZ", the task becomes
Findy € Z" : By € tP. (IPg..p)
Let us write R := R(zP),r := r(tP), and let
b1,...,b, denote the columns of B. For bet-
ter intuition, we first describe the algorithm
assuming R = r (i.e., that P is a ball), and
that the b} all have the same norm.
By Proposition 3 if

r= ValbLll/2, (25)

285 29 295 3 3.05 3.1 3.15 32 3.25

X1



then (IPp.p) is feasible, and if (25) fails,
(IPg,.p) can be reduced to at most

Lﬁ%J+l§¢ﬁ+l

n — 1-dimensional subproblems. On the
subproblems we apply the algorithm recur-
sively, by making the underlying polyhedra
full dimensional, rounded, and finding a
new LLL reduced basis for each one. If we
denote by f(n) the number of polyhedra
that Lenstra’s algorithm must examine, we
obtain

fn) < (Vn+Df(n—1); (26)

thus, f(n) = O(n™2). The number of arith-
metic operations performed on each polyhe-
dron is polynomial, so the overall complexity
is polynomial, when n is fixed.

The roundedness of TP, and the reduced-
ness of B make sure that our unrealistic
assumption is not far from the truth. Let
J be the index such that ||b;f || is maximal, and
consider the two cases:

Case 1. 1
rz g valsl-

Then the first statement in Proposition
3 shows that (IPg ,p) is feasible.

Case 2. 1
r< Lt

Then
R< %C"*/ﬁ“bj | < %Cn«/ﬁ“b;: |22,

with the first inequality from (22), and
the second from the LLL reducedness
of B. Then Proposition 3 implies that
branching on y, in (IPp.p) creates at
most

2R
Z2li1=0@ny @D
LM”

subproblems.
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Denoting by f1.(n) the number of polyhedra
that must be examined by Lenstra’s algo-
rithm, we have

fu(n) = 02Mfi(n — 1) = 0(2%),  (28)

and the previous argument shows polynomi-
ality of the method for fixed n.

Exercise 4. Verify that if P is the polyhe-
dron in Example 1, and 7 is given in (23),
then 7P indeed has the description given in
(24), and R(zP)/r(zP) < 3.82.

In contrast, show that the long and thin
nature of P is also shown by the poor ratio of
R(P) and r(P), namely R(P)/r(P) > 33.

Kannan'’s Algorithm

In Kannan’s algorithm the setup of making P
bounded, full dimensional, and rounded is the
same as in Lenstra’s method; then a reduced
basis for the lattice tZ" is found. Hence (IP)
is again transformed into (IPg.p), and the
handling of Case 1 is identical. However,
Kannan uses a Korkin—Zolotarev reduced
basis for L(B) in (IPp.p), and again letting
J to be the index for which the norm of the
corresponding Gram—Schmidt vector is max-
imal, we enumerate all possible values for
Yjs.-»¥n. So, if j=n, Kannan’s algorithm
behaves like Lenstra’s, and if j = 1, it does
complete enumeration.

The complexity analysis of Kannan’s algo-
rithm is more technical than Lenstra’s, so we
only outline a proof showing that it needs to
look at only O(12°") polyhedra, as opposed to
Lenstra’s 0(2”2). We first describe Case 2 in
detail.

Case 2. 1
r< 3vals,
that is 1
R < senaof]|

Corollary 1 implies that branching on
Yn,---,Yj creates at most

()
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subproblems. Using the fact that bj’f‘ has the
largest norm among the Gram—Schmidt vec-
tors, simple manipulation shows that this
upper bound is at most

n—j+1
671

(env/m + 1
(CH R

We now use the KZ reducedness of the
b;, and plug the estimate (14) into the latter
expression. Hence the number of subprob-
lems is at most

n—j+1

(v +1)" 7 (Va—j+1) 7,

which is O(n3®~+1) So, denoting by fx(n) the
number of polyhedra that must be examined
by Kannan’s algorithm,

fx(n) = Om*" 7+ )fe(j — 1) = 0(®")

holds.

