Bad semidefinite programs with short proofs

Gábor Pataki
UNC Chapel Hill

Talk at Fields Institute workshop
Dedicated to Arkadi Nemirovski's birthday, 2017

A pair of Semidefinite Programs (SDP)

$$
\begin{array}{lrl}
\sup _{x} c^{T} x & \inf _{Y} & B \bullet Y \\
\text { s.t. } \sum_{i=1}^{m} x_{i} A_{i} \preceq B & Y \succeq 0 \\
& & A_{i} \bullet Y=c_{i}(i=1, \ldots, m) .
\end{array}
$$

Here

- A_{i}, B are symmetric matrices, $c, x \in \mathbb{R}^{m}$.
- $A \preceq B$ means that $B-A$ is symmetric positive semidefinite (psd).
- $A \bullet B=\sum_{i, j} a_{i j} b_{i j}$.

SDP duality

The primal-dual pair of SDPs:

$$
\begin{array}{lrl}
\sup _{x} c^{T} x & \inf _{Y} & B \bullet Y \\
\text { s.t. } \sum_{i=1}^{m} x_{i} A_{i} \preceq B & & Y \succeq 0 \\
& & A_{i} \bullet Y=c_{i}(i=1, \ldots, m) .
\end{array}
$$

SDP duality

The primal-dual pair of SDPs:

$$
\begin{array}{lrl}
\sup _{x} c^{T} x & \inf _{Y} & B \bullet Y \\
\text { s.t. } \sum_{i=1}^{m} x_{i} A_{i} \preceq B & & Y \succeq 0 \\
& & A_{i} \bullet Y=c_{i}(i=1, \ldots, m) .
\end{array}
$$

Easy: If x and Y are feasible, then $c^{T} x \leq B \bullet Y$.

SDP duality

The primal-dual pair of SDPs:

$$
\begin{array}{lrl}
\sup _{x} c^{T} x & \inf _{Y} & B \bullet Y \\
\text { s.t. } \sum_{i=1}^{m} x_{i} A_{i} \preceq B & Y \succeq 0 \\
& & A_{i} \bullet Y=c_{i}(i=1, \ldots, m) .
\end{array}
$$

Easy: If x and Y are feasible, then $c^{T} x \leq B \bullet Y$.
Ideal situation: $\exists \bar{x}, \exists \bar{Y}: c^{T} \bar{x}=B \bullet \bar{Y}$.

SDP duality

The primal-dual pair of SDPs:

$$
\begin{array}{lrl}
\sup _{x} c^{T} x & \inf _{Y} & B \bullet Y \\
\text { s.t. } \sum_{i=1}^{m} x_{i} A_{i} \preceq B & Y \succeq 0 \\
& & A_{i} \bullet Y=c_{i}(i=1, \ldots, m) .
\end{array}
$$

Easy: If x and Y are feasible, then $c^{T} x \leq B \bullet Y$.
Ideal situation: $\exists \bar{x}, \exists \bar{Y}: c^{T} \bar{x}=B \bullet \bar{Y}$.
But: in SDP, unlike in LP pathological phenomena occur: nonattainment, positive gaps.

This is bad, since we would like a certificate of optimality.

Pathology \# 1: nonattainment in dual

Primal:

$$
\begin{aligned}
& \text { sup } 2 x_{1} \\
& \text { s.t. } x_{1}\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \preceq\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)
\end{aligned}
$$

Pathology \# 1: nonattainment in dual

Primal:

$$
\begin{array}{ll}
\text { sup } & 2 x_{1} \\
\text { s.t. } & x_{1}\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \preceq\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)
\end{array}
$$

Only feasible x_{1} is $x_{1}=0$.

