
Infeasible and weakly infeasible semidefinite programs in [1]

Gábor Pataki∗

July 11, 2017

Abstract

This is a short and nontechnical description of the infeasible and weakly infeasible semidefinite
programing (SDP) instances from [1].

1 Infeasible and weakly infeasible SDPs

We denote by Sn the set of n× n symmetric matrices and by Sn+ the set of n× n symmetric positive
semidefinite (psd) matrices. Given A1, . . . , Am ∈ Sn we consider the linear operator

A : Rm → Sn, given as Ax =

m∑
i=1

xiAi,where x ∈ Rm,

and its adjoint

A∗ : Sn → Rm given as A∗Y = (A1 • Y, . . . , Am • Y)T , where Y ∈ Sn,

where the inner product A •B is the trace of AB.

Consider now the semidefinite system

A∗Y = c

Y � 0
(D)

which we call a dual SDP (this is for convenience, following the convention of [1]).

We say that (D) is infeasible, if there is no Y that satisfies its constraints. We say it is strongly
infeasible, if the distance of the affine subspace

{Y |A∗Y = c}

to Sn+ is positive; and it is weakly infeasible, if it is infeasible, but not strongly so.

A separation theorem from convex analysis implies that (D) is strongly infeasible, if and only there
is x ∈ Rm such that

Ax � 0, 〈c, x〉 = −1. (1.1)

∗Department of Statistics and Operations Research, University of North Carolina at Chapel Hill

1

Example 1. The semidefinite system (
1 0

0 0

)
• Y = 0,(

0 1

1 α

)
• Y = −1,

Y � 0

(1.2)

is infeasible iff α ≥ 0, and weakly infeasible iff α = 0. Indeed, if Y = (yij) � 0 satisfies the first
constraint, then y11 = 0, hence by psdness y12 = 0. We can directly check that (1.1) is feasible iff
α > 0.

The algorithms of [1] generate instances whose infeasibility and weak infeasibility are easy to verify
by inspection. The following two claims explain their structure:

Claim 1. Suppose k ≥ 1, and p1, . . . , pk, pk+1 ≥ 0 are integers. Also suppose that Ai is of the form

Ai =


p1 + . . .+ pi−1︷ ︸︸ ︷ pi︷︸︸︷ n− p1 − . . .− pi︷ ︸︸ ︷

× × ×
× I 0
× 0 0


for i = 1, . . . , k + 1, where the × symbols correspond to blocks with arbitrary elements, Ak+2, . . . , Am

are arbitrary and
cT = (0, . . . , 0,−1, ck+2, . . . , cm).

Then (D) is infeasible.

Proof Suppose Y is feasible in (D). Since A1 • Y = 0, the upper left p1 by p1 block of Y is zero, and
Y � 0 proves that the first p1 rows and columns of Y are zero. Inductively, from the first k constraints
we deduce that the first

∑k
i=1 pi rows and columns of Y are zero.

Deleting the first
∑k

i=1 pi rows and columns from Ak+1 we obtain a psd matrix, hence

Ak+1 • Y ≥ 0,

contradicting the (k + 1)st constraint in (D).

Claim 2. Suppose ` ≥ 1 and q1, . . . , q`, q`+1 ≥ 0 are integers. Also suppose there exist Yj ∈ Sn of the
form

Yj =


n− q1 − . . .− qj︷ ︸︸ ︷ qj︷︸︸︷ q1 + . . .+ qj−1︷ ︸︸ ︷

0 0 ×
0 I ×
× × ×


where j = 1, . . . , ` + 1 and again the × symbols correspond to blocks with arbitrary elements. Also
assume

A∗Yj = 0 (j = 1, . . . , `)

A∗Y`+1 = c.

Then (D) is not strongly infeasible.

2

Proof Suppose (D) is strongly infeasible and let us fix x ∈ Rm to satisfy (1.1). Observe

Ax • Yj = 〈x,A∗Yj〉 = 0 (j = 1, . . . , `),

hence an argument like in the proof of Claim 1 shows the last q1 + · · · + q` rows and columns of Ax
are zero. Thus

〈c, x〉 = 〈A∗Y`+1, x〉
= Y`+1 • Ax ≥ 0,

a contradiction.

Example 1 continued If α = 1 then (1.2) fits the framework of Claim 1 with k = 1, p1 = p2 = 1.

If α = 0, then it fits the same framework with p1 = 1, p2 = 0. In this case we can choose ` =
1, q1 = 1, q2 = 0 and

Y1 =

(
0 0

0 1

)
, Y2 =

(
0 −1/2

−1/2 0

)
as in Claim 2 to prove that (1.2) is not strongly infeasible.

Algorithm 2 in [1] generates infeasible SDPs with the structure given in Claim 1 with

n = 10, k = 2, p1 = 2, p2 = 3, p3 = 2, m = 10 or m = 20.

We call these instances infeasible: they may be strongly or weakly infeasible.

Algorithm 3 in [1] generates weakly infeasible SDPs, together with the Yj of the form given in
Claim 2, with

n = 10, k = 2, ` = 1, p1 = 2, p2 = 3, p3 = 2, q1 = 2, q2 = 1

m = 10 or m = 20.

We call these instances weakly infeasible: these are guaranteed to be weakly infeasible.

We also add an optional

Messing step: Choose T = (tij) ∈ Zm×m and V = (vij) ∈ Zn×n random invertible matrices
with entries in [−2, 2] and let

Ai = V T
(m∑
j=1

tijAj

)
V for i = 1, . . . ,m.

These operations do not change the status of (D): they keep it weakly infeasible, if it was weakly
infeasible; and strongly infeasible, if it was strongly infeasible.

We call the instances to which we did not apply the Messing step, clean; and the instances to which
we did apply it, messy.

We store the instances in Sedumi format, so the roles of A and A∗ are exchanged, and the right
hand side is called b (not c). Furthermore, we provide I10 as objective function. All entries in our
instances are integers and all entries in the Yj matrices are rationals with small denominators (for
details, see [1]). Thus one can verify the infeasibility and weak infeasibility of our instances in exact
arithmetic (following the proofs of Claims 1 and 2).

3

References

[1] Minghui Liu and Gábor Pataki. Exact duals and short certificates of infeasibilty and weak infea-
sibility in conic linear programming. Math. Program. A, to appear, 2017.

4