REFORMULATION METHODS
In this section we describe the rangespace

and nullspace reformulation methods. It will
be convenient to assume that our feasibility

problem is given as
( w1 )
w9 (29)

2 - A X

52 - I
x ez,

where A is an integral m by n matrix. The

rangespace reformulation of (29) is

n)=(7)e=()
= Yy =
((2 1 wo (30)

yezr,

IA

where U is a unimodular matrix computed
to make the columns of the constraint matrix
a reduced basis of the generated lattice. If
y is feasible for (30), then Uy is feasible for
(29), and if x is feasible for (29), then U 1x is
feasible for (30), since U~! is integral. This
shows the equivalence of the two problems.

The nullspace reformulation is applicable
when w; = ¢;1. Assuming that the rows of A
are linearly independent, it is

ly—xo < By
yezm,

<wg — X
= w2 0 (31)

where x¢ € Z" satisfies Axo = ¢1, and B is a
reduced basis of N(A) (recall the definition of
the null-lattice from (5)). Since any integral
solution of the system Ax = ¢; can be written
as the sum of x¢, and an element of N(A), the
two formulations are equivalent [13].

For brevity, if the columns of the con-
straint matrix in (30) form an LLL reduced
basis of the generated lattice, we will call
(80) the LLL rangespace reformulation of
(29), and we will similarly talk about the
LLL nullspace reformulation, KZ rangespace
reformulation, and so on.

Remark 2. In its simplest form, the
rangespace reformulation method trans-
forms the feasibility problem

Ax#b,xecZ"

into
AUy #b,y €77,

where U is a unimodular matrix, AU is
a reduced basis of the lattice LL(A), and #
denotes an arbitrary mixture of equality and
inequality constraints. For the analyses that
we present, however, it is convenient to work
with a problem in the form of (29).

Also, one can solve an integer program-
ming optimization problem by reducing it
to a sequence of feasibility problems, on
which a suitable reformulation can be then
applied. The simplest direct approach is
transforming

max {cx | Ax # b,x € 2"}

into
max {cUy | AUy # b,y € 2"},

where again # is a mixture of equality and
inequality constraints, U is a unimodular
matrix, and



c
(2)v
is a reduced basis of the generated lattice.

Let us note how the reformulated prob-
lems fit in the framework of (IPg ) with the
polyhedron @ being simply a box, and B con-
structed directly from the constraint matrix
of (29). This is in contrast with Lenstra’s and
Kannan’s algorithms, where @ is a trans-
formed version of P, and B is a reduced basis
of the transformation matrix.

Decomposable Knapsack Problems and Their
Reformulations

In this section we are interested in feasibility
problems of the type
(i)
27 32

IA

(2)=(5)~

x e,
with a decomposing as
a=Ap+r, (33)

where a, p, and r are integral row vectors, the
components of p relatively prime, and A is
an integer. We will call these decomposable
knapsack problems (DKPs), and note that this
is not a formal definition, since any knapsack
problem with a constraint vector a can be
written in this form with p =a,r =0, and
A = 1. However, in all interesting cases A will
be at least 2, and in most cases relatively
large with respect to ||p| and ||r|.

There are a wide variety of instances,
which fit into this framework, with three
interesting properties, that we repeat from
the introduction:

(i) they are difficult for ordinary B&B;
(i1) their infeasibility is proven by branch-
ing on px; and
(iii) when A is sufficiently large, branching
on the last variable in the reformula-
tions has the same effect as branching
on px in the original problem.

BASIS REDUCTION METHODS 11

Example 1 (continued). This instance fits
the mold of (32) with the constraint vector,
and its decomposition given by

a = (51,49),
r=(1,-1),

p=(1,1), 34)
A =50.

The definition of the rest of the data (of
{1,492, w1, and ws) is obvious.