Pathology \# 1: nonattainment in dual

Primal:

$$
\begin{aligned}
& \text { sup } 2 x_{1} \\
& \text { s.t. } x_{1}\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \preceq\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)
\end{aligned}
$$

Only feasible x_{1} is $x_{1}=0$.
Dual: Dual variable is $Y \succeq 0$.

$$
\begin{aligned}
& \inf y_{11} \\
& \text { s.t. }\left(\begin{array}{cc}
y_{11} & 1 \\
1 & y_{22}
\end{array}\right) \succeq 0
\end{aligned}
$$

Pathology \# 1: nonattainment in dual

Primal:

$$
\begin{aligned}
& \text { sup } 2 x_{1} \\
& \text { s.t. } x_{1}\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \preceq\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)
\end{aligned}
$$

Only feasible x_{1} is $x_{1}=0$.
Dual: Dual variable is $Y \succeq 0$.

$$
\begin{aligned}
& \inf y_{11} \\
& \text { s.t. }\left(\begin{array}{cc}
y_{11} & 1 \\
1 & y_{22}
\end{array}\right) \succeq 0
\end{aligned}
$$

Unattained $\inf =0$.

Other pathologies

- Positive duality gaps; positive gap and nonattainment; etc.

Terminology

Definition:

- The system

$$
\left(\boldsymbol{P}_{S D}\right) \sum_{i=1}^{m} x_{i} \boldsymbol{A}_{i} \preceq B
$$

is badly behaved if $\exists c$ such that

$$
\sup \left\{c^{T} x \mid x \in\left(P_{S D}\right)\right\}<+\infty
$$

but the dual program has no solution with same value (i.e. dual does not attain, or positive gap).

- Well behaved, otherwise.
- We would like to understand well/badly behaved systems.

Motivation

The systems

$$
x_{1}\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \preceq\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)
$$

and

$$
x_{1}\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)+x_{2}\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right) \preceq\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

are both badly behaved.

Motivation

The systems

$$
x_{1}\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \preceq\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)
$$

and

$$
x_{1}\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)+x_{2}\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right) \preceq\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

are both badly behaved.
Curious similarity - of these, and about 20 others in the literature

Why all bad SDPs look the same

- Semidefinite system:

$$
\left(\boldsymbol{P}_{S D}\right) \quad \sum_{i=1}^{m} x_{i} A_{i} \preceq B
$$

Why all bad SDPs look the same

- Semidefinite system:

$$
\left(P_{S D}\right) \quad \sum_{i=1}^{m} x_{i} \boldsymbol{A}_{i} \preceq B
$$

- W.l.o.g. the max (rank) slack is

$$
Z=\left(\begin{array}{cc}
I_{r} & 0 \\
0 & 0
\end{array}\right)
$$

Why all bad SDPs look the same

- Semidefinite system:

$$
\left(\boldsymbol{P}_{S D}\right) \quad \sum_{i=1}^{m} \boldsymbol{x}_{i} \boldsymbol{A}_{i} \preceq B
$$

- W.l.o.g. the max (rank) slack is

$$
Z=\left(\begin{array}{cc}
I_{r} & 0 \\
0 & 0
\end{array}\right)
$$

Then $\left(P_{S D}\right)$ badly behaved $\Leftrightarrow \exists V$ a lin. combination of the A_{i} as

$$
V=\left(\begin{array}{ll}
\overbrace{V_{11}}^{r} & V_{12} \\
V_{12}^{T} & V_{22}
\end{array}\right), \text { where } V_{22} \succeq 0, \mathrm{R}\left(\boldsymbol{V}_{12}^{T}\right) \nsubseteq \mathrm{R}\left(\boldsymbol{V}_{22}\right)
$$

Why all bad SDPs look the same

- Semidefinite system:

$$
\left(\boldsymbol{P}_{S D}\right) \quad \sum_{i=1}^{m} \boldsymbol{x}_{i} \boldsymbol{A}_{i} \preceq B
$$

