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A pair of Semidefinite Programs (SDP)

supx c
Tx infY B • Y

s.t.
∑m

i=1 xiAi � B Y � 0

Ai • Y = ci (i = 1, . . . ,m).

Here

•Ai, B are symmetric matrices, c, x ∈ Rm.
•A � B means thatB −A is symmetric positive semidefinite

(psd).

•A •B =
∑

i,j aijbij.
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SDP duality

The primal-dual pair of SDPs:

supx c
Tx infY B • Y

s.t.
∑m

i=1 xiAi � B Y � 0

Ai • Y = ci (i = 1, . . . ,m).

Easy: If x and Y are feasible, then cTx ≤ B • Y.

Ideal situation: ∃x̄, ∃Ȳ : cT x̄ = B • Ȳ .

But: in SDP, unlike in LP pathological phenomena occur:
nonattainment, positive gaps.

This is bad, since we would like a certificate of optimality.
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Pathology # 1: nonattainment in dual

Primal:

sup 2x1

s.t. x1

0 1

1 0

 �
1 0

0 0


Only feasible x1 is x1 = 0.

Dual: Dual variable is Y � 0.

inf y11

s.t.

y11 1

1 y22

 � 0

Unattained inf = 0.



Other pathologies

• Positive duality gaps; positive gap and nonattainment; etc.



Terminology

Definition:

• The system
(PSD)

∑m
i=1 xiAi � B

is badly behaved if ∃c such that

sup{ cTx |x ∈ (PSD) } < +∞

but the dual program has no solution with same value

(i.e. dual does not attain, or positive gap).

• Well behaved, otherwise.

• We would like to understand well/badly behaved systems.
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are both badly behaved.

Curious similarity – of these, and about 20 others in the
literature
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Why all bad SDPs look the same

• Semidefinite system:

(PSD)
∑m

i=1 xiAi � B

• W.l.o.g. the max (rank) slack is

Z =

Ir 0

0 0

 .
Then (PSD) badly behaved⇔ ∃V a lin. combination of the
Ai as

V =


r︷︸︸︷
V11 V12

V T
12 V22

 , where V22 � 0, R(V T
12) 6⊆ R(V22).

• Ex: x1

V︷ ︸︸ ︷0 1

1 0

 �
Z︷ ︸︸ ︷1 0

0 0


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What is missing?

• Matrices Z, V prove that (PSD) is badly behaved.

• But: this is not yet a poly time, or easy to verify proof of
bad behavior

• Aside: how do we prove that Ax = b is infeasible? → row
echelon form with 〈0, x〉 = 1.

• We will borrow ideas from the row echelon form to produce
easy-to-verify certificates.
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Reformulations of

(PSD)
∑m

i=1 xiAi � B

are obtained by a sequence of:

• Rotate all matrices by T =

Ir 0

0 M

 , M orthogonal.

•B ← B +
∑m

i=1 µiAi

•Ai←
∑m

j=1 λjAj where λi 6= 0

Reformulations preserve well/badly behaved status; preserve
max rank slack

Origin: Elemantary row operations on dual.

E.g.replaceAi • Y = ci by
∑

j(λjAj) • Y =
∑

j λjcj.
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Proof that (PSD,bad) is badly behaved:

x feas. with slack S ⇒ last n− r cols of S are zero

⇒ xk+1 = · · · = xm = 0

⇒ sup−xm = 0
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Theorem: (PSD) is badly behaved ⇔ it has a
reformulation:

(PSD,bad)
∑k

i=1 xi

Fi 0

0 0

 +
∑m

i=k+1 xi

 Fi Gi

GT
i Hi

 �
Ir 0

0 0

 = Z,

where

1) Z is max slack; 2)