With P denoting the underlying polyhe-
dron, we have

max {px | x € P} = 489/49 = 9.9796,

. (35)
min {px | x € P} = 460/51 = 9.0196;

so, branching on px proves the infeasibility

of this instance, and it is straightforward to

check that the same holds for the generaliza-

tion of Exercise 1.

The next example is a simplification of
Jeroslow’s classic problem [7], which estab-
lished that ordinary B&B may take exponen-
tial time even on a trivial problem.

Example 3. Let n be a positive, odd inte-
ger. The problem

O<x<e (36)

is infeasible, and the infeasibility is proven
by branching on Y7, x;. At the same time,
ordinary B&B needs to enumerate at least
2=1/2 nodes to do the same. For a proof
of the latter fact we refer to Jeroslow’s [7]
or Krishnamoorthy and Pataki’s paper [5]
(p. 247).

This instance also fits into the framework
of (32) with

a=2,p=e, r=0, A=2, (37)
and {1 = w1 = n.
Another family of instances with similar

behavior is related to the famous Frobenius
problem. For a positive integral vector a =
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(ai,...,an), the Frobenius number Frob(a) is
the largest integer for which we cannot make
a change using the denominations ag,...,a,;
in other words, the largest g for which the
integer programming problem

ax =f
x>0 (38)

x e Z",

is infeasible. The Frobenius problem is com-
puting Frob(a) : for a recent review we refer
to a book by Ramirez Alfonsin [19].

The Frobenius problem gives rise to inter-
esting, and difficult integer programming
instances. Cornuéjols et al. [20] studied
knapsack problems with a decomposable
structure, and showed how to compute the
Frobenius number by solving a sequence of
integer programming problems using a test
set approach.

Aardal and Lenstra [8,9] considered
instances of the form (38), with a decom-
posing as in (33), and B8 a positive integer.
Following the arguments in Krishnamoorthy
and Pataki [5], we give a simplified descrip-
tion of the instances they constructed, and in
addition show that they fit Property (ii).

Example 4. Consider a knapsack feasibil-
ity problem (38) with a decomposing as in
(33), and B a positive integer. We assume
that p is componentwise positive, it is not a
multiple of , and

qQ1:=r11/p1 <+ <Qn =T"n/Pn. (39)

Proposition 4. Define

k=10+q1—1D/gn—q1)] —1,

(40)
B = F()» +Qn)k-|:

and assume that ) is large enough so k and
B are both positive. Then the infeasibility of
(38) is proven by branching on px.

Proof. Let us consider the interval

I = (O +gnk,(A+q1)k+ 1)), (41)

and note that I has length strictly larger than
one by the choice of k. Next, let us denote
by P the polyhedron of the LP relaxation of
(38). Since a; = Ap; + r;, the ordering in (39)
implies

ai/p1 = -+ = an/pPn, (42)

therefore

max {px | x € P} = p1B/a1,

(43)

min {px | x € P} = paB/an,
hold. So iwidth(p,P) =0 holds, when the
above maximum and minimum are in the
interval (k, & + 1). A simple calculation shows
that this happens exactly when B € I, which
is true because B is the ceiling of the lower
end point of I, and |I| > 1.

Since (38) is infeasible with a large right-
hand side, it is difficult for ordinary B&B,
and it is also difficult when the right-hand
side is chosen to be Frob(a).

The following exercises review the recipe
from Krishnamoorthy and Pataki [5], and its
application to construct Avis’s instance from
Chvatal [21]:

Exercise 5. Let p and r be arbitrary inte-
gral vectors, £2 and wy bound vectors in (32),
and k& an integer with 0 < & < pws. Prove that
if we find A, £1, and w; to satisfy ¢; < wi, and

max {rx | px < k,ly <x <ws} + kA < {1,
and (44)
min {rx | px > k+ 1,03 <x < ws}

+ (& + Dr> w1,

then the infeasibility of (32) is proven by
branching on px.