- W.l.o.g. the max (rank) slack is

$$
Z=\left(\begin{array}{cc}
I_{r} & 0 \\
0 & 0
\end{array}\right)
$$

Then $\left(P_{S D}\right)$ badly behaved $\Leftrightarrow \exists V$ a lin. combination of the A_{i} as

$$
V=\left(\begin{array}{ll}
\overbrace{11}^{r} & V_{12} \\
V_{12}^{T} & V_{22}
\end{array}\right), \text { where } V_{22} \succeq 0, \mathrm{R}\left(V_{12}^{T}\right) \nsubseteq \mathrm{R}\left(V_{22}\right)
$$

- Ex: $x_{1}\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right) \preceq\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)$

Why all bad SDPs look the same

- Semidefinite system:

$$
\left(\boldsymbol{P}_{S D}\right) \quad \sum_{i=1}^{m} x_{i} A_{i} \preceq B
$$

- W.l.o.g. the max (rank) slack is

$$
Z=\left(\begin{array}{cc}
I_{r} & 0 \\
0 & 0
\end{array}\right)
$$

Then $\left(P_{S D}\right)$ badly behaved $\Leftrightarrow \exists V$ a lin. combination of the A_{i} as

$$
V=\left(\begin{array}{ll}
\overbrace{V_{11}}^{r} & V_{12} \\
V_{12}^{T} & V_{22}
\end{array}\right), \text { where } V_{22} \succeq 0, \mathrm{R}\left(V_{12}^{T}\right) \notin \mathrm{R}\left(V_{22}\right) .
$$

- Ex: $x_{1}\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right) \preceq \overbrace{\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)}^{Z}$

Why all bad SDPs look the same

- Semidefinite system:

$$
\left(\boldsymbol{P}_{S D}\right) \quad \sum_{i=1}^{m} x_{i} A_{i} \preceq B
$$

- W.l.o.g. the max (rank) slack is

$$
Z=\left(\begin{array}{cc}
I_{r} & 0 \\
0 & 0
\end{array}\right)
$$

Then $\left(P_{S D}\right)$ badly behaved $\Leftrightarrow \exists V$ a lin. combination of the A_{i} as

$$
V=\left(\begin{array}{ll}
\overbrace{V_{11}}^{r} & V_{12} \\
V_{12}^{T} & V_{22}
\end{array}\right), \text { where } V_{22} \succeq 0, \mathrm{R}\left(V_{12}^{T}\right) \notin \mathrm{R}\left(V_{22}\right) .
$$

- Ex: $x_{1} \overbrace{\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)}^{V} \preceq \overbrace{\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)}^{Z}$

What is missing?

- Matrices Z, V prove that $\left(P_{S D}\right)$ is badly behaved.
- But: this is not yet a poly time, or easy to verify proof of bad behavior

What is missing?

- Matrices Z, V prove that $\left(P_{S D}\right)$ is badly behaved.
- But: this is not yet a poly time, or easy to verify proof of bad behavior
- Aside: how do we prove that $A x=b$ is infeasible?

What is missing?

- Matrices Z, V prove that $\left(P_{S D}\right)$ is badly behaved.
- But: this is not yet a poly time, or easy to verify proof of bad behavior
- Aside: how do we prove that $A x=b$ is infeasible? \rightarrow row echelon form with $\langle 0, x\rangle=1$.

What is missing?

- Matrices Z, V prove that $\left(P_{S D}\right)$ is badly behaved.
- But: this is not yet a poly time, or easy to verify proof of bad behavior
- Aside: how do we prove that $A x=b$ is infeasible? \rightarrow row echelon form with $\langle 0, x\rangle=1$.
- We will borrow ideas from the row echelon form to produce easy-to-verify certificates.