Gi

Hi

 lin. indep. 3) Hm � 0

Note partitioning into

• ”Slater part” with x1, . . . , xk and

• ”Redundant part” with xk+1, . . . , xm



Example: before reformulation

x1


54 46 50 4

46 −38 87 −106

50 87 −60 296

4 −106 296 −368

+x2


110 91 105 −6

91 −72 171 −210

105 171 −72 528

−6 −210 528 −672

+x3


42 35 40 0

35 −28 67 −82

40 67 −36 216

0 −82 216 −272



+x4


36 30 35 −2

30 −24 57 −70

35 57 −24 176

−2 −70 176 −224

 �


389 323 370 −12

323 −257 610 −748

370 610 −288 1920

−12 −748 1920 −2432


Hard to tell if well or badly behaved



Example: after reformulation

x1


0 1 0 0

1 −2 0 0

0 0 0 0

0 0 0 0

+x2


2 1 0 0

1 0 0 0

0 0 0 0

0 0 0 0

+x3


0 0 2 1

0 0 3 −1

2 3 0 2

1 −1 2 0



+x4


0 0 3 −1

0 0 2 −1

3 2 4 0

−1 −1 0 0

 �


1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0


As before: x3 = x4 = 0⇒ sup−x4 = 0

But: no dual solution with value 0
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Theorem: (PSD) is well behaved ⇔ it has a
reformulation:

(PSD,good)
∑k

i=1 xi

Fi 0

0 0

 +
∑m

i=k+1 xi

 Fi Gi

GT
i Hi

 �
Ir 0

0 0

 = Z,

where

1) Z is max slack; 2) Hi lin. indep. 3) Hi • I = 0 ∀i
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Story continued

• Paper in SIOPT journal 2017 (First version written in 2010)

• ”Bad semidefinite programs: they all look the same”

• Proofs:

– 1) characterize badly behaved conic LPs, 2) specialize to
SDPs

– Uses ”On the closedness of linear image

of a closed convex cone”, P 2007, MOR

– Results from 3-4 papers combined

• We would like a simpler, combinatorial proof
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A much simpler proof

The bad part

(PSD) satisfies the ”Bad condition”(∃Z, V ) =⇒

it has a ”Bad reformulation”(PSD,bad) =⇒

it is badly behaved.

Proof Basic linear algebra.

The good part

(PSD) satisfies the ”Good condition” =⇒

it has a ”Good reformulation”(PSD,good) =⇒

it is well behaved.

Proof Basic linear algebra.

The tying together part

”Good condition” fails =⇒ ”Bad condition” holds.

Proof Basic convex analysis: Gordan-Stiemke theorem.



Gordan-Stiemke theorem

Given closed convex cone K and linear subspace L

riK ∩ L⊥ = ∅ ⇔ (K∗ \K⊥) ∩ L 6= ∅.
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Good condition fails =⇒ Bad condition holds.

Good condition (1) ∃U � 0 s.t.

Ai •

0 0

0 U

 = 0 ∀i.

(2) If V is a linear combination of the Ai

V =

V11 V12

V T
12 0

 , then V12 = 0.

Bad condition ∃V a lin. combination of the Ai as

V =


r︷︸︸︷
V11 V12

V T
12 V22

 , where V22 � 0, R(V T
12) 6⊆ R(V22).

Good (2) fails =⇒ Bad holds (trivial)

Good (1) fails =⇒ Bad holds (use Gordan-Stiemke)
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Conclusion

• Pathologies in duality: well- and badly behaved semidefi-
nite systems.

• Combinatorial type characterizations.

• Reformulations into canonical forms to easily recognize good
and bad behavior.

• Now: elementary proofs , with:

– Basic linear algebra

– One application of Gordan-Stiemke theorem

• Also in this paper: when is the linear image of the semidef-
inite cone closed?

• Other uses of canonical forms:

– ”Easy” certificate of infeasibility for SDP: Liu-P, SIOPT 2015

– ”Easy” certificate of infeasibility and weak infeasibility for
conic LP: Liu-P, MPA 2017



Happy birthday! and Thank you!