Show that the instances of Examples 1,
3, and 4 can be obtained this way, with
k=9, k=(m—1)/2, and %k defined in (40),
respectively.
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For a proof of why the above recipe creates
hard integer programs, and how the diffi-
culty depends on p,r, A, and k, we refer to
Krishnamoorthy and Pataki [5].

Exercise 6. Using the result of Exercise 5,
show that the subset sum problem

ax = B
n (45)
x € {0,1}",
where n is odd,
= (nn+1+1,...,nn+1)+n),
(46)

(3L ar]

is infeasible. This instance was proposed by
Avis [21], and it is known that ordinary
B&B needs at least 2~1/2 nodes to prove
its infeasibility.

Example 1 (continued). To motivate
Theorem 1, the main result presented in this
section, we computed the LLL rangespace
reformulation of Example 1. With

-1 -16
UZ( 117 )
it is

460 < 2y1 + 17y9 <489

1 1 1 1 1 1
-164 -162 -160 -158 -156 -154 -152 -150

Figure 5. Example 1 after applying the
LLL rangespace reformulation.

0<—y;—16y3 <10
= )1 Y2 = 7
0< y1+17y9 <10

yLy2 €7,
shown in Fig. 5. It is interesting to note
that the underlying polyhedron is still long
and thin, unlike the polyhedron in Fig. 4
produced by the 7 transformation in Lenstra’s

and Kannan’s methods, but now infeasibility
is proven by branching on ys.

Theorem 1. Denote by P the polyhedron
of (32), and by @ the polyhedron of its LLL
rangespace reformulation. If

A > 20-D2( |17 + 12| p|l, (48)
then

width(e,, @) = width(p, P), and

.. .. (49)
iwidth(e,, @) = iwidth(p, P).

Sketch of proof Let us write

a
A=<I>. (50)

First we show that IL(A) has at least n — 1
vectors with norm bounded by (||| + D|p]l.
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Indeed, there are n — 1 vectors in N(p) with
norm at most ||p||, and if w is such a vector,
then

lAw] < (Irll + Dlipll. (51)

Next, let U be the unimodular matrix
in the LLL rangespace reformulation of
(32). Since AU is an LLL reduced basis of
L(A), Proposition 1 shows that its first n — 1
columns have norm of at most

2=V2()r| + D|p . (52)

The integrality of pU, and the choice of
A implies that the first n — 1 components
of pU are 0, otherwise the corresponding
column of AU would have norm larger
than as given in (52). For the details we
refer to Krishnamoorthy and Pataki [5]
(p. 262).

Hence pU = e, holds for some integer &,
thatis, p = e, U1, and since the components
of p are relatively prime, § = £+1.

Finally, the definitions of P and @ imply

max {px|x € P} = max {pUy |y € @}, (53)

and the same holds for the minimum. Using
pU = +e, with (53), and the definition of
width and integer width prove (49).

Remark 3. One can see that an analogous
result holds for the KZ rangespace reformu-
lation, even if we replace the lower bound
(48) with the weaker

A>yn+3)2(Ir + D2 pll. (54)

A variant of Theorem 1 about the
nullspace reformulation is proven in
Krishnamoorthy and Pataki [5].

Remark 4. Another decomposable knap-
sack instance, similar to Avis’s, was described
by Todd in Chvatal’s 1980 paper [21]. It is
interesting that Jeroslow, Avis, and Todd
proved that their instances fit property (i),
but they did not mention that they fit prop-
erty (ii) as well.

Aardal and Lenstra [8,9] showed that
denoting by b,-1 the last column of

the constraint matrix in the nullspace
reformulation

[6n-1] = [67-1] = 20

holds, and they argued that |[b,_1
being long implies that branching on
yn—1 will generate a small number of

subproblems.

Krishnamoorthy and Pataki [5] pointed
out a gap in the proof of Hb:‘l_lﬂ = QO),
and constructed an example of a polyhe-
dron @ ={y eR"|¢ <By <w}, where the
columns form an LLL reduced basis of
L(B), but branching on y, creates c”|b;|
subproblems for some c¢> 1. Furthermore,
they proved that the instance of Example 4
fits property (ii).