Reformulations of

$$
\left(P_{S D}\right) \sum_{i=1}^{m} x_{i} A_{i} \preceq B
$$

are obtained by a sequence of:

- Rotate all matrices by $T=\left(\begin{array}{cc}I_{r} & 0 \\ 0 & M\end{array}\right), M$ orthogonal.
- $B \leftarrow B+\sum_{i=1}^{m} \mu_{i} A_{i}$
- $A_{i} \leftarrow \sum_{j=1}^{m} \lambda_{j} A_{j}$ where $\lambda_{i} \neq 0$

Reformulations preserve well/badly behaved status; preserve max rank slack

Reformulations of

$$
\left(P_{S D}\right) \sum_{i=1}^{m} x_{i} A_{i} \preceq B
$$

are obtained by a sequence of:

- Rotate all matrices by $T=\left(\begin{array}{cc}I_{r} & 0 \\ 0 & M\end{array}\right), M$ orthogonal.
- $B \leftarrow B+\sum_{i=1}^{m} \mu_{i} A_{i}$
- $A_{i} \leftarrow \sum_{j=1}^{m} \lambda_{j} A_{j}$ where $\lambda_{i} \neq 0$

Reformulations preserve well/badly behaved status; preserve max rank slack

Origin: Elemantary row operations on dual.

$$
\text { E.g.replace } A_{i} \bullet Y=c_{i} \text { by } \sum_{j}\left(\lambda_{j} A_{j}\right) \bullet Y=\sum_{j} \lambda_{j} c_{j} .
$$

Theorem: $\left(P_{S D}\right)$ is badly behaved \Leftrightarrow it has a reformulation:

$$
\left(P_{S D, b a d}\right) \sum_{i=1}^{k} x_{i}\left(\begin{array}{cc}
F_{i} & 0 \\
0 & 0
\end{array}\right)+\sum_{i=k+1}^{m} x_{i}\left(\begin{array}{cc}
F_{i} & G_{i} \\
G_{i}^{T} & H_{i}
\end{array}\right) \preceq\left(\begin{array}{cc}
I_{r} & 0 \\
0 & 0
\end{array}\right)=Z,
$$

Theorem: $\left(P_{S D}\right)$ is badly behaved \Leftrightarrow it has a reformulation:

$$
\left(P_{S D, b a d}\right) \sum_{i=1}^{k} x_{i}\left(\begin{array}{cc}
F_{i} & 0 \\
0 & 0
\end{array}\right)+\sum_{i=k+1}^{m} x_{i}\left(\begin{array}{cc}
F_{i} & G_{i} \\
G_{i}^{T} & H_{i}
\end{array}\right) \preceq\left(\begin{array}{cc}
I_{r} & 0 \\
0 & 0
\end{array}\right)=Z,
$$

where

1) Z is \max slack; 2) $\binom{G_{i}}{H_{i}}$ lin. indep. 3) $H_{m} \succeq 0$

Theorem: $\left(P_{S D}\right)$ is badly behaved \Leftrightarrow it has a reformulation:

$$
\left(P_{S D, b a d}\right) \sum_{i=1}^{k} x_{i}\left(\begin{array}{cc}
F_{i} & 0 \\
0 & 0
\end{array}\right)+\sum_{i=k+1}^{m} x_{i}\left(\begin{array}{cc}
F_{i} & G_{i} \\
G_{i}^{T} & H_{i}
\end{array}\right) \preceq\left(\begin{array}{cc}
I_{r} & 0 \\
0 & 0
\end{array}\right)=Z,
$$

where

1) Z is \max slack; 2) $\binom{G_{i}}{H_{i}}$ lin. indep. 3) $H_{m} \succeq 0$

Proof that $\left(P_{S D, b a d}\right)$ is badly behaved:

Theorem: $\left(P_{S D}\right)$ is badly behaved \Leftrightarrow it has a reformulation:

$$
\left(P_{S D, b a d}\right) \sum_{i=1}^{k} x_{i}\left(\begin{array}{cc}
F_{i} & 0 \\
0 & 0
\end{array}\right)+\sum_{i=k+1}^{m} x_{i}\left(\begin{array}{cc}
F_{i} & G_{i} \\
G_{i}^{T} & H_{i}
\end{array}\right) \preceq\left(\begin{array}{cc}
I_{r} & 0 \\
0 & 0
\end{array}\right)=Z,
$$

where

1) Z is max slack; 2) $\binom{G_{i}}{H_{i}}$ lin. indep. 3) $H_{m} \succeq 0$

Proof that ($P_{S D, b a d}$) is badly behaved:
x feas. with slack $S \Rightarrow$ last $n-r$ cols of S are zero

$$
\begin{array}{cc}
\Rightarrow & x_{k+1}=\cdots=x_{m}=0 \\
\Rightarrow & \sup -x_{m}=0
\end{array}
$$

Theorem: $\left(P_{S D}\right)$ is badly behaved \Leftrightarrow it has a reformulation:

$$
\left(P_{S D, b a d}\right) \sum_{i=1}^{k} x_{i}\left(\begin{array}{cc}
F_{i} & 0 \\
0 & 0
\end{array}\right)+\sum_{i=k+1}^{m} x_{i}\left(\begin{array}{cc}
F_{i} & G_{i} \\
G_{i}^{T} & H_{i}
\end{array}\right) \preceq\left(\begin{array}{cc}
I_{r} & 0 \\
0 & 0
\end{array}\right)=Z,
$$

where

1) Z is \max slack; 2) $\binom{G_{i}}{H_{i}}$ lin. indep. 3) $H_{m} \succeq 0$

Proof that ($P_{S D, b a d}$) is badly behaved:
But: no dual soln with value 0 .

Theorem: $\left(P_{S D}\right)$ is badly behaved \Leftrightarrow it has a reformulation:

$\left(\boldsymbol{P}_{S D, b a d}\right) \sum_{i=1}^{k} x_{i}\left(\begin{array}{cc}\boldsymbol{F}_{i} & 0 \\ 0 & 0\end{array}\right)+\sum_{i=k+1}^{m} x_{i}\left(\begin{array}{cc}\boldsymbol{F}_{i} & G_{i} \\ G_{i}^{T} & \boldsymbol{H}_{i}\end{array}\right) \preceq\left(\begin{array}{cc}\boldsymbol{I}_{r} & 0 \\ 0 & 0\end{array}\right)=Z$,
where

1) Z is max slack; 2) $\binom{G_{i}}{H_{i}}$ lin. indep. 3) $H_{m} \succeq 0$

Note partitioning into

- "Slater part" with x_{1}, \ldots, x_{k} and
- "Redundant part" with x_{k+1}, \ldots, x_{m}

Example: before reformulation

$$
\begin{aligned}
x_{1}\left(\begin{array}{cccc}
54 & 46 & 50 & 4 \\
46 & -38 & 87 & -106 \\
50 & 87 & -60 & 296 \\
4 & -106 & 296 & -368
\end{array}\right) & +x_{2}\left(\begin{array}{cccc}
110 & 91 & 105 & -6 \\
91 & -72 & 171 & -210 \\
105 & 171 & -72 & 528 \\
-6 & -210 & 528 & -672
\end{array}\right)
\end{aligned}+x_{3}\left(\begin{array}{cccc}
42 & 35 & 40 & 0 \\
35 & -28 & 67 & -82 \\
40 & 67 & -36 & 216 \\
0 & -82 & 216 & -272
\end{array}\right)
$$

Hard to tell if well or badly behaved

Example: after reformulation

$$
\begin{aligned}
x_{1}\left(\begin{array}{cc|cc}
0 & 1 & 0 & 0 \\
1 & -2 & 0 & 0 \\
\hline 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) & +x_{2}\left(\begin{array}{cc|cc}
2 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
\hline 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)+x_{3}\left(\begin{array}{cc|cc}
0 & 0 & 2 & 1 \\
0 & 0 & 3 & -1 \\
\hline 2 & 3 & 0 & 2 \\
1 & -1 & 2 & 0
\end{array}\right) \\
& +x_{4}\left(\begin{array}{cc|cc}
0 & 0 & 3 & -1 \\
0 & 0 & 2 & -1 \\
\hline 3 & 2 & 4 & 0 \\
-1 & -1 & 0 & 0
\end{array}\right)
\end{aligned} \xlongequal[\left(\begin{array}{cc|cc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
\hline 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)]{ } \begin{aligned}
\left(\begin{array}{cc}
0
\end{array}\right. \\
\hline
\end{aligned}
$$