Analyzing the Reformulation Methods without
Assuming Structure

Here we describe an analysis of the reformu-
lation methods based on the paper of Pataki
et al. [10], without assuming any structure
on the matrix A in (29). Interestingly, we will
find that ordinary B&B solves the reformula-
tion of the majority of the instances without
any branching. We explain the connection
with solving low-density subset sum prob-
lems after the proof.

We assume n > 5, and when a statement
is true for all, but at most a fraction of
1/2" of the elements of a set S, we say
that it is true for almost all elements. For
positive integers m,n, and M we denote by
Gy, (M) the set of matrices with m rows and
n columns, and the entries from {1,...,M},
and by G,, ,(M) the subset of G, ,(M) con-
sisting of matrices with linearly independent
TOWS.

We use a version of ordinary B&B that
branches on the variables in reverse order,
and call this algorithm reverse B&B. If B&B
generates at most one node at each level of the
tree, we say that it solves an integer feasibil-
ity problem at the root node. When the system
Ax = ¢1 does not have an integral solution,
the nullspace reformulation does not exist:
for simplicity we still say that in this case the
reformulated instance is solved at the root
node.



Theorem 2. If M > (2"4/2|(wy; ws) —
(€1; L) )/m+1, then  for almost all
A € Gy (M) reverse B&B solves the LLL
rangespace reformulation of (29) at the root
node.

Also, if M > (2n—m+49/2 ||w2 - 42”)"/’”, then
foralmostall A € Gy, ,,(M) reverse B&B solves
the LLL nullspace reformulation of (29) at the
root node.

Proof Sketch We outline a proof of the first
statement, and refer the reader to Pataki
et al. [10] for details, and the proof of the
second. For convenience, we shall write (A; I)
for the matrix obtained by stacking A on top
of I, and the meaning of (¢1; ¢2) and (w1; w2)
will be analogous.

Let U be the matrix such that the columns
of (A; U form an LLL reduced basis of the
generated lattice. We first use Corollary 3
with B=(A: DU, and @ = {y|(t1:£2) <y <
(w1; w2)} to find that when reverse B&B is
applied to (30), the number of B&B nodes on
the level of y; is at most

2] |z w2) — (61: £2)
1_[ * +1 ’
i=j ||bL “

where b7,...,b; form the Gram-Schmidt
orthogonalization of the columns of (A; )U.
Hence if

”b;< ||>||(w1; wy) — (q; EQ)H Vi=1,...,n, (55)

then the problem is solved at the root node.
The definition of LLL reducedness implies

67] =

1
= 9G-1/2 ”bl H

1 (56)

> 2@_—1)/2)»1(]14(14; D),
where A1(IL(A; I)) denotes the length of the
shortest nonzero vector in LL(A;I). So (55)
holds, when

M(LAD) > 2772 (wy; wa)— (015 £2)]. (BT)
Condition (57) does not hold for all A

matrices, so let us call a matrix A € G, ,(M)
bad, when (57) fails. One can show that for
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r >0 the shortest vector in LL(A; I) is strictly
longer than r for all, but at most a fraction of

(2 LrJ + 1)n+m

e (58)

matrices in Gy, ,(M). We refer the reader to
Lemma 2.2 in Pataki et al. [10] for details.

Using this result, it follows that when M is
as given in the first statement of the theorem,
the fraction of bad matrices is at most 1/2",
and this completes the proof.

Remark 5. A stronger version of Theorem
2 is true, if we use a “more reduced” basis,
in particular, a so-called reciprocal KZ
reduced basis. For details, we refer to Pataki
et al. [10].

There is an interesting connection with
earlier work on subset sum problems, which
we outline here. Furst and Kannan [22] based
on Lagarias’ and Odlyzko’s [23] and Frieze’s
[24] work show that the subset sum problem

ax =
n (59)

x € {0,1}",
is solvable in polynomial time using a
simple iterative method for almost all
a € G1,(M), and all right-hand sides, when
M is sufficiently large, and a reduced basis
onN(a) is available. Their bound on M is
one/2+2np3n/2 \when the basis is LLL reduced,
and 20/2nlogntdn when it is reciprocal KZ
reduced.