As before: $x_{3}=x_{4}=0 \Rightarrow \sup -x_{4}=0$
But: no dual solution with value 0

Theorem: $\left(P_{S D}\right)$ is well behaved \Leftrightarrow it has a reformulation:

$$
\left(P_{S D, g o o d}\right) \sum_{i=1}^{k} x_{i}\left(\begin{array}{cc}
F_{i} & 0 \\
0 & 0
\end{array}\right)+\sum_{i=k+1}^{m} x_{i}\left(\begin{array}{cc}
F_{i} & G_{i} \\
G_{i}^{T} & H_{i}
\end{array}\right) \preceq\left(\begin{array}{cc}
I_{r} & 0 \\
0 & 0
\end{array}\right)=Z,
$$

Theorem: $\left(P_{S D}\right)$ is well behaved \Leftrightarrow it has a reformulation:

$$
\left(P_{S D, \text { good })} \sum_{i=1}^{k} x_{i}\left(\begin{array}{cc}
F_{i} & 0 \\
0 & 0
\end{array}\right)+\sum_{i=k+1}^{m} x_{i}\left(\begin{array}{cc}
F_{i} & G_{i} \\
G_{i}^{T} & H_{i}
\end{array}\right) \preceq\left(\begin{array}{cc}
I_{r} & 0 \\
0 & 0
\end{array}\right)=Z,\right.
$$

where

1) Z is max slack; 2) H_{i} lin. indep. 3) $H_{i} \bullet I=0 \forall i$

Story continued

- Paper in SIOPT journal 2017 (First version written in 2010)

Story continued

- Paper in SIOPT journal 2017 (First version written in 2010)
-"Bad semidefinite programs: they all look the same"

Story continued

- Paper in SIOPT journal 2017 (First version written in 2010)
-"Bad semidefinite programs: they all look the same"
- Proofs:
- 1) characterize badly behaved conic LPs, 2) specialize to SDPs
- Uses "On the closedness of linear image of a closed convex cone", P 2007, MOR
- Results from 3-4 papers combined

Story continued

- Paper in SIOPT journal 2017 (First version written in 2010)
-"Bad semidefinite programs: they all look the same"
- Proofs:
- 1) characterize badly behaved conic LPs, 2) specialize to SDPs
- Uses "On the closedness of linear image of a closed convex cone", P 2007, MOR
- Results from 3-4 papers combined
- We would like a simpler, combinatorial proof

A much simpler proof

A much simpler proof

The bad part

A much simpler proof

The bad part
$\left(P_{S D}\right)$ satisfies the "Bad condition" $(\exists Z, V) \Longrightarrow$
it has a "Bad reformulation" $\left(P_{S D, b a d}\right)$
it is badly behaved.

A much simpler proof

The bad part
$\left(P_{S D}\right)$ satisfies the "Bad condition" $(\exists Z, V) \Longrightarrow$
it has a "Bad reformulation" $\left(P_{S D, b a d}\right)$
it is badly behaved.
Proof Basic linear algebra.

A much simpler proof

The bad part
$\left(P_{S D}\right)$ satisfies the "Bad condition" $(\exists Z, V) \Longrightarrow$
it has a "Bad reformulation" $\left(P_{S D, b a d}\right)$
it is badly behaved.
Proof Basic linear algebra.
The good part

A much simpler proof

The bad part
$\left(P_{S D}\right)$ satisfies the $" B a d$ condition" $(\exists Z, V) \Longrightarrow$
it has a "Bad reformulation" $\left(P_{S D, b a d}\right)$
it is badly behaved.
Proof Basic linear algebra.
The good part
$\left(P_{S D}\right)$ satisfies the "Good condition"
it has a "Good reformulation" $\left(P_{S D, g o o d}\right) \Longrightarrow$
it is well behaved.