Subset sum problems with potentially
such large coefficients find uses in cryptog-
raphy. The vector a is a public key, x is
a message, and the encoded message that
the sender transmits is ax. The wide range
of the coefficients of @ makes sure that
few right-hand sides among the integers
in {1,...,>7"  a;} arise as ax for some
x €{0,1}", and it is rare for two distinct x
vectors to map to the same ax. The results
of Lagarias and Odlyzko [23], Frieze [24],
and a later improvement by Coster et al. [25]
show that using basis reduction the solution
of (59) can be found with high probability,
if it is known to exist. In other words, an
intercepted message can be decoded for most
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of the a public keys. Furst and Kannan [22]
go further by finding the solution if it exists,
and a proof of infeasibility for instances that
do not have a solution.

Our bounds obtained by letting m =1 in
Theorem 2 and its variant that uses recipro-
cal KZ reducedness are comparable to Furst
and Kannan’s bounds, when the size of M,
that is, [log(M + 1)] is concerned. Precisely,
the bound on the size of M is O(n?), when
we use an LLL reduced basis, and O(n logn),
when we use a reciprocal KZ reduced
basis.

So these results generalize the solvability
results of [22] from subset sum problems to
bounded integer programs. It is also inter-
esting that one can prove complexity results
via branch-and-bound, an algorithm that has
been considered inefficient from the theoreti-
cal point of view.

FURTHER READING AND COMPUTATIONAL
TESTING

In this section we briefly review results on
integer programming in fixed dimension,
whose detailed treatment is beyond the
scope of our survey, mention other surveys
that the reader may find to be of interest,
and review computational experience with
lattice-based methods. We will write “poly-
nomial time when the dimension is fixed” as
fd-polynomial time for short.

The generalized basis reduction algorithm
of Lovasz and Scarf [26] also solves (IP) in
fd-polynomial time. Instead of rounding the
underlying polytope, like Lenstra’s and Kan-
nan’s algorithms do, at its core is a subroutine
that finds an integral vector p such that
width(p, P) is relatively small, by solving a
sequence of linear programs. This vector is
then used for branching. Kannan [27] pre-
sented an algorithm to solve the Frobenius
problem in fd-polynomial time.

An fd-polynomial time algorithm exists
even to count the number of feasible solu-
tions of (IP). The breakthrough algorithm to
achieve this is due to Barvinok [28]. His algo-
rithm was considerably simplified by Dyer
and Kannan [29], and successfully imple-
mented by De Loera et al. [30]. Koeppe [31]

developed, and implemented a newer primal
variant, which in many cases is also faster in
practice.

Given c € Z", the integer optimization
problem is finding a feasible solution of
(IP), which maximizes cx. One can solve
this problem by reducing it to a sequence
of feasibility problems; however, it is inter-
esting to study direct approaches, which
are theoretically efficient. We refer to
Eisenbrand [32] for a fast algorithm to solve
this problem, under the assumption that
the number of variables, and the number of
constraints are both fixed. Computing the
integer programming gap is the problem of
finding the maximum difference between the
optimal value of an integer programming
problem, and its LP relaxation, as the right-
hand side varies. An fd-polynomial time
algorithm for this problem was developed
by Hosten and Sturmfels [33], assuming
that the number of constraints is also fixed.
Eisenbrand and Shmonin [34] described
an fd-polynomial algorithm even when the
number of constraints is allowed to vary.

Other reviews on the uses of basis
reduction and integer programming that the
reader may find useful are by Kannan [35],
Aardal and Eisenbrand [36], and Eisenbrand
[37]: the latter is also a tutorial, with
accompanying exercises. A substantial part
of the books of Schrijver [13], and Grétschel
et al. [38] are also devoted to this subject.