A much simpler proof

The bad part
$\left(P_{S D}\right)$ satisfies the $" B a d$ condition" $(\exists Z, V) \Longrightarrow$
it has a "Bad reformulation" $\left(P_{S D, b a d}\right)$
it is badly behaved.
Proof Basic linear algebra.
The good part
$\left(P_{S D}\right)$ satisfies the "Good condition"
it has a "Good reformulation" $\left(P_{S D, g o o d}\right) \Longrightarrow$
it is well behaved.
Proof Basic linear algebra.

A much simpler proof

The bad part
$\left(P_{S D}\right)$ satisfies the $" B a d$ condition" $(\exists Z, V) \Longrightarrow$
it has a "Bad reformulation" $\left(P_{S D, b a d}\right)$
it is badly behaved.
Proof Basic linear algebra.
The good part
$\left(P_{S D}\right)$ satisfies the "Good condition"
it has a "Good reformulation" $\left(P_{S D, g o o d}\right) \Longrightarrow$
it is well behaved.
Proof Basic linear algebra.
The tying together part

A much simpler proof

The bad part
$\left(P_{S D}\right)$ satisfies the $" B a d$ condition" $(\exists Z, V) \Longrightarrow$
it has a "Bad reformulation" $\left(P_{S D, b a d}\right)$
it is badly behaved.
Proof Basic linear algebra.
The good part
$\left(P_{S D}\right)$ satisfies the "Good condition"
it has a "Good reformulation" $\left(P_{S D, g o o d}\right) \Longrightarrow$
it is well behaved.
Proof Basic linear algebra.
The tying together part
"Good condition" fails \Longrightarrow "Bad condition" holds.

A much simpler proof

The bad part
$\left(P_{S D}\right)$ satisfies the "Bad condition" $(\exists Z, V) \Longrightarrow$
it has a "Bad reformulation" $\left(P_{S D, b a d}\right)$
it is badly behaved.
Proof Basic linear algebra.
The good part
$\left(P_{S D}\right)$ satisfies the "Good condition"
it has a "Good reformulation" $\left(P_{S D, g o o d}\right) \Longrightarrow$
it is well behaved.
Proof Basic linear algebra.
The tying together part
"Good condition" fails \Longrightarrow "Bad condition" holds.
Proof Basic convex analysis: Gordan-Stiemke theorem.

Gordan-Stiemke theorem

Given closed convex cone K and linear subspace L

$$
\text { ri } K \cap L^{\perp}=\emptyset \Leftrightarrow\left(K^{*} \backslash K^{\perp}\right) \cap L \neq \emptyset .
$$

Good condition fails \Longrightarrow Bad condition holds.
Good condition (1) $\exists U \succ 0$ s.t.

$$
A_{i} \bullet\left(\begin{array}{cc}
0 & 0 \\
0 & U
\end{array}\right)=0 \forall i
$$

(2) If V is a linear combination of the A_{i}

$$
V=\left(\begin{array}{cc}
V_{11} & V_{12} \\
V_{12}^{T} & 0
\end{array}\right), \text { then } V_{12}=0
$$

Good condition fails \Longrightarrow Bad condition holds.
Good condition (1) $\exists U \succ 0$ s.t.

$$
A_{i} \bullet\left(\begin{array}{cc}
0 & 0 \\
0 & U
\end{array}\right)=0 \forall i
$$

(2) If V is a linear combination of the A_{i}

$$
V=\left(\begin{array}{cc}
V_{11} & V_{12} \\
V_{12}^{T} & 0
\end{array}\right), \text { then } V_{12}=0
$$

Bad condition $\exists V$ a lin. combination of the A_{i} as
$V=\left(\begin{array}{ll}\overbrace{11}^{r} & V_{12} \\ V_{12}^{T} & V_{22}\end{array}\right)$, where $V_{22} \succeq 0, \mathrm{R}\left(V_{12}^{T}\right) \notin \mathrm{R}\left(V_{22}\right)$.

Good condition fails \Longrightarrow Bad condition holds.
Good condition (1) $\exists U \succ 0$ s.t.

$$
A_{i} \bullet\left(\begin{array}{cc}
0 & 0 \\
0 & U
\end{array}\right)=0 \forall i
$$

(2) If V is a linear combination of the A_{i}

$$
V=\left(\begin{array}{cc}
V_{11} & V_{12} \\
V_{12}^{T} & 0
\end{array}\right), \text { then } V_{12}=0
$$

Bad condition $\exists V$ a lin. combination of the A_{i} as
$V=\left(\begin{array}{cc}\overbrace{11}^{r} & V_{12} \\ V_{12}^{T} & V_{22}\end{array}\right)$, where $V_{22} \succeq 0, \mathrm{R}\left(V_{12}^{T}\right) \notin \mathrm{R}\left(V_{22}\right)$.
Good (2) fails \Longrightarrow Bad holds (trivial)

Good condition fails \Longrightarrow Bad condition holds.
Good condition (1) $\exists U \succ 0$ s.t.

$$
A_{i} \bullet\left(\begin{array}{cc}
0 & 0 \\
0 & U
\end{array}\right)=0 \forall i
$$

(2) If V is a linear combination of the A_{i}

$$
V=\left(\begin{array}{cc}
V_{11} & V_{12} \\
V_{12}^{T} & 0
\end{array}\right), \text { then } V_{12}=0
$$

Bad condition $\exists V$ a lin. combination of the A_{i} as
$V=\left(\begin{array}{cc}\overbrace{11}^{r} & V_{12} \\ V_{12}^{T} & V_{22}\end{array}\right)$, where $V_{22} \succeq 0, \mathrm{R}\left(V_{12}^{T}\right) \notin \mathrm{R}\left(V_{22}\right)$.
Good (2) fails \Longrightarrow Bad holds (trivial)
Good (1) fails \Longrightarrow Bad holds (use Gordan-Stiemke)

Conclusion

- Pathologies in duality: well- and badly behaved semidefinite systems.

Conclusion

- Pathologies in duality: well- and badly behaved semidefinite systems.
- Combinatorial type characterizations.

Conclusion

- Pathologies in duality: well- and badly behaved semidefinite systems.
- Combinatorial type characterizations.
- Reformulations into canonical forms to easily recognize good and bad behavior.

Conclusion

- Pathologies in duality: well- and badly behaved semidefinite systems.
- Combinatorial type characterizations.
- Reformulations into canonical forms to easily recognize good and bad behavior.
- Now: elementary proofs, with:
- Basic linear algebra
- One application of Gordan-Stiemke theorem

Conclusion

- Pathologies in duality: well- and badly behaved semidefinite systems.
- Combinatorial type characterizations.
- Reformulations to easily recognize good and bad behavior.
- Now: elementary proofs, with:
- Basic linear algebra
- One application of Gordan-Stiemke theorem
- Also in this paper: when is the linear image of the semidefinite cone closed?

Conclusion

- Pathologies in duality: well- and badly behaved semidefinite systems.
- Combinatorial type characterizations.
- Reformulations into canonical forms to easily recognize good and bad behavior.
- Now: elementary proofs, with:
- Basic linear algebra
- One application of Gordan-Stiemke theorem
- Also in this paper: when is the linear image of the semidefinite cone closed?
- Other uses of canonical forms:
- "Easy" certificate of infeasibility for SDP: Liu-P, SIOPT 2015
- "Easy" certificate of infeasibility and weak infeasibility for conic LP: Liu-P, MPA 2017

Happy birthday! and Thank you!