There is surprisingly little experience
with implementing Lenstra’s algorithm. Gao
and Zhang [39] described an implementa-
tion, and Mehrotra and Li [6] presented
and implemented a nonrecursive variant, in
which branching is done on a hyperplane
in the original formulation. Cook et al. [40]
reported a successful implementation of the
generalized basis reduction method.

There is more computational evidence
of the effectiveness of the reformulation
methods.

Aardal et al. [4] successfully tested their
reformulation on knapsack-type feasibility
problems that arise from circuit design.
Another application of lattice-based methods
is on the marketshare problems of Cornuéjols
and Dawande [41]. Suppose that a company
supplies n retailers with m products, with



retailer j receiving a;; units of product i. The
company has two divisions. We would like to
assign each retailer to one of the divisions,
so the retailers in each division receive
approximately half of the total supply of each
product.

Letting A be a matrix with the (i, j)th entry
equal to a;, and b € Z™ with the ith entry
equal to

1 n
22|
j=1
the problem can be formulated as

Ax=b

x € {0,1}", (60
where x; is set to 1, if retailer j is assigned to
division 1, and 0 otherwise.

Two variants of (60) have also been
studied, which are especially interesting,
when the original problem is infeasible. The
first is an optimization version introduced
in Cornuéjols and Dawande [41], which
attempts to minimize HAx — b||1. The second
is a relaxed version studied in Pataki et al.
[10], namely,

bre=dvs 61)
x e {0,1}".

This formulation attempts to find a near
equal market split (of course if Zj’f:l a;jis odd,
then the ith constraints in (61) are as good as
the ith constraint in (60)).

The marketshare problems are exception-
ally difficult to solve by commercial integer
programming software, and Cornuéjols and
Dawande offered them as a challenge to
the Integer Programming community. They
generated the a; uniformly at random in
the interval {1,...,100}, with the choice
n =10(m — 1). Aardal et al. [42] showed that
by using the CPLEX 6.5 commercial Mixed
Integer Programming (MIP) solver, the
nullspace reformulations of 7 x 60 instances
were solved in a reasonable amount of
time, whereas the original formulations of
even 5 x 60 instances could not be handled.
Improved results were obtained for the
optimization versions as well, and the
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authors also derived an approximation for
the number of feasible solutions of (60)
in terms of m and n. A generalization of
the marketshare problem with a matrix
variables, and two-sided constraints was
studied by Louveaux and Wolsey [43].

A counterintuitive guess based on
Theorem 2 is that the reformulations of
the marketshare problems should become
easier in practice, when the a;; are drawn
from {1,...,M}, and M grows. This was
confirmed by computational experiments by
Pataki et al. [10]. For instance, the average
number of nodes over 12 instances that
needed to be enumerated by CPLEX 9 to
solve the rangespace reformulation of 5 x 40
relaxed instances with M = 100 was 38865.
However, the average number of nodes with
M = 10000 was just 1976.

A computational study on the Frobenius
instances given in Example 4 was carried
out by Aardal and Lenstra [8]. Krishnamoor-
thy and Pataki [5] experimented with more
general DKPs, both with feasible and infea-
sible instances, and using varying bounds.
As expected, the reformulations were quite
easy to solve, usually requiring less than a
hundred nodes, even when A was not large
enough for Theorem 1 (or its version using KZ
reducedness) to give theoretical guarantees.

Two other interesting observations were
made in Krishnamoorthy and Pataki [5]: first,
when the knapsack problem has an equal-
ity constraint, and so both reformulations
were applicable, there was no difference in
their performance. Second, Theorem 1, which
asserts that branching on a single variable in
the reformulation is equivalent to branch-
ing on px in the original problem is veri-
fied by another experiment: creating a new
variable z, and adding the redundant con-
straint z = px to the original formulations.
Even without specifying a higher priority
for branching on the z variable, the original
instances with this addition solved as fast as
the reformulations.
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